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ABSTRACT In this article, an optimized tracking control using critic-actor reinforcement learning (RL)
strategy is investigated for a class of non-affine nonlinear continuous-time systems. Since the non-affine
system is with the implicit control input in dynamic equation, it is a more general modeling form than the
affine case, hence this also makes the optimized control more challenging and rewarding. However, most
existing RL-based optimal controllers are very complex in algorithm because their actor and critic training
laws obtained by implementing gradient descent on the square of Bellman residual error, which equals to the
approximation of Hamilton-Jacobi-Bellman (HJB) equation, hence thesemethods are difficult to be extended
to non-affine systems. In this optimized control, the RL algorithm is produced from implementing gradient
descent to a simple positive-definite function, which is derived from HJB equation’s partial derivative. As a
result, the proposed control algorithm can be significantly simple so as to alleviate the computational burden.
Finally, a typical numerical simulation is carried out, and the results also further confirm effectiveness of the
proposed control scheme.

INDEX TERMS Non-affine nonlinear system, optimal control, reinforcement learning (RL), neural network
(NN), Lyapunov function.

I. INTRODUCTION
In control community, non-affine system control has always
played an important and key role because most practical
engineering must be modeled in non-affine dynamic form.
Unlike affine system that has the explicit control input, non-
affine system’s control is implicit, so that it has not the
concept of control gain and control direction. As a result,
studying non-affine control system becomes very challeng-
ing and rewarding [1]. Several mathematical tools are avail-
able to help find an equivalent affine system, such as mean
value theorem, implicit function theorem, and Taylor serious
expansion, they can be used to convert the system into affine
form [2]–[4]. Especially, in [4], the adaptive NN controller
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is derived by first transforming the non-affine single-input
single-output (SISO) nonlinear system to affine form via
Taylor series expansion.

In the recent decades, optimal control has always
been a hot and attractive academical topic in control
community, especially to optimal control of nonlinear
systems [5]–[8]. In general, nonlinear optimal control prob-
lem refers to solve a nonlinear partial differential equation,
regarded as Hamilton-Jacobi-Bellman (HJB) equation [9].
Due to inherent non-linearity of the equation, its analytical
solution is obtained difficultly or even impossibly. To address
this challenge, Bellman proposed a technique that is the
famous dynamic programming (DP) method [10]. However,
the technique has an inevitable disadvantage, of which the
calculation amount will increase exponentially as the increas-
ing of system dimension, and thus it will result difficult
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application in practice. In order to address the difficulty of
DP method so that nonlinear optimal control can be effec-
tively achieved, Werbos developed an adaptive algorithm by
taking the advantage of NN approximators, which was called
approximate/adaptive dynamic programming (ADP) [11].
Up to now, ADPmethod has received the increasing attention
and spawned many other schemes, such as adaptive critic
design [12], [13], neural dynamic programming [14] and the
like. Additionally, in the reference [15], Liu et al. proposed
a strategic of iterative ADP to address the infinite level
optimal control problem of nonlinear systems. In the refer-
ence [16], a complex ADP approach was developed to solve
the infinite-horizon optimal problem of complex-valued non-
linear systems.

In fact, ADP can be regarded as a class of reinforcement
learning (RL) [17]. RL is a machine learning strategy that
modifies agent behavior based on the response from environ-
ment [18]. In general, a common structure of RL is the critic-
actor architecture, in which the critic is to evaluate the control
performance according to the interaction with their environ-
ment and return the feedback for the actor, and the actor is
to execute these continuous improving control operations.
Since RL enables an agent to learn autonomously according
to their own experience [19]–[21], it is an universal strategy
in the nonlinear optimal control [22]–[24]. In [22], to solve
the infinite-horizon optimal control problem, Yang et al.
developed an adaptive optimal control strategy by using the
RL of identifier-critic architecture. In [23], by using the
NN-approximator-based RL, Wen et al. proposed a decen-
tralized optimized formation control for a class of nonlinear
multi-agent systems, and a significant breakthrough in the
work is that two common requirements of known dynamic
and persistence excitation are removed. In [24], the RL opti-
mized control was extended to stochastic nonlinear system.

Because neural network (NN) and fuzzy logic sys-
tem (FLS) are the effective approximators [25]–[27], some
adaptive nonlinear approaches based on FLS or NNwere pro-
posed in recent years [28]–[32]. By using NN to estimate the
solution of HJB equation, the optimal control based on RL of
nonlinear systems was further developed, andmany outstand-
ing achievements have been made recently [33]–[35]. In [33]
and [34], to optimal control of nonlinear strict feedback
system, the new technique, optimized backstepping (OB),
was proposed first time. Its basic thought is to design the
actual control and all virtual controls as the optimal solution
of the corresponding backstepping step, so that the overall
system control can be optimized. In [35], OB technique was
applied for surface vessel control. But the above optimiza-
tion control methods requires complete system knowledge
in the RL training. In fact, some systems are often with
unknown dynamics. To solve this problem, many highlighted
approaches have been presented, such as [6], [23], [36].
In [36], an observer-based optimal control scheme was devel-
oped, and thus unknown dynamics can be compensated by
the adaptive observer. In the references [6], [23], an opti-
mal formation control of nonlinear multi-agent system was

addressed, the identifier technique was employed to over-
come the difficulty of unknown dynamic.

Inspired by the above discussions, an optimal control using
RL strategy is presented for a class of non-affine continuous-
time nonlinear systems in this article. The primary contribu-
tions in the work can be summarized as follows.

1) The optimized control approach is developed for a class
of non-affine nonlinear systems, and it is a significant exten-
sion in optimal control area.

2) The optimized control is significantly simple compared
with the existing methods, so that it can be well performed
for engineering.

3) The optimized control is easy to be implemented and
applied, because it can release the condition of persistence
excitation required for most existing optimal control.

II. PROBLEM FORMULATION
Consider the following non-affine nonlinear continuous-time
system, which is a stabilizable system [33]:

ẋ(t) = F(u, x) (1)

where x(t) ∈ Rm and u ∈ Rm are, respectively, the system
state and control input, F(u, x) ∈ Rm with F(0, 0) = 0m is the
unknown nonlinear vector-value function. The termF(u, x) is
assumed to be Lipschitz continuous on the set � containing
origin so that the solution of system (1) is unique for any
control u and bounded initial value x(0).
Since the control u is implicitly contained in the dynamic

function F(u, x), the control cannot be constructed via direct
seeking for help from the system (1). In order to overcome
the difficulty, Taylor series expansion is implemented so
that the relation between control and dynamic can become
explicit [37]:

F(u, x) = F(u0, x)+
∂F(u, x)
∂uT

∣∣∣∣
u=u0

(u− u0)+1 (2)

where 1 ∈ Rm denotes the infinitesimal term, which can be
limited by a constant µ as 0 ≤ ‖1‖ ≤ µ, and u0(x) ∈ Rm

is an unknown smooth function. Furthermore, by choosing
u0 = 0, equation (2) is expressed as

F(u, x) = F(0, x)+
∂F(u, x)
∂uT

∣∣∣∣
u=0

u+1. (3)

Insert (3) into system dynamics (1), it results in

ẋ(t) = f (x)+ g(x)u+1 (4)

where g(x) =
∂F(u, x)
∂uT

∣∣∣∣
u=0

∈ Rm×m and f (x) =

F(0, x) ∈ Rm.
Assumption 1 ( [37], [38]): The matrix g(x) in system (4)

is non-singular and bounded, i.e., it is an invertible matrix
and there exist two constants ξ̄ > ξ > 0 such that ξ̄ >

‖g(x)‖ > ξ . As a result, it implies that the matrix g(x) is
either strictly positive or strictly negative. Without losing of
generality, we assume ξ̄ > g(x) > ξ .
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The desired tracking trajectory is denoted by y(t) ∈ Rm,
then define the tracking error as z(t) = x(t)− y(t). From (4),
we obtain the following equation:

ż(t) = f (x)+ g(x)u+1− ẏ(t). (5)

Assumption 2 ( [3], [39]): The reference tracking trajec-
tory y(t) and its derivative ẏ(t) are assumed to be
bounded.

Let us introduce the performance index as follows

J (z(0)) =
∫
∞

0
r(z(s), u(z))ds, (6)

where r(z, u) = zT (t)z(t)+ uT u is the local cost function.
Definition 1 [9]: A control policy u associated with (1)

is admissible on �, that is denoted by u ∈ 8(�), if u is
continuous, and u(0) = 0, and stabilizes (1), and makes the
performance index (6) finite on �.
Optimal Control: An admissible control u ∈ 8(�) for

the system (1) is said to be optimal one if it can minimize the
performance index (6).

According to (6), define the performance index function as

J (z(t)) =
∫
∞

t
r(z(s), u(z))ds. (7)

Represent the optimal control via u∗, the optimal value
function is generated as

J∗(z) = min
u∈8(�)

(
∫
∞

t
r(z(s), u(z))ds)

=

∫
∞

t
r(z(s), u∗(z))ds. (8)

Taking the time derivation on both sides of the opti-
mal value function (8), the HJB equation is got as
follows:

H (z, u∗, J∗z ) = r(z, u∗)+ J∗z ż(t)

= zT (t)z(t)+ u∗T u∗ + J∗Tz (z)
(
f (x)

+g(x)u∗ +1− ẏ(t)
)
= 0, (9)

where J∗z (z) =
dJ∗(z)
dz
∈ Rm.

Assuming the solution of (9) to be existing and unique,
then the optimal control u∗ can be got by solving the equation
∂H (z, u∗, J∗z )

∂u∗
= 0 as

u∗ = −
1
2
gT (x)J∗z (z). (10)

Define a function K∗(z, x) as

K∗(z, x) = gT (x)J∗z (z), (11)

then the optimal control described in (10) can be rewritten
as

u∗ = −
1
2
K∗(z, x). (12)

Substituting (12) into (9), we get

H (z, u∗, J∗z ) = zT (t)z(t)+ J∗z f (x)

−J∗z ẏ(t)+ J
∗
z 1

−
1
4
K∗T (z, x)K∗(z, x) = 0. (13)

Since the optimal control (10) contains the uncertain term
J∗z (z), it is unavailable for the non-affine system (1). For
the sake of deriving available optimal control, the gradient
term J∗z (z) is expected to obtain by solving the HJB equa-
tion (13). But solving the equation is difficult or even impos-
sible because the equation has strong nonlinearity. In order
to solve this difficulty, the critic-actor RL algorithm based on
NN approximation be usually considered.

III. MAIN RESULTS
A. REINFORCEMENT LEARNING DESIGN
To construct the critic-actor architecture RL, rewrite the term
J∗z (z) as

K∗(z, x) = 2kz(t)+ K 0(z, x) (14)

where k > 0 is a design parameter, K 0(z, x) = −2kz(t) +
K∗(z, x).

Substituting (14) into (10), the optimal control becomes

u∗ = −kz(t)−
1
2
K 0(z, x). (15)

In adaptive control field, NN has become the popular tool
for solving the unknown dynamic problem because of its uni-
versal function approximation ability, they can approximate
a continuous function to desired accuracy over a compact set
(the detailed introduction refers to [26], [31]). Since the term
K 0(z, x) is unknown but continuous, NN can approximate it
over a compact set �K in the following form

K 0(z, x) = ω∗TK 5K (z, x)+ εK (z, x) (16)

where ω∗K ∈ R
n×m is the ideal NN weight, 5K (z, x) ∈ Rn is

the basis function vector, and εK ∈ Rm is the NN approxima-
tion error to satisfy ‖εK‖ ≤ τ , where τ is a constant.
Inserting (16) into (14) and (15), we get

K∗z (z) = 2kz(t)+ ω∗TK 5K (z, x)+ εK (z, x), (17)

u∗ = −kz(t)−
1
2
ω∗TK 5K (z, x)−

1
2
εK (z, x). (18)

It should be noted that the NN weight ω∗K is an unknown
constant weight just for analytical purpose, therefore the opti-
mal control (18) cannot be directly adopted for system (1).
For obtaining the valid control, the critic and actor NNs for
implementing RL are constructed in accordance with (17)
and (18).

Critic NN is designed to evaluate the control performance
as

K̂z(z) = 2kz(t)+ ω̂Tc (t)5K (z, x) (19)

where K̂z(z) is the estimation of K∗z (z), ω̂c(t) ∈ R
n×m is the

critic NN weight matrix.
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The tuning law for critic NN weight is

˙̂ωc(t) = −γc5K (z, x)5T
K (z, x)ω̂c(t) (20)

where γc > 0 is the critic designed parameter.
The actor NN is designed to perform the control behavior

as

u = −kz(t)−
1
2
ω̂Ta (t)5K (z, x) (21)

where u is the estimation of u∗, ω̂a(t) ∈ Rn×m is the actor NN
weight matrix.

The tuning law for actor NN weight is

˙̂ωa(t) = −5K (z, x)5T
K (z, x)

×

(
γa

(
ω̂a(t)− ω̂c(t)

)
+ γcω̂c(t)

)
(22)

where γa > 0 is actor designed parameter.
Remark 1: The critic and actor updating laws (20) and (22)

are analyzed below.
Substituting the (20) and (22) into (9), the approximated

HJB equation is generated in the following

H (z, u, Ĵz) = zT (t)z(t)+ ‖ − kz(t)−
1
2
ω̂Ta5K (z, x)‖2

+

((
gT (x)

)−1(
2kz(t)

+ω̂Tc (t)5K (z, x)
))T

×

(
f (x)− kg(x)z(t)− ẏ(t)+1

−
1
2
g(x)ω̂Ta (t)5K (z, x)

)
. (23)

Use the HJB equation (13) and its approximation (23) to
define the Bellman residual error e(t) as

e(t) = H (z, u, Ĵz)− H
(
z, u∗, J∗z

)
= H (z, u, Ĵz). (24)

Based on the previous analysis, the optimized solution
u(z) will be required to satisfy e(t) = H (z, u, Ĵz) → 0.
If H (z, u, Ĵz) = 0 is true and has a unique solution, then the
following is true,

∂H (z, u, Ĵz)
∂ω̂a(t)

=
1
2
5K (z, x)5T

K (z, x)
(
ω̂a(t)− ω̂c(t)

)
= 0.(25)

Defined a positive function as follows:

P(t) = Tr
((
ω̂a(t)− ω̂c(t)

)T(
ω̂a(t)− ω̂c(t)

))
. (26)

Obviously, P(t) = 0 is equivalent to the equation (25).
Then the updating laws (20) and (22) are designed from the
following fact.

On the basis of
∂P(t)
∂ω̂a(t)

= −
∂P(t)
∂ω̂c(t)

= 2
(
ω̂a(t) − ω̂c(t)

)
,

the time derivative of P(t) is computed along (20) and (22) as

dP(t)
dt
= Tr

( ∂P(t)
∂ω̂c(t)

˙̂ωc(t)+
∂P(t)
∂ω̂a(t)

˙̂ωa(t)
)

FIGURE 1. Block diagram of the proposed optimized control design.

= Tr
(
− γc

∂P(t)
∂ω̂c(t)

5K (z, x)5T
K (z, x)ω̂c(t)

−
∂P(t)
∂ω̂a(t)

5K (z, x)5T
K (z, x)

×

(
γa
(
ω̂a(t)− ω̂c(t)

)
+ γcω̂c(t)

))
= −

γa

2
Tr
( ∂P(t)
∂ω̂a(t)

5K (z, x)5T
K (z, x)

∂P(t)
∂ω̂a(t)

)
≤ 0.

(27)

The inequality (27) indicates that using the RL updating
laws (20) and (22) can achieve P(t) = 0 finally, therefore
the (25) can be established.

The main advantages are that: 1) in contrast to the existing
methods, this optimized control algorithm is greatly simple;
2) it can remove the persistent excitation condition.
Remark 2: In this paper, RL for optimal control is adopted

(as is shown in Fig.1), which is an iterative process that syn-
chronously trains both critic and actor. Therefore, the chal-
lenge of control design is mainly focused on the derivation
of the critic and actor updating laws. In the existing optimal
methods, critic and actor updating laws are designed based
on the square of Bellman residual. Because the equation
is a complex nonlinear equation, the complexity of control
design is inevitably increased. In this paper, RL algorithm
is designed based on a simple positive function, which is
equivalent to the HJB equation, as a result, it is of great
significance to reduce the complexity of control design.

B. STABILITY ANALYSIS
Lemma 1 [40]: For a positive definite continuous function

G(t) ∈ R meets Ġ(t) ≤ −pG(t)+ q, where p > 0 and q > 0
are two constants, then a following inequality is true:

G(t) ≤ e−ptG(0)+
q
p
(1− e−pt ). (28)

Theorem 1: Consider the non-affine nonlinear system (1)
under bounded initial condition. If the proposed RL opti-
mized tracking control is performed by the critic and actor
NNs (19) and (21) with the training laws (20) and (22), and
these designed constants, k, γa and γc, are chosen to satisfy

k >
ξ̄2

4ξ
+

3
2ξ
, γa >

1
2
, γa > γc >

1
2
γa. (29)

Then the proposed optimized approach can guarantee the
following objectives:
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1) all the errors can be guaranteed to be semi-globally
uniformly ultimately bounded(SGUUB);

2) the system state x(t) can track the trajectory y(t) in
desired accuracy.
Proof: Choose a Lyapunov function candidate as

L(t) =
1
2
zT (t)z(t)+

1
2
Tr
{
ω̃Tc (t)ω̃c(t)

}
+
1
2
Tr
{
ω̃Ta (t)ω̃a(t)

}
, (30)

where ω̃c(t) = ω̂c(t) − ω∗K and ω̃a(t) = ω̂a(t) − ω∗K are the
critic and actor NN weight errors, respectively.

Taking the time derivative of L(t) along (5), (20) and (22)
is

L̇(t) = zT (t)
(
f (x)+ g(x)u− ẏ(t)+1

)
−γcTr

{
ω̃Tc (t)5K (z, x)5T

K (z, x)ω̂c(t)
}

−Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)

×

(
γa
(
ω̂a(t)− ω̂c(t)

)
+ γcω̂c(t)

)}
. (31)

Adding (21) into (31) gets

L̇(t) = −kzT (t)g(x)z(t)−
1
2
zT (t)g(x)ω̂Ta (t)5K (z, x)

+zT (t)f (x)− zT (t)ẏ(t)+ zT (t)1

−γcTr
{
ω̃Tc (t)5K (z, x)5T

K (z, x)ω̂c(t)
}

−Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)

×

(
γa
(
ω̂a(t)− ω̂c(t)

)
+ γcω̂c(t)

)}
. (32)

On the basis of Cauchy-Schwartz andYoung’s inequalities,
it follows

zT (t)f (x) ≤
1
2
‖z(t)‖2 +

1
2
‖f (x)‖2,

−zT (t)ẏ(t) ≤
1
2
‖z(t)‖2 +

1
2
‖ẏ(t)‖2,

zT (t)1 ≤
1
2
‖z(t)‖2 +

1
2
‖1‖2,

−
1
2
zT (t)g(x)ω̂Ta (t)5K (z, x)

≤
1
4
zT (t)g(x)gT (x)z(t)

+
1
4
Tr
{
ω̂Ta (t)5K (z, x)5T

K (z, x)ω̂a(t)
}
. (33)

Substituting the inequalities (33) into (32) becomes

L̇(t) ≤ −kzT (t)g(x)z(t)+
3
2
‖z(t)‖2

+
1
4
zT (t)g(x)gT (x)z(t)

+
1
2
‖f (x)‖2 +

1
2
‖ẏ(t)‖2 +

1
2
‖1‖2

+
1
4
Tr
{
ω̂Ta (t)5K (z, x)5T

K (z, x)ω̂a(t)
}

−γcTr
{
ω̃Tc (t)5K (z, x)5T

K (z, x)ω̂c(t)
}

−γaTr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̂a(t)
}

+(γa − γc)Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̂c(t)
}
. (34)

By using the facts ω̃c(t) = ω̂c(t) − ω∗K and
ω̃a(t) = ω̂a(t)− ω∗K , the following equations can be gained:

Tr
{
ω̃Tc (t)5K (z, x)5T

K (z, x)ω̂c(t)
}

=
1
2
Tr
{
ω̃Tc (t)5K (z, x)5T

K (z, x)ω̃c(t)
}

+
1
2
Tr
{
ω̂Tc (t)5K (z, x)5T

K (z, x)ω̂c(t)
}

−
1
2
Tr
{
ω∗TK 5K (z, x)5T

K (z, x)ω
∗
K

}
,

Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̂a(t)
}

=
1
2
Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̃a(t)
}

+
1
2
Tr
{
ω̂Ta (t)5K (z, x)5T

K (z, x)ω̂a(t)
}

−
1
2
Tr
{
ω∗TK 5K (z, x)5T

K (z, x)ω
∗
K

}
. (35)

Applying the above results to the inequality (34) has

L̇(t) ≤ −kzT (t)g(x)z(t)+
3
2
‖z(t)‖2

+
1
4
zT (t)g(x)gT (x)z(t)

+
1
2
‖f (x)‖2 +

1
2
‖ẏ(t)‖2 +

1
2
‖1‖2

−
γc

2
Tr
{
ω̃Tc (t)5K (z, x)5T

K (z, x)ω̃c(t)
}

−
γa

2
Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̃a(t)
}

+(γa − γc)Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̂c(t)
}

−
γc

2
Tr
{
ω̂Tc (t)5K (z, x)5T

K (z, x)ω̂c(t)
}

−

(γa
2
−

1
4

)
Tr
{
ω̂Ta (t)5K (z, x)5T

K (z, x)ω̂a(t)
}

+

(γa
2
+
γc

2

)
Tr
{
ω∗TK 5K (z, x)5T

K (z, x)ω
∗
K

}
. (36)

According to the Young’s inequality and (29), there is the
following one that

(γa − γc)Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̂c(t)
}

≤
γa − γc

2
Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̃a(t)
}

+
γa − γc

2
Tr
{
ω̂Tc (t)5K (z, x)5T

K (z, x)ω̂c(t)
}
. (37)

Then, (36) can be expressed as

L̇(t) ≤ −kzT (t)g(x)z(t)+
3
2
‖z(t)‖2

141762 VOLUME 9, 2021



X. Yang et al.: Adaptive Neural Network Optimized Control Using RL of Critic-Actor Architecture

+
1
4
zT (t)g(x)gT (x)z(t)

−
γc

2
Tr
{
ω̃Tc (t)5K (z, x)5T

K (z, x)ω̃c(t)
}

−
γc

2
Tr
{
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̃a(t)
}

−

(
γc −

γa

2

)
Tr
{
ω̂Tc (t)5K (z, x)5T

K (z, x)ω̂c(t)
}

−

(γa
2
−

1
4

)
Tr
{
ω̂Ta (t)5K (z, x)5T

K (z, x)ω̂a(t)
}

+S(t), (38)

where S(t) = 1
2‖f (x)‖

2
+

1
2‖ẏ(t)‖

2
+

1
2µ

2
+

(
γa
2 +

γc
2

)(
ω∗TK (t)5K (z, x)

)2
, which is bounded by a constant s,

that is, S ≤ s, because all the terms are bounded.
According toAssumption 1 and condition (29), the inequal-

ity (38) can be reorganized as

L̇(t) ≤ −
(
kξ −

1
4
ξ̄2 −

3
2

)
zT (t)z(t)

−
γc

2
ω̃Tc (t)5K (z, x)5T

K (z, x)ω̃c(t)

−
γc

2
ω̃Ta (t)5K (z, x)5T

K (z, x)ω̃a(t)+ s. (39)

Letting h = min{2kξ − 1
2 ξ̄

2
− 3, γcλmin}, λmin is the

minimum eigenvalue of 5K (z, x)5T
K (z, x), then the inequal-

ity (39) can be described as

L̇(t) ≤ −hL(t)+ s. (40)

Applying Lemma 1 into (40) becomes

L(t) ≤ e−htL(0)+
s
h
(1− e−ht ). (41)

According to the above inequality, all error signals are
SGUUB, and when the design parameter k is large enough,
the tracking error can convergent to the desired accuracy.

IV. SIMULATION EXAMPLE
Consider the following numerical example of non-affine non-
linear systems

ẋ(t) =
[
-0.7sinx1 + 0.5x2

sinx1cosx2

]
+ 0.8u+ 0.2

[
sin(u)
cos(u)

]
(42)

where x(t) = [x1, x2]T ∈ R2 and x(0) = [0.3, 0.3]T , u ∈ R2.
The expected reference signal is y(t) = [4sin(0.8t), 5cos(t)]T

and its initial state is y(t) = [0, 0]T .
Corresponding to the control protocol (21), the parameter

is chosen as β = 18. The NN with 12 neurons are employed
for the NN approximation (16). The basis function vector is
designed as 5(x) = [51(x), . . . ,512(x)]T with 5i(x) =
exp[−(x − ηi)T (x − ηi)/2]. And the NN center ηi ∈ R2, i =
1, 2, . . . , 12, equally spaced in an interval of −6 to 6.
Corresponding to the two updating laws (20) and (22),

the parameter γc = 16 represents the critic updating and
the parameter γa = 14 for actor updating. And the initial
weights are written as ω̂c = [0.2, . . . , 0.2]T ∈ R12×1, ω̂a =
[0.2, . . . , 0.2]T ∈ R12×1.

FIGURE 2. Tracking performance.

FIGURE 3. Tracking error.

FIGURE 4. Norm of actor and critic NN weights.

FIGURE 5. Cost function r (z, u).

The simulation results are shown in Figs. 2-5. Fig. 2
describes the tracking performance. Fig. 3 presents the track-
ing error to be convergent. From Figs. 2-3, the system states
can follow to the desired reference trajectory. In the Fig. 4,
the boundedness of critic and actor NN weights are shown,
respectively. The cost function is displayed in the Fig. 5. The
tracking capability of controller is demonstrated through the
simulation results.
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We make a comparison with the method of reference [9]
in the computation time by using the ‘‘tic’’ function of
MATLAB. Their averaged times are 0.1132s for the proposed
method and 0.3779s for the method of [9] respectively. It is
obvious that the proposed method is with the less computa-
tional time.

V. CONCLUSION
In this article, an optimized control method is developed
for a class of continuous-time non-affine nonlinear systems.
Since the system is with the implicit control, it needs to
transform the system to the affine-like form for revealing the
control. According to the transformed system, the optimal
control is derived by employing the NN-based RL. Since
the RL updating laws is derived from negative gradient of
a simple positive function, which is designed based on the
partial derivatives of the HJB equation, the proposed opti-
mized control can be significantly simple to compare with
the existing RL optimal methods. Moreover, it can remove
the condition of persistence excitation. Finally, it is proven
that the control targets with the desired control performance
are achieved. The effectiveness of the proposed optimizing
method is demonstrated by the theory proof and simulation.

The disadvantages of the methods are mainly involved two
aspects: 1) the control scheme is designed for an abstract
mathematics model, it is not for a specific practical dynamic
system. Hence we will extend this method to the practical
engineering systems; 2) the optimal control of non-affine
nonlinear system is focused on the first-order case, we will
consider to develop themethod to the second-order non-affine
nonlinear systems.
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