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ABSTRACT To obtain exact size of non-cooperative target in ISAR images, an accurate cross-range
scaling (CRS) should be performed. To do this, an image based approach, which exploits two sequential
ISAR images based on the scale and rotational relationship between them, has been adopted in the existing
ISAR CRS methods. However, they have two major problems: 1) unknown effective rotation center (ERC)
of non-cooperative target, and 2) performance degradation owing to the scintillation of two ISAR images.
To address these issues, in this paper, we propose a new CRS method, mainly consisting of two steps:
1) coarse estimation of rotation velocity (RV) in range-Doppler (RD) domain after feature extraction and
matching, and 2) using the estimate in Step1, fine RV estimation via singular value decomposition (SVD)
in range/cross-range (RC) domain. Furthermore, experimental results based on simulated and real measured
data are provided to demonstrate the effectiveness of the proposed method.

INDEX TERMS Cross-range scaling, inverse synthetic aperture radar (ISAR), random sample consensus
(RANSAC), scale invariant feature transform (SIFT), singular value decomposition (SVD).

I. INTRODUCTION
Inverse synthetic aperture radar (ISAR) can provide two
dimensional (2-D) radar image of non-cooperative tar-
gets [1]. Because of its advantages (e.g. long-range capa-
bility, weather-unaffected, and high-resolution), ISAR has
been widely used in military or civilian applications,
such as aerial/maritime surveillance [2]–[4]. Especially,
high-resolution ISAR image plays an important role in tar-
get recognition and classification. In general, the range and
cross-range resolution of ISAR image are determined by
the frequency bandwidth of transmitted signal and the rota-
tion angle (RA) of a target, respectively [5]. Accordingly,
to improve range/cross-range resolution, we need not only a
radar system with a wide-frequency band, but also a target’s
motion with a wide RA. It should be noted that, contrary
to the range resolution, cross-range resolution is uncontrol-
lable component because the RA of non-cooperative target is
unknown in real-world ISAR imaging.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

Generally, 2-D ISAR image can be obtained by classi-
cal range-Doppler (RD) processing, which displays target’s
scattering centers (SCs) in a range-Doppler domain [m-Hz].
In RD processing, the Doppler resolution is related to only
the coherent processing interval (CPI). However, even with
the same CPIs, RD images of a target can be expanded or
compressed in the Doppler domain owing to the target’s
unknown rotational motion (RM) [6]. This implies that, even
for the same target, different RD images can be obtained,
which results in critical problem in target recognition and
classification. Therefore, RD images should be scaled into a
homogenous range/cross-range (RC) images [m-m].

The key issue of cross-range scaling (CRS) is to esti-
mate a correct rotational velocity (RV) of a target, which
is the amount of RA divided by CPI. Over decades,
a variety of CRS methods have been proposed [7]–[18].
Generally, the methods can be categorized into two groups:
signal based method (SBM) and image based method (IBM).
In SBMs [7]–[11], the methods exploit chirp rate in the
phase of received signal, which is induced by a constant RV
of the target. Here, by prominent point processing, a range

148132 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1256-3866
https://orcid.org/0000-0002-8073-2556
https://orcid.org/0000-0003-1200-5282


B.-H. Ryu et al.: Robust ISAR Cross-Range Scaling via Two-Step Rotation Velocity Estimation

TABLE 1. Definition of acronyms used.

bin with a dominant SC is selected and RV can be esti-
mated based on phase information of SCs. However, since
the phase signal can be easily corrupted by noise, SBMs
often fail in low signal-to-noise (SNR) cases. Typically, some
SBMs [10], [11] guarantee a good RV estimation accuracy
even in low SNRs. Meanwhile, when multiple SCs exist at
the selected and the same range bin, the performance of SBMs
can be degraded.

On the other hand, IBMs use the relationship between two
sequential ISAR images [12]–[18]. Here, range-compressed
data during a certain CPI are divided into two smaller CPIs,
and the resulting two sequential ISAR images are obtained
by RD processing. In general, most IBMs have been based
on image rotation-and-correlation, such that the relative RA
between two images and corresponding RV of the target can
be estimated. However, it is noteworthy that, IBMs success-
fully work only when the effective rotation center (ERC) of
two images perfectly matches each other. This implies that,
exact knowledge of ERC should be known a priori. Nonethe-
less, it is hardly known and very difficult to be estimated in
most cases.

To avoid the problem of unknown ERC of the target, Radon
transform [16], and 2-D Fourier transform coupled with polar
mapping [14] have been applied to two sequential ISAR
images. In the former case, the major axes were extracted
from both ISAR images via Radon transform, then, RV of
the target was estimated by comparing the angle between two
axes. On the other hand, the method in [14] utilized the rota-
tion property of Fourier transform. When the polar mapping
was applied to 2-D spectrums, rotation in the image domain is
converted into translation in the angle domain. Accordingly,
RV was deduced such that the correlation between two polar

images is maximized. Although the method in [14] and [16]
can estimate RV of the target without a prior information
of ERC, the estimation scheme in both methods is heavily
dependent on searching interval in the angle domain. This
implies that, the smaller the angular interval, the better the
estimation accuracy at the cost of increase of computational
complexity, and vice versa.

Meanwhile, recent methods have exploited some fea-
ture extraction techniques, adopted from conventional image
processing [15], [17], [18]. Owing to its much smaller-
dimensional features, compared to the ISAR image itself,
feature-extraction based methods could reduce the compu-
tational cost of traditional IBMs. Notably, Kang. et al. [17]
carried out features from accelerated segment test (FAST) for
feature extraction, followed by principal component analysis
(PCA). Since the PCA is generally used to determine the
direction of the largest variance of given data, by comparing
two directions obtained from two sequential ISAR images,
RV can be estimated without a priori information of ERC
of the target. However, because an electromagnetic waves
returning from the target have a complicated scattering mech-
anism, the severe scintillation (i.e. a fluctuation of amplitude)
of SCs between two sequential ISAR images often occurs
in real-world ISAR imaging. In this case, two ERCs of two
sequential ISAR images may be different unless the accurate
matching between images is carried out. This implies that,
the method in [17] cannot guarantee an accurate RV esti-
mation in a practical situation. On the other hand, in [18],
scale invariant feature transform (SIFT) [19] was applied
to extract non-fluctuating SCs from two sequential ISAR
images. Here, the extracted features are matched through
two stages: nearest neighbor distance (NNDR) and random
sample consensus (RANSAC) [20]. Then, an optimization
strategy named particle swarm optimization (PSO) was used
to simultaneously find the ERC and RV of the target. Despite
its much smaller-dimensional SIFT features, it still requires a
huge computation time because PSO iteratively searches the
global optimum of ERC and RV of the target.

Motivated by aforementioned problems, this paper
presents a new CRS method based on IBM approach. The
proposed method is mainly composed of two steps: 1) coarse
RV estimation in RD domain and 2) using the estimated RV in
Step1, fine RV estimation via singular value decomposition
(SVD) in RC domain. First, robust SCs are extracted and
matched through SIFT and NNDR, as introduced in [18].
To remove outliers among the matched SCs after implement-
ing NNDR, RANSAC algorithm is adopted and a homog-
raphy between matched SCs is obtained. Here, RV of the
target can be obtained a priori in RD domain. Next, by using
the estimated RV, matched SCs are scaled into those in
RC domain. Then, calculate SVD of the covariance matrix
of two matched SCs in RC domain. Accordingly, much
accurate RV of the target can be estimated by the trace
of a rotation matrix, which is the product of two matri-
ces, each consisting of the left and right singular vectors,
respectively.
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Notably, the main difference between the proposed method
and the existing methods is that, RV estimation is performed
twice both in RD domain and RC domain. Generally, in RD
domain, the effect of rotation and scaling of two sequential
ISAR images is jointly coupled, resulting in the RV estima-
tion in a recursive fashion [12]–[18]. Nonetheless, in this
paper, coarse estimation of RV of the target can be con-
ducted as a result of the proposed RANSAC algorithm in
RD domain. By using the estimated RV in the previous stage,
matched SCs can be scaled into those in RC domain, where
two matched SCs have only rotation relationship between
them. It is well-known that, since SVD successfully works
for the estimation of a rigid body rotation of two objects in
conventional image processing [30], much precise RV of the
target can be obtained via a simple SVD. Moreover, it should
be noted that, in the process of SVD of the covariance matrix,
the translation component induced by the unknown ERC of
the target is automatically removed. To sum it up, with the
proposed two-step RV estimation, we cannot only perform
CRS without a prior knowledge about ERC of the target, but
also can guarantee a good estimation accuracy of RV.

The rest of this paper is organized as follows: Section II
describes the scale and rotation relationship between two
sequential ISAR images. In Section III, we present the
proposed method in detail. The method is composed of
two main steps: 1) coarse RV estimation of in RD domain
after feature extraction and matching, and 2) fine estimation
of RV via SVD in RC domain by using the coarsely estimated
RV in Step 1. In Section IV, experimental results are given to
validate the efficacy of the proposed method. Here, results of
both simulation dataset about point SCs and real measured
data of airplane and maritime target are presented. Finally,
conclusion is provided in Section V.
Notation – Lower-case (resp. Upper-case) bold letters

denote column vectors (resp. matrices). tr (·), det (·) and
‖·‖ denote thematrix trace, matrix determinant and Frobenius
norm operators, respectively. diag [a, b] denotes the diagonal
matrix, which has elements of a and b.

II. PROBLEM FORMULATION
During CPI, ISAR target is confined in a 2-D image projec-
tion plane (IPP), illustrated in Fig. 1. Let P = (x1, y1) be a
SC in a Cartesian coordinate system with the reference point
Oref =

[
0 0

]T , where each of coordinates denotes range and
cross-range direction, respectively.

In Fig. 1, R (t) is a translational motion (TM), which is
the radial change along radar’s line of sight, while θ (t)
is a rotational motion that is the change of aspect angle
between the line of sight and a target. Here, to obtain focused
ISAR image, uniform RM is required because it yields a
constant Doppler-frequency shift, which separates SCs in
the cross-range direction. In contrast, TM results in enve-
lope misalignment and 1-D phase error in the received data.
Similarly, non-uniform RM (i.e. angular acceleration or jerk)
inducesmulti-dimensional phase error. Besides, when a target
is involved in a 3-D motion (such as roll, pitch, yaw), the

FIGURE 1. Geometry of ISAR imaging.

orientation of IPP changes over time. As a result, the uncom-
pensatedmotions significantly blur the obtained ISAR image.
Fortunately, recent methods have been proposed to solve
these problems: TM/RM compensation [22]–[27], and select-
ing suitable imaging frame [28]–[30]. Once aforementioned
methods are successfully performed in advance, constant
2-D IPP is detected. Then, ISAR target can be considered as
uniformly rotating object.

In ISAR imaging, the range and cross-range resolution
are determined as 1r = c/ (2B) and 1y = λ/ (2ωT ),
respectively. Here, c is the speed of light, B is the frequency
bandwidth, λ is the wavelength of the carrier frequency, ω is
a RV of the target, and T denotes the CPI. When we divide
a total CPI into two sub-apertures, two sequential ISAR
images, I1 and I2, can be obtained by classical RD processing.
In particular, two sub-apertures can be overlapped or there
may be a gap between them. In addition, when I1 and I2
are formed around t1 and t2, respectively, the time-difference
between I1 and I2 becomes Tm = t2 − t1. Owing to the
uniformly rotating target, the aspect angle change between
I1 and I2 becomes 1θ = ωTm. Data sets of SCs, P1 and
P2 ∈ <

2×L , in I1 and I2 are expressed in terms of range and
Doppler-frequency bins (m, n) [17]:

P1 =
[
p1,1 p1,2 · · · p1,L

]
, P2 =

[
p2,1 p2,2 · · · p2,L

]
(1)

where pi,j =
[
mi,j ni,j

]T is the location vector of the j-th SC
on the i-th image. Here, when the range and CRS factors are
provided, I1 and I2 in RD domain can be transformed into
those in RC domain. Accordingly, data sets of SCs, PS1 and
PS2 ∈ <

2×L , in RC domain are expressed as:

PS1 = S (ω)P1, PS2 = S (ω)P2 (2)

where S (ω) = diag [ηr , ηc] is the scaling matrix and its
components are defined as:

ηr =
c
2B
, ηc =

λfr
2Mω

(3)

In (3), fr is the pulse repetition frequency and M is the
number of bursts used to form I1 and I2.
Besides, I1 and I2 in RC domain have following relation-

ship [16]–[18]:

S (ω)
(
P2 −OC,1

)
= R (1θ)S (ω)

(
P1 −OC,2

)
(4)
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where R (1θ) is a rotation matrix, which is defined as

R (1θ) =
[

cos (1θ) sin (1θ)
− sin (1θ) cos (1θ)

]
. (5)

Here, OC,1 =
[
xc,1 yc,1

]T and OC,2 =
[
xc,2 yc,2

]T
are the unknown ERCs of the target in I1 and I2, respec-
tively. It should be noted that some SCs, which are robust
to scintillation between two ISAR images, satisfy the rela-
tion in (4). Therefore, ISAR CRS methods based on IBM
approach [15], [17], [18] exploited conventional feature
extraction techniques (such as SIFT, FAST, and etc.) for
feature extraction and RV estimation. Meanwhile, due to
unknown ERCs in (4), it becomes a very difficult task to
estimate RV of the target.

Motivated by above problem, recent methods in [14]–[18]
have been proposed for ISAR CRS without a prior knowl-
edge of ERC. Among them, in [18], PCA was used to find
the direction of maximum variance of extracted SCs. Here,
by finding RA between the major directions obtained from
I1 and I2, RV can be estimated. Most notably, the method
in [17] has a low computation cost through FAST and a
suitable cost function, which requires only a few iterations.
However, despite of its good computational efficiency, the
rotational relationship in (4) holds only when the identi-
cal SCs are extracted from both ISAR images, in order to
ensure the same ERCs between two ISAR images. Further-
more, in real-world ISAR imaging, when scintillation of SCs
between two sequential ISAR images becomes pronounced,
the estimated RV by the method in [17] often deviates from
the real RV of the target. This implies that, the more the
scintillation of SCs, the lower the RV estimation accuracy of
the method in [17]. To address the aforementioned problems,
we adopt feature extraction via SIFT, followed by feature
matching through NNDR and RANSAC. It is noticeable
that, matched SCs are robust to scintillation of SCs, a major
problem in existing methods.

Besides, the main attribute of the proposed method is
that, the RV of the target is found twice in RD domain and
RC domain. Since the scaling matrix S (ω) is a diagonal
matrix and non-singular, (4) can be changed into(

P2 −OC,2
)
= S−1 (ω)R (1θ)S (ω)

(
P1 −OC,1

)
= X (1θ)

(
P1 −OC,1

)
. (6)

In (6), X (1θ) can be expressed as

X (1θ) =

 cos (1θ) γ sin (1θ)

−
1
γ
sin (1θ) cos (1θ)

 , (7)

where γ = ηc
/
ηr

is the ratio between two scaling factors.
It should be noted that, scaling matrix S (ω) and rotation
matrix R (1θ), are jointly coupled through RA as X (1θ)
in (6), leading to severe difficulty in direct estimation of
RV of the target. Accordingly, the optimization in the RD
domain has been performed based on a suitable cost function
in a recursive fashion [15]–[18]. However, in the RC domain,

two sequential ISAR images have only rotation relationship
as in (2). To do this, a CRS factor should be provided a priori.
Meanwhile, in the proposed method, we can estimate RV of
the target in the process of RANSAC algorithm, resulting
in I1 and I2 scaled into those in RC domain. Accordingly,
RV of the target can be further refined via simple SVD in
the RC domain. In the next section, we present the details of
the proposed method.

III. PROPOSED ISAR CRS METHOD
A. FEATURE EXTRACTION AND MATCHING
SIFT is one of widely-used feature extraction techniques in
the field of image processing [19]. Especially for rotated
and scaled images, SIFT outperforms other feature extraction
methods. Hence, for the purpose of ISAR CRS based on IBM
approach, SIFT was chosen to find major SCs because two
sequential ISAR images in RD domain, I1 and I2, which have
rotation and scaling relationship. Generally, SIFT consists of
following four steps [19]:

(Step 1) Scale-space peak selection: Different image scale
space can be obtained by variable-scale Gaussian kernel.
Multiple key-points are identified by difference-of-Gaussian.

(Step 2) Key-point localization: Remove some useless
key-points that have low contrast (i.e. sensitive to noise) or
are poorly localized along an edge.

(Step 3) Orientation assignment: Assign an orientation to
each key-point to achieve rotation invariance.

(Step 4) Key-point descriptor: Compute a descriptor for
each key-point, which has a 128 dimensional vector. To do
this, 16 × 16 window around the key-point is taken. It is
divided into 16 = 4 × 4 sub-blocks, and in each sub-block,
8-bin orientation histogram is created. Besides, additional
measures are taken to achieve rotation or illumination inde-
pendence.

After applying SIFT algorithm to I1 and I2, key-points
(i.e. SCs) and corresponding feature descriptors are extracted
from each ISAR image. To satisfy the relation in (6),
SCs should be matched correctly between two ISAR images.
In general, SCs in each image are matched by identifying
their nearest neighbors. Suppose that, we have two data sets
composed of SIFT descriptors, A = [a1, a2, . . . , aK ]T ∈
<
128×K andB =

[
b1,b2, . . . ,bQ

]T
∈ <

128×Q obtained from
I1 and I2, respectively. The most classical way to compare A
and B is to calculate an Euclidean distance d [19]:

∀k d (q) = argmin
k

∥∥ak − bq
∥∥ , (8)

where k = 1, 2, . . .K and q = 1, 2, . . .Q are indexes of A
and B, respectively. As a result of (9), all SIFT descriptors
in A and B can be matched between I1 and I2, where each
of A and B has the smallest d . However, due to noise or
some artifacts, the second closest-match may be similar to
the closest-match. Moreover, some descriptors in A may be
matched to the same descriptor in B. To this end, we exploit
NNDR in [17], [19] to determine a match confidence:

NNDR = d1
/
d2 < G, (9)
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where d1 and d2 are the smallest and the second smallest
Euclidean distances between A and B. The closer the NNDR
to 1, the less confident the match. Here, with a pre-defined
threshold G, we reject less confident matches where
NNDR is larger than the threshold G. Subsequently, P set of
SCs are matched between I1 and I2.

B. OUTLIER REMOVAL WITH RANSAC ALGORITHM AND
COARSE RV ESTIMATION IN RD DOMAIN
Since the matched SCs are used to estimate RV of the target,
the matching result directly affects the accuracy of RV esti-
mation. Suppose that we have P sets of matched SCs,Am and
Bm ∈ <P×3 after applying NNDR to A and B, respectively.
To satisfy the relationship in (6), we subtract the mean-values
of the locations of the matched SCs after NNDR,

Ām = Am −
1
P

P∑
p=1

am,p, B̄m = Bm −
1
P

P∑
p=1

bm,p. (10)

Accordingly, Ām and B̄m satisfy a homography H ∈ <3×3

as:

B̄m = HĀm. (11)

Typically, RANSAC is a useful algorithm that removes
outliers among the matches and be used to exploit H in (12).
With the RANSAC algorithm, L sets of matched SCs are
obtained after the outlier removal. Because the L matched
SCs satisfy the relationship in (6), H can be expressed as:

H =
(
X (1θ) h

0 1

)
=


cos (1θ) γ sin (1θ)

−
1
γ
sin (1θ) cos (1θ)

h

0 1

 ,
(12)

where 0 ∈ <1×2 is the zero-vector, and h ∈ <2×1 is the
displacement vector induced by the difference between OC,1
and OC,2.

Here, it is noteworthy that, the determinant of A in (7)
andH in (13) is always 1 in any condition. This implies that, if
outliers are successfully removed and thematched SCs satisfy
the homography in (13), the determinant of estimated homog-
raphy should be nearly 1. Generally, RANSAC is composed
of four major stages [20], however, to obtain the matched
SCs, which satisfy the homography in (13), we propose an
additional stage (Step 5) as follows:
(Step 1) Randomly select four components among the

matches and compute the homography Ĥ in (12) between the
selected matches.

(Step 2) Judge whether other matches satisfy the relation-
ship in (12) with the estimated Ĥ in Step 1.

(Step 3) If a match satisfy the relationship in (12), add the
match to the group of inliers. Keep the largest set of inliers.

(Step 4) Re-compute Ĥ of the lease-squares on all of the
inliers.

(Step 5) Compute the determinant of Ĥ (det
(
Ĥ
)
)

and repeat the process in Step 1-5, until the deter-
minant of the estimated homography approaches to 1
(i.e.

∣∣∣det (Ĥ)− 1
∣∣∣ ≤ ε0).

Once the homography Ĥ is given by the proposed
RANSAC algorithm, RV of the target can be estimated by
the trace of Ĥ:

ω̂1 =
1
Tm

cos−1

 tr
(
Ĥ (1θ)

)
− 1

2

 . (13)

C. FINE RV ESTIMATION VIA SVD IN RC DOMAIN
After the aforementioned feature extraction and matching
process, followed by SIFT, NNDR and RANSAC, we have
L matched SCs, resulting in P1 ∈ R2×L and P2 ∈ R2×L in
RD domain. Meanwhile, with the estimated ω̂1 in (14),
we can scale P1 and P2 into PS1 and PS2 in RC domain:

PS1 = S
(
ω̂1
)
P1, PS2 = S

(
ω̂1
)
P2. (14)

From (4), PS1 and PS2 have the following relationship:

PS2 = R (1θ)PS1 + S
(
ω̂1
)
OC,1 − R (1θ)S

(
ω̂1
)
OC,2

= R (1θ)PS1 + B. (15)

In (16), the first term represents a rotation and the sec-
ond term a translation component of PS1 . Typically, B =
S
(
ω̂1
)
OC,1 − R (1θ)S

(
ω̂1
)
OC,2 is the translation matrix

induced by unknown ERCs of I1 and I2. To remove the
effect of B, we obtain new SCs, P̄c1 and P̄c2 in RC domain,
by subtracting mean values of SCs in (18) from PS1 and PS2
(i.e. mean centering):

P̄c1 = PS1 − P̄1, P̄c2 = PS2 − P̄2, (16)

P̄1 =
1
L

L∑
i=1

ps1,i, P̄2 =
1
L

L∑
i=1

ps2,i. (17)

As a result, the newly mean-centered two sets of SCs,
obtained from two sequential ISAR images in the RC domain,
have only a rotation relationship as follows:

P̄c2 = R (θ) P̄c1. (18)

It is noteworthy that, (19) becomes an over-determined
system with a rotation matrix R (θ) ∈ <2×2 (L � 2). Then,
its solution can be given by solving a least-square problem
via SVD. To apply SVD, we compute the covariance matrix
of P̄c1 and P̄

c
2 as follows:

C = P̄c1
(
P̄c2
)T
= U6VT , (19)

where 6 ∈ <2×2 is a diagonal matrix containing two sin-
gular values of C, and U ∈ <2×2 and V ∈ <2×2 are
orthogonal matrices containing right and left singular vec-
tors, respectively. According to [21], rotation matrix R (θ)
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between I1 and I2 can be obtained as the product of two
orthogonal matrices, U and V as:

R (θ) = VUT
=

[
cos θ sin θ
− sin θ cos θ

]
. (20)

Consequently, the RV of the target can be re-estimated by
the trace of R̂ (θ) in (21):

ω̂2 =
1
Tm
1θ̂ =

1
Tm

cos−1
[
1
2
tr
(
R̂ (1θ)

)]
. (21)

In this paper, RV of the target is evaluated twice
(ω̂1 and ω̂2) in both RD domain and RC domain, respectively.
Notably, as the matching accuracy of extracted SCs increases,
the accuracy in RV estimation improves. Since the SCs after
applying RASNAC algorithm ismuch preciselymatched than
the SCs after implementing NNDR, the better estimation
accuracy of ω̂2 than ω̂1. The overall process of the proposed
CRS scheme is illustrated in Fig. 2.

FIGURE 2. Overall flowchart of the proposed method.

D. COMPUTATIONAL COMPLEXITY
For a given ISAR raw data, two sequential ISAR images
I1 and I2 can be obtained by RD processing. Suppose
that, I1 and I2 are M × N images in the range and
Doppler domain, the computational complexity of RD imag-
ing requires 2(M logM) + 2(N logN ) = 2(M logM).
After applying SIFT algorithm, two data sets a and b, each
of them contains K and Q number of SIFT descriptors of I1
and I2, respectively, can be obtained. Here, the computational
complexity of a and b is proportional to2(MN + K ) +
2(MN + Q) = 2(MN + K ) [31]. In the proposed CRS
scheme, the matching process of SCs between I1 and I2

TABLE 2. Computational complexity.

FIGURE 3. Simulation setup (a) point scatterer model, (b) target’s RM.

FIGURE 4. Two sequential RD images (a) I1, (b) I2.

consists of two steps: 1) NNDR and 2) RANSAC. In the
former case, the complexity of NNDR requires 2(KQD),
mainly caused by the computation of euclidean distances, and
D is the size of descriptor (i.e. D = 128 for SIFT). After
conducting NNDR, L number of SCs are matched. In this
case, the runtime of RANSAC can be expressed as [32]:

tR = L
(
tM + t̄

)
, (22)

where tM is the time needed for generating a hypothesis
from a sampled data and t̄ is the time for evaluating the
hypothesis. It is noteworthy that, tR increases as the number of
sample (L) increases. Accordingly, RANSAC is notorious
for high computational cost in the field of image process-
ing. However, owing to the scattering mechanism of electro-
magnetic wave, major SCs in the ISAR image have much
smaller number of samples than optical images. Moreover,
as M ,N � K ,Q > L, the computational complex-
ity of NNDR and RANSAC is much lower than that of
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FIGURE 5. Matched SCs between I1 and I2 through (a) NNDR, (b) RANSAC when det (H) = 1.0792, (c) RANSAC when det(H) = 1.0001. Matched SCs are
connected through lines. Circles are located at the position of extracted SCs on the image, and they denote the scale and orientation of descriptors.

RD imaging and SIFT algorithm. Consequently, the total
computation cost of the proposed method is mainly deter-
mined by RD processing and SIFT.

IV. EXPERIMENTAL RESULTS
In this section, we verify the efficacy of the proposed method
through both simulations based on the point scatter model
and experiments using the real measured data. All compu-
tations were run by MATLAB in Windows 10 on an Intel
Core i7-7700 CPU at 3.6 GHz.

A. SIMULATIONS
A Boeing 747-400 aircraft model composed of 88 isotropic
SCs was used (Fig. 3. a). In simulations, we assumed a mono-
static radar in theX-bandwith a stepped frequencywaveform,

and its specifications are as follows: carrier frequency 9 GHz,
frequency bandwidth 500 MHz (i.e. 0.3 m range resolution),
pulse repetition frequency (PRF) 400 Hz, and SNR= 20 dB.
Target uniformly rotates with RV of 0.125 rad/s during
CPI = 1.2 s, resulting in the RA of 8.6◦ (Fig. 3 b). During
CPI, 480 pulses were received and they were equally divided
to form two sequential ISAR images, I1 and I2. Hence, the
time difference between I1 and I2 was 0.6 s. We exploited
the conventional RD technique with zero-padding to obtain
two sequential ISAR images in RD domain, and they
had 1500 and 720 bins in the range and Doppler domain,
respectively. As previously mentioned, ERC of the target
is unknown in real-world ISAR imaging, and thus, we set
the ERC as arbitrary position, randomly chosen in the
RD domain (Fig. 4).
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After applying SIFT algorithm, from I1 and I2, 196 and 182
SCs were extracted, respectively. Subsequently, NNDR and
RANSAC described in Section III-A and III-B, were applied
to the extracted SCs to match two sets of SCs. In Fig. 5,
the NNDR produced the number of matched SCs as 105 and
further, RANSAC reduced it by removing outliers. By com-
paring Fig. 5 (b) and (c), it can be noted that, traditional
RANSAC algorithm successfully removes the outliers among
the matches, nonetheless, the matched SCs do not satisfy the
relationship in (4). On the other hand, matched SCs after
conducting RANSAC algorithm with the additional step are
robust to SC scintillations and have the rotation and scale rela-
tionship between I1 and I2. In this case, the estimated homog-

raphy was Ĥ =

 0.9936 −0.0542 −0.5185
0.1092 1.0003 2.124
−0.000 0.000 1.0000

, yielding the
estimated RV ω̂1 =0.1292 rad/s. By using ω̂1, two sequential
ISAR images in RD domain can be converted into those in
RC domain as in (15). Then, rotation matrix R (θ) and RV
of the target can be re-estimated via SVD, (21) and (22),

yielding R̂ =
[

0.9971 0.0759
−0.0759 0.9971

]
, and ω̂2 =0.1266 rad/s.

Note that, the root mean square error (RMSE) of ω̂1 and ω̂2
were 3.36 % and 1.26 %, respectively. This implies that, the
estimation accuracy was improved, and the two-step estima-
tion resulted in an accurate RV estimation. The cross-range
scaled ISAR image via proposed CRS scheme is illustrated
in Fig. 6.

To validate the performance of the proposed method,
we compared the existing CRS methods based on IBM
approach [17], [18] with the proposed method. For the sake
of notational brevity, the aforementioned methods will be
referred to as PCA-CRS, and PSO-CRS, respectively. The
received echoes have been contaminated by 100 indepen-
dent noise realizations (i.e. Monte-Carlo simulations) for
SNR ranges from -5 to 25 dB with a 5 dB increment. The
RMSE between the true RV and the estimated one is illus-
trated in Fig. 7 (a).

As the SNR increases, the estimation accuracy was
improved in all methods. Most notably, the proposed method
maintains a good estimation accuracy even for low SNRs
(below 5 dB). This implies that, owing to feature extrac-
tion and matching procedures, noise or scintillation of SCs
hardly affected the estimation result of the proposed method.
In contrast, the performance of PCA-CRS is significantly
deteriorated at low SNRs, since the method has no matching
procedures. Notably, as the rotation relationship between and
I1 and I2 is directly exploited via RANSAC algorithm and
SVD, the estimation accuracy of the proposedmethod is irrel-
evant to the number of matched SCs. In other words, as long
as there is a rotation relationship between two sets of matched
SCs, even with a small number SCs at low SNR, the proposed
method can find an accurate RV of the target (Fig. 7 b).
Furthermore, the proposed method exhibits robust estima-
tion error against various RVs of the target and different
SNRs (Fig. 8 a).

FIGURE 6. Rescaled ISAR image in RC domain.

FIGURE 7. (a) Comparison of RMSE between true RV and estimates of
various IBM approaches in different SNRs, (b) the number of features
extracted via SIFT (K , Q) and the number of matched SCs after NNDR (P)
and RANSAC (L).

FIGURE 8. (a) RMSE in different RVs and SNRs by the proposed method,
(b) comparison of computation time to existing methods at
different SNRs.

In Fig. 8 (b), computation times for CRS methods are
investigated. Each computation time was computed by aver-
aging 100Monte-Carlo simulations, as in Fig. 7. By adopting
FAST and a suitable cost function, PCA-CRS has the best
computational efficiency, while PSO-CRS consumes a huge
amount of computation time owing to the iterations in PSO.
Meanwhile, the computational efficiency of the proposed
method is a little higher than that of PCA-CRS because the
desired RV can be directly estimated by RANSAC algorithm
and a simple SVD. As a result, proposed method has a good
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FIGURE 9. (a) Geometry of Boeing 747-400, and (b) an optical image of
maritime target (a bulk carrier).

FIGURE 10. Two measured RD images of Boeing 747-400 (a) I1, (b) I2,
(c) ISAR image corresponding to red square in (a), (d) ISAR image
corresponding to red square in (b).

estimation accuracy as well as low computational complexity,
compared to existing methods.

B. REAL MEASUREMENT
In this sub-section, the proposed method was applied to
real data sets measured against both aircraft and maritime
target (Fig. 9). In the former case, an X-band chirp pulse
radar was installed at 3-km away from the aircraft, which
was illuminated from the right rear. Specifications of the
radar are as follows: carrier frequency 9.15 GHz, frequency
bandwidth 100 MHz (i.e. 1.5 m range resolution), sam-
pling rate 150 MHz, and PRF 500 Hz. During CPI=3 s,
1500 pulses were collected, and pulses in the 201-600 and
1101-1500 range were used to construct I1 and I2, as in
Fig. 10. Moreover, owing to the rotating blades in the inlet
of engine, the received signal was highly contaminated by
the jet engine modulation. Thus, before applying the pro-
posed method, an adaptive Gaussian representation [33] was
adopted in advance to remove micro-Doppler components
due to rotating blades.

FIGURE 11. Matched SCs through (a) NNDR, (b) RANSAC. Matched SCs are
connected through lines. Circles denote the SIFT descriptors.

FIGURE 12. Rescaled ISAR image of Boeing 747-400.

FIGURE 13. Two measured RD images of maritime target (a) I1, (b) I2.

In real-world ISAR imaging, the scintillation of SCs
between two sequential ISAR images is significant, as shown
in Fig. 10 (c) and (d). Nonetheless, after applying SIFT
algorithm, we can extract 18 and 14 SCs from I1 and I2,
respectively. Thereafter, matching between two sets of SCs
has been performed throughNNDRandRANSAC. In Fig. 11,
the number of matched SCs was reduced from 6 to 4 via
sequential combination of NNDR and RANSAC. Finally, the
unknown rotation matrix of the target was obtained via (21)

and (22): R̂ =
[

0.9995 0.0307
−0.0307 0.9995

]
, yielding θ̂ =1.76 ◦ and

ω̂2 =0.0192 rad/s.
By using these estimates, we rescaled the ISAR image

(Fig. 12). To investigate the accuracy of estimated values,
we compared the length on the rescaled ISAR image with
the real size of the target. In Fig. 12, we chose three points
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FIGURE 14. Matched SCs through (a) NNDR, (b) RANSAC. Matched SCs are illustrated in the same manner as in Fig. 5 and 11.

of the target: the tail (A), the center of the main body (B),
and the right wing (C). The selected three points in the
rescaled ISAR image corresponded to A= [−7, 52.83] m,
B= [26, 25.08] m, and C= [2,−8] m, leading to AB =
43.12 m and BC = 40.87 m. The measured lengths are very
close to the true lengths in Fig. 9 (a), AB = 42.84 m and
BC = 40.18 m. Besides, in [16] and [17], the validation of the
methods were conducted to the same ISAR image (Fig. 11).
According to [16] and [17], the estimated RV of the target was
0.019 rad/s, which is quite similar to the estimate of the
proposed method, ω̂2 =0.0192 rad/s.
In the case ofmaritime target (i.e. a bulk carrier), anX-band

chirp pulse radar was installed on the shore, and echoes were
collected from the target at a distance of 3.3 km. Specifica-
tions of the radar are as follows: carrier frequency 9.65 GHz,
frequency bandwidth 200MHz (i.e. 0.75 m range resolution),
sampling rate 500 MHz, and PRF 8 kHz. During CPI=2.25s,
18000 pulses were received and pulses in the 1-12000 and
6001-18000 indexes were used to form two sequential ISAR
images, I1 and I2 as shown in Fig. 13. As with the case
of aircraft target, the fluctuation of amplitude between I1
and I2 (i.e. the scintillation of SCs) can be observed. The
number of SCs obtained by SIFT was 982 in and 1364 in
I1 and I2, respectively. However, after matching two sets
of SCs, NNDR provided 7 matched SCs, and RANSAC
reduced it to 4 (Fig. 14). Then, the matched SCs were
exploited to estimate RV of the target via (21) and (22):

R̂ =
[

0.9996 0.0277
−0.0277 0.9996

]
, corresponding to θ̂ =1.58 ◦ and

ω̂2 =0.0369 rad/s. The ISAR image, which is rescaled by
using ω̂2, is illustrated in Fig. 15. In the image, two points
(A and B) at the highest point on the pillar and bottom of
the bulk carrier were selected. Contrary to the aircraft target,
it was impossible to attain the exact specifications of the
bulk carrier. Nonetheless, it is well-known that, most of the
bulk carriers are in handysize and their height is nearly about
10 meters. Here, the points, A and B, were [3320, 9.088] m,
and [3320,−0.5] m, resulting in the height between two
points as AB ≈ 9.6 m.

FIGURE 15. Rescaled ISAR image of maritime target.

Summarizing above experimental results, it is shown that,
the proposed method demonstrated its robustness and effec-
tiveness in not only simulations but also real measurements.
Note that, the proposed method can estimate unknown RV
of the target without any prior information of ERC, and
thus, provide correctly-scaled ISAR images. Nonetheless,
to address the accuracy of RV estimation in case of maritime
targets, much research should be required.

V. CONCLUSION
In this paper, the scale and rotational relationship between
two sequential ISAR images was analyzed first. Using this
relationship, we proposed a new ISAR CRS method that
estimates RV of a non-cooperative target based on two-step
estimation, instead of an iterative searching process as in
traditional CRS methods. The proposed method consists of
two main steps. First, for the purpose of coarse RV esti-
mation, SCs which are robust to scintillation between two
sequential images were extracted and matched through SIFT
and NNDR, respectively. Then, outliers were successfully
removed with the proposed RANSAC algorithm. In this pro-
cess, RV of the target was estimated a priori in RD domain.
Second, by using the estimated RV in the previous step,
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SCs in RD domain were scaled into those in RC domain,
where SCs have only rotational relationship between them.
Accordingly, we can estimate the rotation matrix by comput-
ing SVD of the covariance matrix of two sets of matched
SCs, resulting in the precise estimation of RV of a target
in RC domain. In this paper, to validate the effectiveness
of the proposed method, experimental results of simulations
and real measured data were provided. Thanks to the novel
approach in the proposed CRS scheme, not only an accurate
CRS can be achieved without a prior knowledge of ERCs
of the target, but also it shows robust performance to the
scintillation of SCs between two sequential ISAR images,
which is the major problem of conventional CRS methods.
In addition, the concept of the proposed method can be easily
extended to various methods, regarding the estimation of
angle between two sequential images.
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