IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 8, 2021, accepted October 13, 2021, date of publication October 15, 2021, date of current version October 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3120743

Q-CSF: Quantum-Aware Compositional
Scheduling Framework for Hierarchical

Real-Time Systems

JAEWOO LEE"!, (Member, IEEE), AND HYEONGBOO BAEK 2

! Department of Industrial Security, Chung-Ang University, Seoul 06974, South Korea

2Department of Computer Science and Engineering, Incheon National University, Incheon 22012, South Korea

Corresponding author: Hyeongboo Baek (hbbaek @inu.ac.kr)

This work was supported in part by the Ministry of Science and ICT (MSIT), South Korea, under the Information Technology Research
Center (ITRC) Support Program through supervised by the Institute for Information & Communications Technology Planning &
Evaluation (IITP) under Grant IITP-2021-2018-0-01799; in part by the Korea Institute of Energy Technology Evaluation and

Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of Korea under Grant 20199710100060; and in part by the
National Research Foundation of Korea (NRF) funded by the Korea Government (MSIT) under Grant 2021R1F1A1059277.

ABSTRACT Component-based design has received considerable attention owing to its advantages in terms
of security and safety when developing modern embedded systems. To effectively allocate computing
resources to components in these systems, real-time component-based scheduling theory has been studied
from various perspectives. The main advantage of component-based scheduling theory is that it guarantees
the schedulability of an independent component and composability of multiple components. However,
the existing component scheduling theory cannot be directly applied to real hardware platform due to an
impractical assumption that resource allocation must be conducted across the continuum of real numbers,
whereas actual operating systems (or virtualization systems) allocate resources in units of scheduling
time quantum. In this study, we proposed a new efficient resource allocation and supply mechanism for
quantumized hardware platforms while using real-number-based component interface. In simulation results
with randomly-generated workloads, our approach reduced the overhead of existing approaches by up
to 97.1% in an individual component. In composition of multiple components, our approach has up to
0.41 better acceptance ratio than existing approaches.

INDEX TERMS Component-based systems, schedulability analysis, compositional scheduling framework,

supply bound function, time quantum.

I. INTRODUCTION

Traditional embedded systems that perform dedicated func-
tions in restricted environments are evolving toward cyber
physical systems (CPS), which operate more complicated
functions involving both physical and computing aspects [1],
[2]. A compelling example of CPS is the autonomous driv-
ing system (ADS), whose functions include 1) sensing and
controlling physical devices, and 2) perception and planning
with algorithms. The most important requirement for such
functions is the timing guarantee, such that each periodic task
must be completed in a predefined time (i.e., a deadline) [1].
For instance, the adaptive cruise-control system [1] of an
ADS correctly operates only when its embedded camera and

The associate editor coordinating the review of this manuscript and

approving it for publication was Laxmisha Rai

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

LiDAR tasks deliver sensing data in a timely manner to the
motor-control task through associated computing interfaces.

There have been a few approaches that attempted to realize
real-time CPS design [3]-[7]. Among them, the component-
based method has received considerable attention, owing
to its advantages in terms of security and safety [3], [7].
Component-based design aims to simplify CPS design by
splitting it into sub-procedures and multiple components. For
example, an ADS includes various components such as a
driving system that includes engine and braking tasks, and
a control system that encompasses steering tasks. Further-
more, merging developed components into a combined sys-
tem necessitates component abstraction. The high-level idea
of component abstraction is providing interfaces that com-
municate between components and externals while hiding
complicated architectural details. Because each component

141747

https://orcid.org/0000-0001-5887-2184
https://orcid.org/0000-0001-8750-8373
https://orcid.org/0000-0003-1494-1138

IEEE Access

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

is individually developed and operated, the component-based
systems are normally attack- and fault-resilient, compared to
traditional systems.

Component-based design has been incorporated into
real-time systems by exploiting component scheduling the-
ory. Component scheduling framework (CSF) [3], [7] aims
to effectively allocate computing resources (e.g., processors
and networks) to multiple components. Then, virtualization
technique on operating systems promotes to schedule task (or
component) and allocate computing resources under cloud
platforms [8]-[13]. Among them, RT-Xen [12], [13] is one
representative example on a real-time cloud platform, which
supports the timely execution for components in a Xen
virtualization environment.

In the CSF, each component has its own workload, which
can be a set of tasks or a set of components. Component
can schedule its workload by its own scheduler. If a parent
component has multiple child components as its workload
(refer to Figure 1), the parent component need to schedule
its child components. Each component has its component
interface which specifies resource demands in terms of time
duration. From the perspective of the parent component,
a child component can be transformed into a task by its
component interface. Then, the schedulability of each com-
ponent is guaranteed by comparing the worst-case resource-
supply (e.g., derived by the supply bound function) and
resource demand (e.g., derived by the request bound func-
tion). However, the original component scheduling theory [3]
makes an impractical assumption that the resource alloca-
tion can be conducted in units of real numbers, whereas
actual operating systems or virtualization systems allocate
resources in units of quantum time. To address this problem,
an existing study [13] utilized integer-based resource-supply
and resource-demand policies, but it found that it did not
derive effective scheduling algorithms and relevant imple-
mentations. In this study, we proposed a new efficient supply
bound function for quantumized hardware platforms while
using real-number-based component interface.

Parent component

Resource Model

Scheduler

Resource Model

Scheduler
Workload

Resource Model

Scheduler
Workload

Child components
FIGURE 1. System model for a component-based hierarchical system (the
top-level parent component is the root of the system, i.e., root
component).

This paper makes the following contributions:

141748

e We develop a new quantum-aware compositional
scheduling framework (Q-CSF) of which every schedul-
ing decision is quantum-based for hierarchical real-time
systems.

« With Q-CSF, we propose an integer-based supply bound
function (iSBF) to the address resource-allocation prob-
lems using quantumized hardware platforms.

« We present a new schedulability analysis for Q-CSF and
algorithm to compute a resource efficient component
interface for Q-CSF.

o From component-level simulation results, we show that
Q-CSF reduced the interface overhead of the existing
approach for quantumized platforms by up to 97.1%.
From system-level simulation results, we show that
Q-CSF has up to 0.41 better acceptance ratio than the
existing approach.

The rest of the paper is structured as follows: Section II
presents the system model and background. Section III
explains the challenges and our framework. Section IV evalu-
ates the proposed framework, and Section V discusses related
work. Finally, Section VI concludes the paper.

Il. SYSTEM MODEL AND BACKGROUND

In this section, we present our system model and assumptions
(Section II-A), problem forumation (Section II-B), and a the-
oretical background (Section II-C) for real-time hierarchical
systems. We summarize our notations in Table 1.

A. SYSTEM MODEL AND ASSUMPTIONS

We consider hard real-time systems where missing dead-
lines cause the system failure, whereas soft real-time systems
tolerates some deadline misses. Therefore, our performance
metrics is resource efficiency or acceptance ratio.!

Our target system is a hierarchical (compositional) real-
time system comprising a set of real-time components, where
a component may include a set of child components, in a tree-
like manner as shown in Figure 1. A component is noted by
C = (W, T', A) where W is a workload (described below),
" is the resource model as the interface of the component
(described below) and A is the scheduling algorithm (e.g.,
deadline monotonic (DM) or earliest deadline first (EDF))
that is used to schedule W. In this study, we only consider
deadline monotonic (DM) scheduling algorithm in which a
task having a smaller relative deadline has a higher priority.
For simplicity of representation, we denote C = (W, T, A)
by C = (W, TI") because A is fixed to DM.2

1) COMPONENT WORKLOAD

A workload W in a component C consists of n real-time tasks:
W = {r1, », -, t»}. We consider a constrained-deadline
sporadic task, where the deadline of the task (D;) is equal to
or less than the period of the task (7;), and the next job of the

I'We do not consider soft real-time performance metric such as turnaround
time, response time, and deadline miss ratio.
2We will consider EDF and other scheduling policies in future work.

VOLUME 9, 2021

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

IEEE Access

TABLE 1. Descriptions for symbols and acronyms.

Term Description Term Description
C A component w A component workload
r The resource model A A scheduling algorithm
T A task set T The i-th task
n The number of tasks in W T; The minimum inter-job arrival time
[@) A minimum inter-arrival time or period of 7; D; The deadline of the task
J! The j-th job of a task 7; 1I The resource period in PRM I
© The amount of resource supply within a resource period || HP(7;) | The task set having a higher priority than 7;
II
Ui The task utilization of 7; Uy Utilization bound
ADS Autonomous driving system CBD Component-based design
CPS Cyber-physical systems CSF Component scheduling framework
DBF | Request bound function DM Deadline monotonic (scheduling algorithm)
EDF earliest deadline first (scheduling algorithm) SBF Supply bound function
PRM | Periodic resource model iSBF Integer-based SBF
RBF Request-bound function Q-CSF | Quantum-aware compositional scheduling framework
WCET | worst-case execution time

task releases at any random time instant after the release time
of the current job plus the period of the task. Each task 7; is
characterized by (7;, C;, D;), where
o T; € N (a natural number, i.e., positive integer) is the
minimum inter-job arrival time (or period),
e C; € RT (positive real number) is the worst-case execu-
tion time (WCET),? and
e D; € Nis the relative deadline (the relative time of the
deadline of a real-time job from the release time of the
job while absolute deadline indicates the deadline of a
real-time job from time 0).
A task 7; generates an infinite sequence of jobs {J/ l.l J 1.2, <ok
if a job J{ is released (or arrived) at ¢, then the absolute dead-
line of J{ ist+D;, and the next job J{ i may be released at any
time after # + 7;. The term ‘““deadline” indicates the relative
deadline unless specified otherwise. A task t; is schedulable if
every job J{ of 7; completes its execution before its absolute
deadline. Under the DM scheduling policy, workload W is
schedulable if every task z; in W is schedulable.

2) RESOURCE MODEL

In component-based system design, component interfaces
eliminate implementation details and facilitate their easy
use of components. In CSF [7], the resource model
abstracts (computing) resource demand for a real-time
component as the component interface. The representative
resource model is periodic resource model (PRM) [3], ' =
(IT, ®), which consists of the resource period, IT € N, and
the (computing) resource supply within the resource period,
® ¢ RT.PRM T = (I1, ®) means that the resource model I"
can supply ® units of resources (such as 2ms CPU execution)
in every I1 time units (such as 10ms).

3The worst-case execution time may be computed by static analysis with
mathematical computation, which may lead a positive real number, not a
natural number.

VOLUME 9, 2021

B. PROBLEM FORMULATION

The problem of CSF has not much considered under quan-
tumized platforms (resource cannot be supplied in fraction
of time quantum). In this paper, we consider the following
problems:

« For a given resource model (e.g., PRM), how can we
compute the possible worst-case resource supply of in
terms of time interval length considering quantumized
platforms?

« For a given component where resource model and com-
ponent workload are fixed, how can we determine the
schedulability of the component under quantumized
platforms?

o For a given component workload, how can we com-
pute the resource-efficient resource model under quan-
tumized platforms?

C. BACKGROUND

In this subsection, we introduce the background knowledge
of the schedulability analysis of real-time systems and com-
positional (hierarchical) systems. To analyze the schedulabil-
ity of real-time systems, we must investigate the worst-case
resource demand of each task to complete its execution miss
and resource supply provided by the platform for a given time
interval. Hence, by identifying the upper-bounded resource
demand of each task and the lower-bounded resource supply
for a given time interval, we can judge whether each task
is schedulable. The request-bound function (RBF) gives the
worst-case resource demand* of task r; among workload W
for a given time duration ¢ under the DM scheduling algo-
rithm. We can then compute RBF as follows:

RBF(W.i.0)= Y _

keHP(t;)

{ich e 1)

k
where HP(7;) is the task set having a higher priority than t;.
4The worst-case release pattern of sporadic task is periodic.

141749

IEEE Access

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

The following example shows how to calculate the
resource demand of a task among a given workload.

Example 1: Consider a workload, W = {11, 12, 13},
where 1y = (T; = 5,C; = 1,D; = 5), » = (12,2, 12),
and t3 = (18, 4, 17). Figure 2 draws the resource demand of
RBF(W, 2, t) and RBF(W, 3, t) according to Equation (1).
Note that RBF(W, 1, t) is a constant function.

14
124
10
1%
g o
3
2
g 61
[~4
44I_I—I—r
2,
0 . : . .
0 5 10 15 20
Time
(2) RBF(W,2,1)
14
124
10
1%]
g o
3
2
o 61
4
4,
2,
0 . : . .
0 5 10 15 20
Time

(b) RBF(WV,3, 1)

FIGURE 2. The illustration of RBF(W, 2, t) and RBF(W, 3, t) in Example 1.

We then consider the worst-case resource supply: for non-
hierarchical systems, the worst-case resource supply for a
given time interval ¢ is t. Thereafter, we can check whether the
workload is schedulable. The following lemma presents the
schedulability condition under the DM scheduling algorithm.

Lemma 1 (From [14]): A given workload W is schedula-
ble under the DM scheduling algorithm if

V1;(3t < D;, RBF(W, i, 1) <1). 2)

Next, we consider the schedulability of a component-based
(hierarchical) system (e.g., Figure 1). Checking the schedu-
lability of a real time component is different from that of a
traditional (non-hierarchical) system (Lemma 1). To analyze
schedulability in CSF, we introduce a Supply Bound Function
(SBF) [7] that gives the worst-case resource supply of PRM
I" in a given time interval ¢.

Figure 3 illustrates the worst-case pattern of resource-
supply of PRM T for a time interval ¢. Let’s consider arbitrary
resource supply from PRM I'. Resource may be supplied
in the beginning of the period, the middle of the period,

141750

or the end of the period. The worst-case resource-supply
happens when resource is not supplied until the deadline of
the first job of some task. Then, we consider the worst-case
resource starvation scenario® among all possible resource-
supply pattern: the resource of the previous resource period
(before time zero) is supplied at the beginning of the resource
period, and the first resource is supplied at the end of the
resource period. Then, the length of the worst-case resource
starvation is 2(IT — ®), as shown in Figure 3. Next, the worst-
case of the following resource supply happens when resource
is supplied at the end of the following resource period.

The worst-case resource starvation
|

0 t
el
) n-o n-0 © i
n n ‘ n ‘ n

FIGURE 3. The illustration of the worst-case pattern of resource supply of
SBF(T, t).

Then, we compute SBF as follows:
SBF(T", 1) = k©® + max(0, ¢ — 21 — kIT) 3)

where [= IT1 — ® and k = max(0, L%J). Note that /
and k indicate the unserviced time across the period (i.e.,
the difference between IT and ®) and the number of whole
resource supplies within the time interval,® respectively.

Extending Lemma [with the SBF, the next lemma shows
the schedulability condition of a real-time component.

Lemma 2 (From [7]): Consider a real-time component
C = (W, T'). The component is schedulable under the DM
scheduling algorithm if

Vt;(3t < D;, RBF(W, i, 1) < SBF(T, 1)). “4)
Next, we present a way to compute the component interface
if the component workload is given. The abstraction problem
indicates how to find a resource-efficient component interface
(i.e., PRM model I' = (II, ®)) for a given component
workload. The existing work [3], [7] considers the abstraction
problem to find a proper resource supply ® for a given
component workload W and a given resource period I1. Then,
the problem is computing the minimum ® that can schedule
W with component period I1. By solving the equation in
Lemma 2 using W and I1, we find the proper ®. Refer to
the details of the computations in [3] and [15].
However, the solution of the abstraction problem is a
real-number interface even if all the workload parameters
are integers. Hence, the solution is not directly applicable to

SIn the perspective of a component (or a task), resource starvation duration
indicates the largest time duration that resource is not supplied from the
higher-level component (or the system).

f’Alternatively, k means the number of intervals of ITs after time point /
in Figure 3.

VOLUME 9, 2021

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

IEEE Access

quantum-based real platforms. The next example shows why
the solution is a real-number.

Example 2: Consider a component where its workload is
W ={t, m}whereti =(T; =5 C;=1,D; =5)and ©, =
(7, 1, 7). Assume that component period is given by T1 = 3.
If ® = 1, then Equation (4) of Lemma 2 does not hold for t»
because RBF(W, 2,1) > SBF(T, t) for all t < 7. It means
that workload W is not schedulable when I" = (3, 1). If ©® =
2, then Equation (4) holds for both t| and ©>. If ® = 1.7, then
Equation (4) still holds for both T| and 7). For 13, we observed
that RBF(W, 2, 1) < SBR[, 1) artime7: RBF(W,2,7) =3
and SBF(I', 7) = 1 % 1.7 + max(0, 1.4) = 3.1. The above
calculation indicates that the minimum © exists between 1
and 1.7, meaning that the solution of the abstraction problem
is a real-number.

lll. THE QUANTUM-AWARE COMPOSITIONAL
SCHEDULING FRAMEWORK

We introduce the challenge of the quantum-aware resource
supply in Section III-A and present our approaches in
Section III-B. Then, we analyze the schedulability of
our approaches and present the algorithm to compute the
resource-efficient resource model in Section III-C.

A. CHALLENGES FOR QUANTUM-AWARE RESOURCE
SUPPLY

In real digitized embedded systems, we cannot supply a
fractional unit of resources (e.g., allocate 0.7 processor time
quantum to task A). Possible resource allocation is to assign
a task into the processor while executing the task for least one
time quantum. However, the solution of abstraction problem
is a real-number interface, even if all workload parameters
are integers (refer to Example 2). To utilize the solution of
the abstraction problem (i.e., resource-efficient real-number
PRM interface), we require a quantum-aware resource supply
mechanism.

One naive way to provide a quantum-aware resource sup-
ply is to use nPRM, which is the PRM I' = (I1, ®) where
IT € Nand ® € N. To supply sufficient resources for the
component workload, we transform the real-number PRM
I' = (I1, ®) into the nPRM I'/ as follows:

I’ =(I1, [®]).

The next example shows the difference between the PRM
and the nPRM when abstracting the component workload into
the component interface.

Example 3: Suppose that the workload of a component
is abstracted to the PRM (3, 1.6). For the same workload,
we can abstract it into the nPRM (3, 2). Although the nPRM
can support quantumized resource supply, it has 0.133 larger
overhead than the PRM in terms of utilization: 2/3—1.6/3 =
0.1333.

As shown in Example 3, the drawback of nPRM is ineffi-
cient resource utilization, which is severe for smaller IT. Our
challenge for quantum-aware resource supply is to reduce
inefficiency even for small IT.

VOLUME 9, 2021

B. A NEW RESOURCE SUPPLY MODEL FOR Q-CSF

In this subsection, we propose a new resource supply model
for quantumized platforms, called integer Supply Bound
Function (iSBF), which calculate the minimum resource sup-
ply considering scheduling quantum in real hardware plat-
forms. For given PRM I' and time interval ¢, we propose an
iISBF as follows:

iSBF(I', 1) = [k®] + max(0, 7 — [—m —kII) (5)

where [= I1— |®], k = max(0, L%J), m=TI1-0Sk, ®),
and OS(k,®) = |k®] — |[(k — 1)©]. We illustrate the
worst-case resource-supply pattern considering quantumiza-
tion in Figure 4. To express the quantumized resource supply,
we define the function OS(k, ®). It computes the maximum
integer resource-supply during k + 1 periods, which is the
floor value of the cumulative resource-supply from time O to
k 4+ 1 period. We note that the worst-case resource star-
vation considering the maximum integer resource-supply is
2I1— |®] — 0S(1, ®)), which is also expressed in the design
of Equation (5).

el =16l |- 0s() sy 11— 052) 050)
; n I I 1 1

FIGURE 4. The illustration of the worst-case pattern of resource supply of
iSBF(T, t).

Next, we examine characteristics of iISBF. First, iSBF can
compute the worst-case integer units of resource supply for a
given time interval from a specific resource model. Second,
the remaining resource supply after the quantumization of
the resource supply (fractional part of resource supply) is
accumulated to the next resource supply. Third, the worst-
case resource starvation of iSBF (2IT — |®] — 0S(1, ©)) is
larger than that of SBF (21 — 20), owing to quantumized
resource supply.

The next example shows the difference of SBF and iSBF,
illustrating in Figure 5.

Example 4: Consider the PRM I' = (3,1.6). Figure 5
illustrates the SBF (T, t) and the iISBF(T, t) in terms of time
interval t. The worst-case resource starvation of SBF is 2.8
while that of ISBF is 4. The resource supply of T until time 5
is OS(1) = |1.6] = 1. The resource supply of I during time
[5,8)is0S(2) = [2x1.6] — |1.6] =2.

C. SCHEDULABILITY ANALYSIS OF Q-CSF

In this section, we present the schedulability analysis of
Q-CSF and the computation method of the minimum-
bandwidth PRM under Q-CSF. Extending Lemma 2 with
iSBF, Theorem 1 shows the schedulability condition of

141751

IEEE Access

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

10
—— SBF
—— iSBF
8,
wn
£
3
o
b3
c 4]
2,
0
0 5 10 15 20

Time

FIGURE 5. The comparison of SBF and iSBF in Example 4.

a real-time component under quantum-based systems. The
proof of Theorem 1 is constructed based on the proof of
Theorem 4.2 in [7].

Theorem 1 (Scheduliability Condition Under Q-CSF):
Consider a real time component C = (W, T") where T is
PRM. The component is schedulable under the DM schedul-
ing algorithm if

vr;(3t < D;, RBF(W, i, t) < iSBF(T, 1)).)

Proof: The task set is schedulable under DM scheduling
algorithm if each task is schedulable. Consider a task t;.
Because the scheduling algorithm is DM, task 7; completes its
execution before the deadline of the task D; if the execution
requirement from tasks whose priorities are higher than
7; and the execution requirement of 7; is satisfied with
resources supplied by iSBF with T" at time ¢+ € [0, D;],
ie., 3r, RBF(W,i,1) <iSBF(,t). []

We present an example to check the schedulability of a
real-time component under Q-CSF.

Example 5: Consider the workload W in Example 1 and
PRM T’ = (3,2.25). For 11, we have RBF(W,1,1) <
iISBF(I',t) at t = 3 < Dy, which is 5. For 1), we have
RBF(W,2,1) < iSBF(I',t) at t = 7 < D», which is 12.
For 13, we have RBF(W, 3,¢) <iSBF(T", t) att = 17 < D3,
which is 17. Then, Equation (6) of Theorem I holds. Figure 6
shows the schedulability of T, and 3.

Although we can check schedulability of a real-time
component with a given resource model and a given
component workload, we do not know how to find the
resource-efficient resource model yet. Our next step is to find
the resource-efficient PRM for a given component workload
under Q-CSF, which is called abstraction process. Theorem 1
checks the schedulability of a component when workload W
and PRM I" are given. Utilizing Equation (6) of Theorem 1,
we present Algorithm 1 (an abstraction algorithm for Q-CSF),
which computes the minimum-bandwidth schedulable PRM
when workload W is given.

At a high-level view, Algorithm 1 computes the minimum
®; to schedule the workload W for each task ;, and it assigns
the maximum of ®; to ® to schedule all tasks. In Lines 1-9,
we consider each task t; in workload W. In Lines 2-7,

141752

14
—— SBF
129 — isBF
10
n
g5
>
2 ,—I_l’
o 61
o
1]
2,
0 ‘ ‘ ‘ ‘
0 5 10 15 20
Time
(a) The schedulability of 7o
14
—— SBF
121 — isBF
10
(%]
g s
=)
2
g 61
x
44
2,
0 ; ; ; ;
0 5 10 15 20

Time
(b) The schedulability of 73

FIGURE 6. The schedulability of =, and 73 in Example 5.

Algorithm 1 Abstraction Algorithm for Q-CSF

Require: W (component workload), IT (interface period)

Ensure: the minimum-bandwidth schedulable PRM T'.
1: fori < 1toIWldo

2 for ¢’ < 1to D; do

3 y = RBF(W, i,t)

4 Compute O satisfying Equation (7)
5: Co/mpute ©), satisfying Equation (8)
6 0! = min(®), BO))

7 end for

8 ©; = min,/(O!)

9: end for

10: ® = max;(®;)

1: I' =(I1, ®)

we consider each time interval ¢’ that is less than or equal to
the deadline of the task D;. In Line 3, we compute the maxi-
mum requested resource demand y’ for task 7; and time ¢’ by
the RBF function (Equation (1)). In Lines 4-6, we compute
the minimum budget for the given ; and ¢/, which is denoted
by ®;/. To compute @5,, we consider two cases depending
on the relation of RBF and iSBF. Because RBF is a step
function and iSBF is a piecewise linear function, there exist
two different cases for the minimum budget @5/ that satisfy
iSBF(T',t') > RBF(W,i,t), as shown in Equation (6) of
Theorem 1. In the first case, the requested resource demand

VOLUME 9, 2021

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

IEEE Access

RBF(W, iﬂ

{SBE(T, t)

-

ko]

n—le]-es(h os() . G-pn i«

(a) Case 1: ¢/ is divisible by ©f'

RBF(W, i, t) u

iSBF(T, t)

ko)

t' t

—

n-osti @ |

-6l M-gs() es(1) | (—1n

(b) Case 2: 4/ is not divisible by @2/

FIGURE 7. Two cases for computing budgets in the abstraction algorithm
(Algorithm 1).

y' is divisible by G);/. In Line 4, we compute the budget for
case 1, denoted by ©/, as follows:

{ =11 — O] + kIl +a,
y = kO] (7

which is illustrated in Figure 7(a). In the second case,
the requested resource demand y’ is not divisible by ®§/.

In Line 5, we compute the budget for case 2, denoted by
©),, as follows:

V' =1— 0] +kIT+1—Q0Sk) + «a,
y = kO] +a 3

which is illustrated in Figure 7(b). In Line 6, we set ®§, to the
minimum of ®) and @) (computed in Lines 4-5) because
either ®] or ©) can satisfy iSBF(I',) > RBF(W,i,1).
In Line 8, we set ®; to the minimum value among @f for
all ¢ because we only need any @ﬁ/ < T; that satisfies
iSBF(I',) > RBF(W,i,t), as shown in Equation (6).
InLine 10, we set ® to the maximum value among ®; for all 7;
because ® must satisfy 3¢ < D;, RBF(W, i, 1) <iSBF(T, 1)
for all 7;, as shown in Equation (6). In Line 11, we return
the minimum-bandwidth schedulable I' = (IT, ®) with the
® that is calculated through the algorithm.

We present the complexity of Algorithm 1. In Algorithm 1,
we need to keep the value of ®; for each task. Therefore,
the space complexity is O(n) where n is the number of tasks.
Next, we consider the time complexity of Algorithm 1: the
number of for-loop in Line 1 is n and the number of for-loop
in Line 2 is up to max(D;). Therefore, the time complexity is
pseudo-polynomial, O(nd) where d = max(D;).

VOLUME 9, 2021

IV. EVALUATION

We evaluate our framework inside a single component
(Section IV-B). We also evaluate our framework for an
entire hierarchical systems having multiple components
(Section IV-C). We also provide the detailed simulation
results with numerical data, which is available online.’

A. SIMULATION SETUP
We compare Q-CSF with two versions of the original
CSF [3], [7]:

o Q-CSF: our proposed approach under quantumized plat-
forms.

o CSF [3], [7]: an original CSF approach with the
real-number resource model, which cannot be used in
quantumized platforms.

o CSF(ceil): CSF approach with the ceiling value of the
real number resource model, which is a naive extension
of the original CSF for quantumized platforms.

For evaluation metrics, we consider the utilization of
resource model and the interface overhead in the component-
level simulation. The utilization of resource model can be cal-
culated by ... The interface overhead can be calculated by the
difference between the utilization of resource model and the
utilization of component workload: U,, — Ur. In system-level
simulation, we consider the acceptance ratio for evaluation
metrics.

We describe simulation environment. We use a desktop
computer with Intel 19 CPU with 32GB memory. Simulation
code is written in Java language (simulation data generation
and shedulability analysis) and Python language (drawing
simulation result graph with python Matplotlib library®). Our
simulation workloads (task sets) is generated according to
widely-used workload generation techniques [13], [16]. For a
workload, we vary its utilization bound (Up) from 0.3 to 0.7
in steps of 0.05, which results in 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
0.6, 0.65, and 0.7. For a task,

o Task period (7;) is an integer that is uniformly drawn

from [50, 300] unless specified.

o Task deadline (D;) is an integer that is uniformly drawn
from [0.8 * T;, T;].

o Task utilization (u;) is a real number that is uniformly
drawn from [0.002, 0.1] unless specified.

o Task execution time (C;) is calculated based on task
period and task utilization: C; = T * u;.

We repeat the task generation until the utilization of the

workload is larger than Uj. Then, we discard the task added
last.

B. COMPONENT-LEVEL SIMULATION
We evaluate the resource efficiency of Q-CSF in a compo-

nent with a random workload (its generation is described in
Section IV-A).

TURL: https://icpslab.github.io/gcsf_exp.xlsx
8URL: https://matplotlib.org

141753

https://icpslab.github.io/qcsf_exp.xlsx
https://matplotlib.org

IEEE Access

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

0.9 0.9 0.9
W CSF |- CSF |- CSF ,
-~ CSF(ceil) P -~ CSF(ceil) -~ CSF(ceil) X
0.81 —e— Q-CSF 0.81 —e— Q-CSF 0.81 —e— Q-CSF g
To7 So07 Zo7
[<} [<] (<]
= = =
w 0 [
& 0.6 £ 0.6 £ 0.6
k] k] k]
205 205 205
0.4 0.4 0.4
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
Utilization Bound(%) Utilization Bound(%) Utilization Bound(%)
(a) Small task periods (b) Medium task periods (c) Large task periods
FIGURE 8. Utilization of resource model for different ranges of task period.
0.22 0.22 = 0.22 =
B CSF P B CSF B CSF
0.20{ -2~ CSF(ceil) T 0.20{ -3~ CSF(ceil) el 0.201 -2~ CSF(ceil) Pl
—&— Q-CSF - u —e— Q-CSF g —e— Q-CSF N

0.18 0.18
0.16 0.16
5 3 3
o 0.14 1 0.14 o
£ £ £
20.12 20.12 g
o o o
0.10 0.10
0.08 0.08
0.06 0.06
.04 .04 .04
0.0 30 35 40 45 50 55 60 65 70 0.0 30 35 40 45 50 55 60 65 70 0.0 30 35 40 45 50 55 60 65 70

Utilization Bound(%)

(a) Small task periods

FIGURE 9. Interface overheads for different ranges of task period.

1) IMPACT OF TASK PERIOD

We evaluate Q-CSF for different task period ranges, which
are periods uniformly drawn from [50, 200] (called small task
periods), periods uniformly drawn from [200, 500] (called
medium task periods), and periods uniformly drawn from
[500, 1000] (called large task periods). The number of work-
loads for each data point is 3, 000 workloads and the number
of total workloads is 81, 000, which is computed as 3000 x
9 x 3.

Figure 8 shows the average utilization of the resource
model for the random component workloads varying the
utilization bound U? for different ranges of the task period.
The required utilization of the CSF(ceil) is 6.92% larger than
the CSF in the worst case. However, the required utilization
of Q-CSF is only 1.18%, 0.48%, and 0.26% larger than the
CSF in small, medium, and large task periods, respectively.
For the current quantum-based hardware platform, the CSF
that supplies a fractional unit of resources is not directly
applicable. Hence, the Q-CSF supplying an integer unit of
resources is more resource-efficient than the CSF(ceil).

To analyze the results of the simulation (Figure 8) in detail,
we present Figure 9, which shows the average interface over-
head. We observed that the interface overhead of CSF(ceil)

141754

Utilization Bound(%)

(b) Medium task periods

Utilization Bound(%)

(c) Large task periods

is 35.25% larger than CSF in the worst case. However,
the interface overhead of Q-CSF is only 4.87%, 2.15%, and
1.20% larger than CSF in small, medium, and large task
periods, respectively. We observed that the interface overhead
increases with the relatively smaller task periods. Q-CSF
reduced the interface overhead of CSF(ceil) by up to 86.16%.

2) IMPACT OF TASK UTILIZATION

We evaluated the Q-CSF for different distribution of
task utilization: one uniform distribution (uniformly over
[0.002, 0.1]) and three bimodal distribution (uniformly over
either [0.002, 0.05] or [0.05, 0.1]), with respective probabili-
ties of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and
5/9 (heavy). The number of workloads for each data point was
3,000 and the number of total workloads is 108,000, which is
computed as 3000 x 7 x 4.

Figure 10 shows the average interface overheads of
resource models for the random component workloads vary-
ing the utilization bound U? for different distribution of
task utilization. We observed that the interface overhead of
CSF(ceil) is 42.42% larger than CSF in the worst case. How-
ever, the interface overhead of Q-CSF is only 1.43%, 1.22%,
1.33% and 1.45% larger than the CSF in uniform, bimodal

VOLUME 9, 2021

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

IEEE Access

0.22 0.22 0.22
W CSF W CSF |- CSF
0.201 -~ CSF(ceil) 0.201 -~ CSF(ceil) 0.201 -~ CSF(ceil)
—e— Q-CSF -8 Q-CSF -8 Q-CSF
0.18 0.18 X
X -
0.16 X 0.16
3 3 8
3 0.14 3 0.14 S
< < <
20.12 20.12 .
¢ ¢}]
0.10 0.10
0.08 0.08
0.06 0.06
0-04755 35 40 45 50 55 60 65 70 0-04735 35 40 45 50 55 60 65 70 00473535 40 45 s0 55 60 65 70
Utilization Bound(%) Utilization Bound(%) Utilization Bound(%)
(a) Uniform distribution (b) Bimodal distribution (medium) (c) Bimodal distribution (heavy)
FIGURE 10. Interface overheads for different distribution of task utilization.
Lo w—w—w 1.0 1.07m
0.8 0.8 0.8
2 2 2
© © ©
0.6 0.6 206
Q [()
v o o
c c c
2 Iof 8
Q Q Q
0.4 0.4 20.4
¥ o o
< < <
0.2| -m- CSF 0.2| .m- CSF 0.21 .m- CSF
-->-- CSF(ceil) -->-- CSF(ceil) -->-- CSF(ceil)
-8 Q-CSF \ -8 Q-CSF -8 Q-CSF \
0.0 e 0.0 0.0 85

55 60 65 70 75 80

Utilization Bound(%)

90 55 60 65

(a) I =25

FIGURE 11. Acceptance ratio for two-level hierarchical systems.

(light), bimodal (medium), and bimodal (heavy) distribu-
tions, respectively. Regardless of distribution, Q-CSF shows
similar overheads. Q-CSF reduced the interface overhead of
CSF(ceil) by up to 96.58%.

C. SYSTEM-LEVEL SIMULATION

To evaluate the Q-CSF in hierarchical scheduling systems,
we consider a two-level hierarchical scheduling system with
multiple child components: the system schedules child com-
ponents using the DM scheduler and each child component
schedules its own workload (task set) using the DM sched-
uler. Similar to Section IV-B, we randomly generate work-
loads (two-level hierarchical scheduling systems). For each
system, we vary its utilization bound (Up) from 0.55 t0 0.90 in
steps of 0.05, which results in 0.55, 0.60, 0.65, 0.70, 0.75,
0.80, 0.85, and 0.90. For a component Cj,

o Component utilization (A;) is a real number uniformly
drawn from [0.05, min(0.3, Up — > Aj)).

o We repeat the process to generate a task (using the
default parameters from Section IV-B) until the utiliza-
tion of the task set is larger than ;.

e Then, we discard the task added last.

VOLUME 9, 2021

Utilization Bound(%)

(b) II = 50

70 75 80 85 90 55 60 65 70 75 80

Utilization Bound(%)

90

(¢) IT = random number in [25,75]

We repeat the process to generate a component until the sum
of the utilization of child components is greater than U, —0.05
(.., Y Aj > Uy —0.05).

We evaluate the Q-CSF for different component periods:
two identical periods, IT = 25 and IT = 50, and one random
period, which is uniformly drawn from [25, 75]. The number
of workloads for each data point is 3,000 and the number of
total workloads is 72,000, which is computed as 3000 x 8 x 3.

Figure 11 shows the average acceptance ratio of the
resource model for the random systems varying the utilization
bound U? for different component periods. We observed that
the difference of the average acceptance ratio between CSF
and CSF(ceil) is 0.436 in the worst case. However, the aver-
age acceptance ratio of Q-CSF is close to CSF: the difference
of the average acceptance ratio between CSF and Q-CSF is
only 0.022, 0.030, and 0.024 in a small component period
(IT = 25), a large component period (IT = 50), and a random
component period, respectively. We observed that Q-CSF
has up to 0.44, 0.18, and 0.20 better acceptance ratio than
CSF(ceil) in a small component period, a large component
period, and a random component period, respectively. For
the larger component period, the difference of acceptance
ratio among three approaches is small. However, for smaller

141755

IEEE Access

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

TABLE 2. Comparison between related work.

Theory | Practicality Description
Shin and Lee [3], [7] v the very first work for component-based scheduling theory
Bini et al. [17] v abstraction methods for different service mechanisms for multiprocessor platforms
Shin et al. [18] v a method to minimize the utilization of clusters for multiprocessor cluster systems
Gu et al. [19] v CSF extension to mixed-criticality systems
Yang et al. [20] v a new notion of budget-based mixed-criticality scheduling
Easwaran et al. [15] v v an explicit deadline periodic resource model
Kim et al. [21] v v elimination of abstraction overhead
Chen et al. [22] v v a new interface abstraction for both schedulability and associativity
RT-Xen [12] v real-time Xen virtualization without theory support
Lee et al. [13] v RT-Xen extension to support CSF theory
This Q-CSF v v a new CSF theory considering quantum-based platforms, e.g., RT-Xen

component period, Q-CSF is much better than CSF(ceil) and
close to the ideal CSF. For random component period, the
trend is similar to the case of the smaller component period.

V. RELATED WORK

Beginning with the seminal work of Shin and Lee [3], [7],
scheduling theory for the component-based real-time systems
was extensively studied in various domains. Pertaining to
multiprocessor platforms, Bini et al. [17] proposed abstrac-
tion methods for different types of service mechanisms such
as periodic servers, static partitions, and the fluid-based time
partitions. Additionally, Shin et al. [18] targeted cluster-based
real-time systems and proposed a compositional scheduling
algorithm that minimizes the utilization of individual clus-
ters. Regarding mixed-criticality systems, Gu et al. [19] tried
to overcome the shortcomings of the common assumption
of mixed-criticality systems that all high-criticality tasks
require additional computing resources simultaneously at a
mode transition. To these ends, they proposed parameters
to model the expected number of high-critical tasks simul-
taneously while demanding more resources and incorporat-
ing them into the compositional scheduling model for better
resource usage. Yang et al. [20] introduced a new notion of
budget-based mixed-criticality scheduling for component-
based real-time systems.

For practicality, a few studies have focused on minimiz-
ing the abstraction overhead of component-based schedul-
ing. Easwaran et al. [15] proposed an explicit deadline
periodic resource model that applied the notion of a dead-
line to an existing periodic resource model to reduce the
abstraction overhead. Furthermore, Kim ef al. [21] attempted
to eliminate abstraction overhead associated with the
resource-supply and resource-demand. Chen et al. [22] iden-
tified some important properties of component-based real-
time systems and proposed a new interface abstraction and
composition framework to achieve both schedulability and
associativity.

As system virtualization mechanisms have been devel-
oped [23], a several component-based scheduling mecha-
nisms have been proposed to support virtualized real-time
systems. RT-Xen [12] received a considerable attention,

141756

owing to its simplicity and efficiency in terms of system
implementation and computing-resource utilization. The first
version of RT-Xen did not support the component-based
scheduling theory, and the study of Shin and Lee [3] was lim-
ited in that it did not consider a scheduling quantum. To over-
come these shortcomings, Lee et al. [13] improved RT-Xen
to consider the notion of time quantum while applying
component-based scheduling theory. However, there exists
the resource inefficiency in previous work in [13] due to
rounding up the real-number of resource as quantum values.
In this paper, we aim at relieving such limitations with a
novel SBF, scheduling analysis, and component interface
calculation methods for real digitalized hardware platforms.
In Table 2, we compare our approach with other related work.

VI. CONCLUSION
The compositional scheduling framework is an effective
paradigm to supports real time properties in component-based
embedded systems. However, it is not directly applicable
to real quantumized hardware platforms due to lack of
consideration on quantumized resouce allocation. In this
study, we proposed quantum-aware compositional schedul-
ing framework, Q-CSF, to address the issue of time quantum
in real digitalized hardware platforms. We present integer-
based supply bound function (iISBF) to allocate resource
for quantumized platforms. We also present schedulability
analysis and interface computation algorithm under Q-CSF.
In simulation results, we showed that Q-CSF has only a
4.8% overhead in component-level experiments and an up to
0.026 smaller acceptance ratio in system-level experiments,
compared with theoretical CSF approaches.

In future work, we would like to investigate time quan-
tum issue on multiprocessor component-based systems and
mixed-criticality component-based systems.

REFERENCES

[1] R.I.Davis, T.Feld, V. Pollex, and F. Slomka, ““Schedulability tests for tasks
with variable rate-dependent behaviour under fixed priority scheduling,”
in Proc. IEEE 19th Real-Time Embedded Technol. Appl. Symp. (RTAS),
Apr. 2014, pp. 51-62.

[2] J. Real and A. Crespo, “Mode change protocols for real-time systems: A
survey and a new proposal,” Real-Time Syst., vol. 26, no. 2, pp. 161-197,
2004.

VOLUME 9, 2021

J. Lee, H. Baek: Q-CSF: Quantum-Aware Compositional Scheduling Framework

IEEE Access

[3]
[4]

[51

[6]

[71

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

I. Shin and I. Lee, ‘““Periodic resource model for compositional real-time
guarantees,” in Proc. Int. Symp. Syst. Chip, Dec. 2003, pp. 2-13.

V. Nelis, J. Goossens, and B. Andersson, “Two protocols for scheduling
multi-mode real-time systems upon identical multiprocessor platforms,”
in Proc. 21st Euromicro Conf. Real-Time Syst., Jul. 2009, pp. 151-160.
V. Nelis, B. Andersson, J. Marinho, and S. M. Petters, ‘“Global-EDF
scheduling of multimode real-time systems considering mode indepen-
dent tasks,” in Proc. 23rd Euromicro Conf. Real-Time Syst., Jul. 2011,
pp. 205-214.

P. Rattanatamrong and J. A. B. Fortes, ‘“Mode transition for online schedul-
ing of adaptive real-time systems on multiprocessors,” in Proc. IEEE
17th Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2011,
pp. 25-32.

I. Shin and I. Lee, “Compositional real-time scheduling framework with
periodic model,” ACM Trans. Embedded Comput. Syst., vol. 7, no. 3,
pp. 1-39, Apr. 2008, doi: 10.1145/1347375.1347383.

M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G. Talbi, A. Y. Zomaya,
and D. Tuyttens, “A parallel bi-objective hybrid Metaheuristic for energy-
aware scheduling for cloud computing systems,” J. Parallel Distrib. Com-
put., vol. 71, no. 11, pp. 1497-1508, Nov. 2011.

J.-T. Tsai, J.-C. Fang, and J.-H. Chou, “Optimized task schedul-
ing and resource allocation on cloud computing environment using
improved differential evolution algorithm,” Comput. Oper. Res., vol. 40,
pp. 3045-3055, Dec. 2013.

C. Cheng, J. Li, and Y. Wang, “An energy-saving task scheduling strategy
based on vacation queuing theory in cloud computing,” Tsinghua Sci.
Technol., vol. 20, no. 1, pp. 28-39, Feb. 2015.

M. B. Gawali and K. S. Shinde, “Task scheduling and resource allocation
in cloud computing using a heuristic approach,” J. Cloud Comput., vol. 7,
no. 1, pp. 1-16, 2018.

S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards real-time hyper-
visor scheduling in Xen,” in Proc. ACM Int. Conf. Embedded Softw.
(EMSOFT), 2011, pp. 39-48.

J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and
0. Sokolsky, ‘“Realizing compositional scheduling through virtualiza-
tion,” in Proc. IEEE 18th Real Time Embedded Technol. Appl. Symp.,
Apr. 2012, pp. 13-22.

J. W. S. Liu, Real-Time Systems. Upper Saddle River, NJ, USA:
Prentice-Hall, 2000. [Online]. Available: http://www.amazon.com/Real-
Time-Systems-Jane-W-Liu/dp/0130996513

A. Easwaran, M. Anand, and I. Lee, ““Compositional analysis framework
using EDP resource models,” in Proc. 28th IEEE Int. Real-Time Syst.
Symp. (RTSS), Dec. 2007, pp. 129-138.

B. Andersson, K. Bletsas, and S. Baruah, “Scheduling arbitrary-deadline
sporadic task systems on multiprocessors,” in Proc. Real-Time Syst. Symp.,
Nov. 2008, pp. 385-394.

E. Bini, G. Buttazzo, and M. Bertogna, ‘“The multi supply function abstrac-
tion for multiprocessors,” in Proc. 15th IEEE Int. Conf. Embedded Real-
Time Comput. Syst. Appl., Aug. 2009, pp. 294-302.

I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework for
virtual clustering of multiprocessors,” in Proc. Euromicro Conf. Real-Time
Syst., Jul. 2008, pp. 181-190.

VOLUME 9, 2021

[19] X.Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource efficient isolation
mechanisms in mixed-criticality scheduling,” in Proc. 27th Euromicro
Conf. Real-Time Syst., Jul. 2015, pp. 13-24.

[20] K. Yangand Z. Dong, “Mixed-criticality scheduling in compositional real-
time systems with multiple budget estimates,” in Proc. IEEE Real-Time
Syst. Symp. (RTSS), Dec. 2020, pp. 25-37.

[211 J. H. Kim, K. H. Kim, A. Easwaran, and I. Lee, “Towards overhead-
free interface theory for compositional hierarchical real-time systems,”
1EEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2869-2880, Nov. 2018.

[22] S. Chen, L. T. X. Phan, J. Lee, I. Lee, and O. Sokolsky, ‘“Removing
abstraction overhead in the composition of hierarchical real-time systems,”
in Proc. IEEE Real-Time Embedded Technol. Appl. Symp., Apr. 2011,
pp. 81-90.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtual-
ization,” ACM SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164-177,
Dec. 2003, doi: 10.1145/1165389.945462.

JAEWOO LEE (Member, IEEE) received the B.S.
and M.S. degrees in computer science and engi-
neering from Seoul National University, Republic
of Korea, in 2006 and 2008, respectively, and the
Ph.D. degree in computer and information sci-
ence from the University of Pennsylvania, USA,
in 2017. He is currently an Assistant Professor
with Chung-Ang University, Republic of Korea,
where he joined, in 2018. He has been a Postdoc-
toral Research Fellow with Seoul National Uni-
versity, from 2017 to 2018. His research interests include cyber-physical
systems, real-time embedded systems, and information system security.

HYEONGBOO BAEK received the B.S. degree in
computer science and engineering from Konkuk
University, South Korea, in 2010, and the M..S. and
Ph.D. degrees in computer science from KAIST,
South Korea, in 2012 and 2016, respectively.
He is currently an Assistant Professor with the
Department of Computer Science and Engineer-

\] N ol
‘ v ing, Incheon National University (INU), South

Korea. He was a Senior Researcher at Agency for

Defense Development (ADD), from 2018 to 2019.
His research interests include cyber-physical systems, real time embedded
systems, and system security. He won the Best Paper Award from the 33rd
IEEE Real Time Systems Symposium (RTSS), in 2012.

141757

http://dx.doi.org/10.1145/1347375.1347383
http://dx.doi.org/10.1145/1165389.945462

