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ABSTRACT To detect abnormal data via semi-supervised learning, unlabeled data are generally assumed
to be normal data. This assumption, however, causes inevitable performance degradation when a small
fraction of abnormal data is included in the unlabeled dataset. To overcome the degradation and to maintain
stable detection performance, we propose a semi-supervised anomaly detection algorithm using probabilistic
labeling (SAD-PL) for unlabeled data. The proposed SAD-PL is composed of two steps: (1) estimating
local outlier factor (LOF) scores of latent vectors from both labeled and unlabeled data and (2) estimating
labeling probability on the unlabeled data by using the prior missing probability of the labeled data via the
Neyman-Pearson (NP) criterion. The SAD-PL runs iteratively by using the proposed complementary learning
functions until the rate of label changes is lower than the predefined threshold. Experimental results reveal
that the SAD-PL shows superior detection probability over the existing algorithms and stable performance
regardless of the normal to abnormal data ratio in unlabeled data and the ratio of change variation of unlabeled
data statistics to labeled data statistics.

INDEX TERMS Anomaly detection, semi-supervised learning, probabilistic labeling, Neyman-Pearson
criterion, local outlier factor.

I. INTRODUCTION
Anomaly detection is used for detecting abnormal samples
that deviate from the predefined normality [1]. It has various
applications, such as in medicine, security, and manufac-
turing [1]. Further applications include intrusion detection
in cybersecurity [2]–[4], industrial fault and damage detec-
tion in monitoring sensor data [5]–[7], and acoustic novelty
detection for audio surveillance and underwater sonar sys-
tems [8]–[13]. Typical anomaly detection methods based on
unsupervised learning assume that most of the samples are
normal. The unsupervised approaches, primarily treated as
a one class classification problem, learn features of normal
samples [14]–[18]. Typical anomaly detection methods such
as the one class support vector machine (OC-SVM) [14]
and support vector data description (SVDD) [15] attempt to
learn compact descriptions of normal samples. Recent deep
learning approaches have shown outstanding performance
by overcoming the problems with shallow learning on high-

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul S. Raval .

dimensional data [16]–[18]. Deep SVDD [16], a representa-
tive deep approach, trains a neural network, while minimizing
the volume of a hypersphere that encloses normal samples
in latent space. Recent algorithms including Deep Multi-
sphere SVDD [17] and deep robust one-class classification
(DROCC) [18], have been proposed to learn representation of
normal samples. Most unsupervised approaches that are not
trained on abnormalities have limited detection performance.

Some labeled data, as well as unlabeled data, may
be utilized in real-world applications, and an especially
small number of anomalous samples in labeled data can
be used. Song et al. [19] and Akvay et al. [20] proposed
semi-supervised anomaly detection models that use reliable
normal samples in unlabeled data for training. However,
since these models do not train the abnormalities like the
unsupervised approaches, they have limited performance.
Ruff et al. [21] proposed a deep semi-supervised anomaly
detection (Deep SAD) that learns anomalous samples in
labeled data. By assuming that most unlabeled samples are
normal, the Deep SAD trains the normal data to be con-
centrated in the center of the latent space, and then trains
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FIGURE 1. Overview of the different approaches to semi-supervised anomaly detection. Left: Semi-supervised anomaly detection models aim to separate
normal and abnormal samples in latent space. Deep SAD learns normal and abnormal samples with asymmetric objectives. HSC is trained by
complementary losses based on radial basis function. Deep SAD and HSC is trained assuming that the samples in unlabeled data are normal. SAD-PL
learns both labeled and unlabeled data with complementary objectives depending on labeling probability.

labeled abnormal samples to move away from the center
of the latent space. An unsupervised Outlier Exposure (OE)
approach for learning OE data and unlabeled data has been
proposed based on a similar assumption of semi-supervised
anomaly detection [22]. The anomaly detectionmethod based
on unsupervised OE learning trains a binary classifier on
the OE data and the unlabeled abnormal and normal data.
Hyper sphere classification (HSC) [23] is a class classifica-
tion algorithm based on unsupervised OE learning that uses
the relative distance in latent space for training. The Deep
SAD and HSC are advanced anomaly detection algorithms
since they consider abnormal samples or OE data in the
training process. However, their assumption of most unla-
beled samples being normal inevitably causes performance
degradation as the number of abnormal samples in the unla-
beled dataset increases. To overcome the degradation, a new
semi-supervised anomaly detection algorithm that can learn
unlabeled normal and abnormal data efficiently is required.

In this paper, we propose an anomaly detection algorithm
based on probabilistic normal or abnormal labeling for each
sample in unlabeled data. The proposed algorithm, denoted
as the semi-supervised anomaly detection algorithm using
probabilistic labeling (SAD-PL), involves the two-step prob-
abilistic labeling process: (1) computing the local outlier
factor (LOF) score of latent vectors from both labeled and
unlabeled data and (2) estimating the labeling probability
on the unlabeled data by using the missing probability of
labeled normal data via the Neyman-Pearson (NP) criterion.
The SAD-PL runs until the labeling change rate becomes
lower than the preset threshold.

Our paper is organized follows: Section 2 describes the
SAD-PL and evaluates the performance using toy data.
In Section 3, the experimental results on the image dataset
are described in comparison with existing algorithms. Con-
clusions are presented in Section 4.

II. SAD-PL
In this section, we introduce the SAD-PL based on semi-
supervised learning with probabilistic labeling. Figure 1
shows the proposed algorithm along with the existing semi-
supervised algorithms of the Deep SAD and HSC. The pro-
posed SAD-PL uses feature representations φ (x) through
autoencoder pretraining and learns the encoded normal sam-
ples to close centroid c in latent space without the decod-
ing network. Then, the SAD-PL is trained according to the
proposed probabilistic labeling, which uses the LOF score
s = LOFk{φ (x)}. The LOF scoring the density based on
the relative distance between k neighbor samples is known
to show robust performance in the multimodal normality
case [24]. As shown in Figure 1, the LOF score of the object
p is computed as follows: (1) computing k-distances of p
with the k neighbor samples oi (2) computing k-distances
of oi with the k neighbor samples (3) computing ratio of
average of the k-distances obtained by (2) to the k-distances
by (1). To detect a small number of group anomaly samples,
the SAD-PL sets k large enough to cover the relative distance
between normal and abnormal samples. The NP criterion is
used to determine the threshold that satisfies the detection or
missing probabilities under a given constraint [25]. The prob-
ability used for labeling is computed by using the missing
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probability of the labeled normal data PM as

PM =
∫
∞

η

p (s |H0) ds (1)

where p (s |H0) denotes the probability density function of
s = LOFk{φ (x)} obtained from labeled normal data (H0).
η denotes the threshold for the given PM . Note that η varies
as the SAD-PL. These changes in η cause the probabilistic
label y(t) to change each training epoch t . However, labels
yl(t), l ≤ n for n labeled samples xl are fixed as follows:

yl (t) =

{
1, ∀t for normal
0, ∀t for abnormal

(2)

For unlabeled data xu, the labels yu (t) , u > n are defined
as follows:

yu(t) =

{
1− PM , su ≤ η
PM , su > η

(3)

where su represents the LOF score of xu. According to PM
determined by the NP criterion, yu (t) has a corresponding
probability and consequently implies the probabilistic label
for the unlabeled xu. For network φ training, the SAD-PL
uses datasets {xl, yl (t) , l ≤ n} and {xu, yu (t) , u > n}, which
are composed of n labeled and (m − n) unlabeled data from
the corresponding probabilistic labels estimated in (2) and
(3). The resultant objective function of the SAD-PL can be
described as follows:

min
w

1
m

m∑
i=1

yi(t)d (φ (xi))

+ (1− yi(t)) (1− d (φ (xi)))+
λ

2

J∑
j=1

∥∥∥W j
∥∥∥2
F

(4)

where W j is the weights of layer j ∈ {1, · · · , J}, ‖·‖F
denotes the Frobenius norm and d(φ (xi)) is the function of
the distance from c using Geman-McClure loss and defined
as follows:

d (φ (xi)) =
‖φ (xi)−c‖2

‖φ (xi)−c‖2 + 1
(5)

The proposed SAD-PL objective function consists of a
weight decay regularizer onW jmultiplied by hyperparameter
λ > 0 for preventing overfitting and two complementary
learning functions of symmetrical losses for normal and
abnormal samples, which are multiplied by complementary
probabilistic labels yi(t). The SAD-PL learns the normal
samples closer to c and the abnormal samples away from c
for the labeled data. For unlabeled data training, the network
uses complementary losses with probabilistic labeling yu(t).
To avoid a trivial solution of W = 0, the bias is not updated
during the learning process. By adopting theGeman-McClure
loss in (5), the SAD-PL can prevent divergence in the learning
process with a limited loss of 0 to 1 and obtain robust stability
for mislabeled data [26]. Note that the SAD-PL object func-
tion has both regression and classification properties since

it learns by computing distance loss based on the estimated
probabilistic labels yu (t) for unlabeled data.
Soft Labeling: To find the optimum PM for unlabeled

data labeling, the SAD-PL adopts the ensemble networks
[φ1, · · · , φQ], where φq is the model trained with PM (q).
To estimate the optimum PM , the SAD-PL uses the fact that
the LOF difference between normal and abnormal samples
in well-trained networks becomes relatively larger than that
in ill-trained networks. To determine the optimum PM (q),
we compute the LOF difference 1s (q) for φq as follows:

1s(q) =
∣∣s̄ (q)0 − s̄ (q)1∣∣ (6)

where s̄ (q)0 and s̄ (q)1 represent the average LOFs of
the labeled normal and abnormal samples, respectively.
Then, from Q differences [1s (1) , · · · ,1s (Q)], the opti-
mum PM (o) is determined by finding the maximum 1s(q)
at a given epoch T . The SAD-PL learns the model
by using the threshold ηS obtained from PM (o) and
the estimated probabilistic labeling procedure described
above.
Hard Labeling: By setting PM (o) = 0, the SAD-PL

can reduce the computational cost of memory and time.
This version of the SAD-PL is known as hard labeling and
learns the network by using the threshold denoted as ηH
in Figure 1.

The proposed SAD-PL runs until the labeling change rate
1yu(t) at iteration t and is lower than the preset threshold ε.
The 1yu(t) is computed as

1yu (t) =
1

m− n

m∑
u=n+1

∣∣∣∣yu (t)− yu(t − 1)
1− 2PM (o)

∣∣∣∣ (7)

Algorithm 1 shows the overall learning procedure of the
SAD-PL.

The proposed SAD-PL is related to the Deep SAD algo-
rithm. Setting yl(t) = 1 for the normal samples, yl(t) = −1
for the abnormal samples, yu (t) = 1∀t , setting d (φ (xi)) =
‖φ (xi)−c‖2 and d (φ (xi)) to yl(t) power in Equation (4),
gives the Deep SAD object function as follows [21]:

min
w

ζ

m

n∑
l=1

(‖φ (xl)− c‖2)
yl (t)

+
1
m

m∑
u=n+1

‖φ (xu)− c‖2 +
λ

2

J∑
j=1

∥∥∥W j
∥∥∥2
F

(8)

where the hyperparameter ζ controls the balance of learning
between labeled and unlabeled terms.

Additionally, the proposed SAD-PL is related to the HSC
model with the objective function of cross entropy for rel-
ative distance in latent space [23]. By taking the negative
and logarithmic distance losses in Equation (4) and replac-
ing d(φ (xi)) with the radial basis function h(φ (xi)) =

exp {−(
√
‖φ (x)‖2 + 1 − 1)} gives the HSC object function
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Algorithm 1 Learning Procedure of SAD-PL
Input:

Labeled data: (xl, yl)
Unlabeled data: xu
Number of neighbors: k
Increment size of PM : δ
Threshold for labeling change rate: ε
Mode: ‘‘hard labeling’’ or ‘‘soft labeling’’

Output:
Trained model: φ
Probabilistic labels: yu

Initialize:
Pretrain autoencoder: φ0
Compute centroid: c
Create Q models: [φ1, · · · , φQ]

if mode is ‘‘hard labeling’’ then PM (o) = 0
else if mode is ‘‘soft labeling’’

for t = 1, 2, · · · ,T do
for q = 1, 2, · · · ,Q do

if q = 1 then PM (q) = 0
else PM (q) = PM (q− 1)+ δ
Compute LOF score: s(q) = LOFk (φq (x))
Compute 1s(q)
Threshold estimation: η(q)
Probabilistic labeling: yu(t, q)
Train model: φq

end
end
if 1s(o) is maximum then

Determine PM = PM (o)
Set φ = φo

end
end
for t = 1, 2, · · · do

Compute LOF score: s = LOFk (φ (x))
Threshold estimation: η
Probabilistic labeling: yu(t)
Train model: φ
if 1yu (t) < ε then break

end

as follows [23]:

min
w
−

1
m

m∑
i=1

yi(t) log h (φ (xi))

+ (1− yi(t)) log {1− h (φ (xi))} +
λ

2

J∑
j=1

∥∥∥W j
∥∥∥2
F

(9)

where yi (t) = 1∀t, i ∈ {n+ 1, · · · ,m} for unlabeled data.

A. COMPARISON OF ANOMALY DETECTION MODELS
We compare the anomaly detection models described above
with toy examples. The training data consist of a total of
10000 samples, of which 10% are labeled data and 90%

are unlabeled data. Five percent of labeled data and 1% of
unlabeled data consist of abnormal samples. We generate
the normal samples in the training data as two-dimensional
big moon and small moon patterns. We also add Gaussian
noise of variance 0.2 and 0.25 to the labeled and unlabeled
data, respectively. The abnormal samples in labeled data are
located to be clearly distinguished from the normal samples.
On the other hand, the abnormal samples in unlabeled data
are located adjacent to the boundaries of the normal samples.
The test data consist of 1000 normal and abnormal samples.
The normal samples contain Gaussian noise with a variance
of 0.3 in big moon and small moon patterns. The abnormal
samples are generated with a uniform distribution.

The models for comparison use the same encoding net-
work of the pretrained autoencoder. The encoding network
consists of two hidden layers of 100 nodes, followed by
ELU activations that represent a two-dimensional input in a
two-dimensional latent space. For autoencoder pretraining,
we employ the above architectures for the encoding networks
and then construct decoding networks symmetrically. We set
ζ = 1 for the Deep SAD, and k = 100 and ε = 0.0001 for
the SAD-PL. We use PM = 0.04 obtained from soft labeling
training. For all models, we set λ = 10−6 and use the Adam
optimizer with a learning rate of 10−5. In addition, we train all
models except the SAD-PL in epoch 300. Figure 2 shows the
decision boundaries with training data and the test AUC (area
under the receiver operating characteristic curve) of anomaly
detection models. The decision boundaries in Figure 2 are
represented with an upper bound on 10% of the anomaly
score normalized via min-max scaling. The anomaly score
is computed ‖φ (x)−c‖2 for the Deep SAD and the SAD-PL
and ‖φ (x)‖2 for HSC. In (a) and (c) of Figure 2, the Deep
SAD and HSC create the decision boundaries along the
perimeter of the large moon and small moon patterns because
the unlabeled data are assumed to be normal. Therefore, the
abnormal samples close to the normal samples in unlabeled
data are located within the decision boundaries, and the
decision boundaries are created wider in a region where the
abnormal sample in the labeled data does not exist. However,
the SAD-PL represents the tight decision boundaries with
complementary learning for the labeling probability of the
unlabeled data in (e) of Figure 2. In particular, the SAD-PL
has higher anomaly scores than the existing methods in areas
separated inside the large moon and small moon patterns. In
(b) of Figure 2, the supervised deep SAD is trained with only
normal samples in unlabeled data, since the labels are not
used on the unlabeled term in the objective function. For this
reason, the supervised Deep SAD represents compact deci-
sion boundaries compared to the semi-supervised Deep SAD.
However, the supervised Deep SAD, which learns relatively
few abnormal samples, creates wider decision boundaries
than the SAD-PL. (d) and (f) in Figure 2 show the decision
boundaries and test AUC for the supervised HSC and SAD-
PL learning the unlabeled data with labels. The supervised
HSC and SAD-PL have extremely tight decision boundaries
and high AUCs of 99.25% and 99.28%, respectively. These
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FIGURE 2. The decision boundaries and test AUC of anomaly detection
models. (a) Semi-supervised Deep SAD, (b) Supervised Deep SAD,
(c) Semi-supervised HSC, (d) Supervised HSC, (e) Semi-supervised SAD-PL,
(f) Supervised SAD-PL.

results show improved AUCs of more than 4.02% compared
to the semi-supervised HSC, but only up to a 0.62% differ-
ence in AUCs compared to the semi-supervised SAD-PL.

Figure 3 shows the training AUCs of the comparative
models according to epoch and the 1yu(t) in the SAD-PL
learning. In Figure 3, the HSC, which learns distance based
on a radial basis function, achieves higher learning efficiency
than the Deep SAD. However, the HSC and the Deep SAD,
assuming the unlabeled data are normal, show slower learning
caused by adversarial learning between the abnormal samples
in labeled and unlabeled data. However, the SAD-PL achieves
high learning efficiency with complementary learning based
on probabilistic labeling of unlabeled data. We can also pre-
dict the completion of learning as 1yu(t) converges to zero
as the epoch increases.

FIGURE 3. Training AUC of anomaly detection models according to epoch
and change rate of probabilistic labels in SAD-PL model.

B. CHARACTERISTICS OF PROBABILISTIC LABELING
The SAD-PL sets the labeling probability on unlabeled data
with PM of the labeled data via the NP criterion. It deter-
mines η by Equation (1) and sets the labeling probability
by (3). Typically, unlabeled data consist of a large number
of samples with various statistics, such as variance, rather
than labeled data. Therefore, the NP condition may not be
met on unlabeled data for the η set in labeled data. The
proposed algorithm repeats the probabilistic labeling in an
iteration of learning to change normal samples in labeled and
unlabeled data into a similar probability distribution of LOF
scores. In this learning process, themissing probability for the
normal unlabeled samples converges to the predefined PM .
Figure 4 shows histograms of LOF scores for the normal sam-
ples in an iteration of training. In (a) and (b) of Figure 4, the
probability distributions of LOF scores for normal samples in
labeled and unlabeled data become similar with each iteration
of training. As a result, the missing probability for the normal
unlabeled samples varies from 20.25% to 4.02%, close to
the predefined PM = 0.04. Figure 5 shows that the labeling
accuracy for unlabeled data, which is mostly composed of
normal samples, reaches approximately 96%.

To verify the soft probabilistic labeling, we compute the
difference in LOF scores 1s(q) according to epoch. Fig-
ure 6 shows three 1s(q)s according to three PM (q)s along
with test AUCs. As shown in Figure 6, we can observe that
a larger 1s(q) corresponds to a larger AUC, and thus, can
determine a PM suitable for unlabeled data via the proposed
soft probabilistic labeling procedure.

III. EXPERIMENTS
We evaluate the SAD-PL on the well-known MNIST [27],
CIFAR10 [28], and MNIST-C [29] datasets. The SAD-PL
is compared with the methods based on one class classi-
fication. We present results from unsupervised methods of
SVDD [15] and the Deep SVDD [16] and semi-supervised
methods of the Deep SAD [21] and HSC [23]. We implement
the semi-supervised HSC by replacing OE data with the
labeled data. We also present the results of the supervised
Deep SAD, HSC, and SAD-PL by using labeling information
of the unlabeled data. The supervised Deep SAD learns only
normal samples in unlabeled data since the labels are not
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FIGURE 4. Histogram for LOF score according to epochs (a) Normal
samples of labeled data (b) Normal samples of unlabeled data.

FIGURE 5. Labeling accuracy of SAD-PL training according to epoch with
PM = 0.04.

FIGURE 6. Difference of LOF score and test AUC between normal and
abnormal samples in labeled data according to PM and epoch.

used on unlabeled term in the objective function. We run
all experiments for ν ∈ {0.1, 0.25, 0.5} of SVDD with a
Gaussian kernel and show the corresponding results. The
deep models use the same encoding network structure in
the pretrained autoencoder. We employ LeNet-type convo-
lutional neural networks (CNNs), where each convolutional
module consists of a convolutional layer followed by leaky

ReLU activations and 2 × 2 max-pooling. In the MNIST and
MNIST-C experiments, we employ a CNNwith twomodules,
8 × (5 × 5) filters followed by 4 × (5 × 5) filters, and a
final dense layer of 32 units. In the CIFAR10 experiments,
we employ a CNN with three modules, 32 × (5 × 5) filters,
64 × (5 × 5) filters, and 128 × (5 × 5) filters, followed
by a final dense layer of 128 units. For the pretraining
autoencoder, we employ identical encoding networks and
then construct the decoding networks symmetrically, where
we replace max-pooling with simple upsampling and convo-
lutions with deconvolutions. We use a batch size of 200 and
set λ =10−6. We also use the Adam optimizer with a learning
rate of 10−5. For experiments on the Deep SVDD, we use the
one-class Deep SVDD model [16]. We run all experiments
for ζ ∈ {0.01, 0.1, 1, 0, 100} of the Deep SAD and show
the best results. The SAD-PL is evaluated via two separate
hard and soft labels. We set k = 200 and complete learning
when 1yu(t) is less than ε = 0.001. In soft labeling, we set
Q = 101 by setting PM = 0 to PM = 0.2 with an δ = 0.002
interval and select the PM (o) in which 1s is maximum in
T = 10. We train the deep models for 300 epochs. The image
data used in the experiments are normalized throughmin-max
scaling.

We use a typical one vs. rest evaluation method on
the MNIST and CIFAR10 datasets [30]. On MNIST and
CIFAR 10, we set the ten classes to be normal classes and let
the remaining nine classes represent anomalies. We use the
original training and test data. In the training data, we consti-
tute most of the data as the normal class and replace a small
amount with the data from the abnormal class according to
the experimental scenario. We also divide the training data
into labeled and unlabeled data, while organizing the abnor-
mal samples in labeled data from a single anomalous class.
However, the abnormal samples in unlabeled data equally
contain samples of all anomalous classes. The class for abnor-
mal samples in labeled data is randomly determined in each
experiment. This gives training set sizes of approximately
6000 for MNIST and 5000 for CIFAR10. Both test sets have
10000 samples, including samples from the nine anomalous
classes for each setup. On MNIST-C, we set original images
to be normal and corrupted images to be abnormal. We use
pre-configured training and test data. We also make the train-
ing data into most normal samples and a few abnormal sam-
ples according to the scenario. The training data are divided
into labeled and unlabeled data. We organize the abnormal
samples in labeled data using corrupted images of the same
type. The abnormal samples in unlabeled data include all
kinds of corrupted images equally. The type of corrupted
images for abnormal samples in labeled data is randomly
determined in each experiment. This configuration gives a
training set size of approximately 60000 and a test set size
of 160000 for MNIST-C.

We use 5% as labeled data and 95% as unlabeled data
in the training data as Ruff et al. [21] do for evaluation of
the Deep SAD. We constituted 98% normal samples and
2% abnormal samples in the labeled data, along with 99%
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TABLE 1. Average AUCs in % for one vs. rest evaluation on MNIST dataset.

FIGURE 7. Labeling accuracy and change rate in SAD-PL training with
PM = 0.04 for one vs. rest evaluation(normal class: 0) on MNIST dataset.

normal samples and 1% abnormal samples in the unlabeled
data. We present the evaluation results for the models with
an average AUC of 30 times. Table 1 shows the evaluation
results on MNIST dataset. In Table 1, the SAD-PL (Hard)
and the SAD-PL (Soft) indicate the evaluation results for hard
and soft labeling, respectively. The SAD-PL achieves a better
performance than existing unsupervised and semi-supervised
anomaly detection models with an average AUC of at least
93.65%. The SAD-PL also represents an average AUC that is
at least 2.69% higher than the supervised deep SAD by train-
ing abnormal samples in unlabeled data. The semi-supervised
SAD-PL has an improved average AUC of 1.97% via soft
labeling, which is only 3.86% lower than that of the super-
vised SAD-PL. Additionally, in the experiment in which digit
‘0’ is a normal class on MNIST, the SAD-PL is trained with
PM = 0.04 determined by soft labeling. Figure 7 shows the
labeling accuracy and 1yu(t) in the iteration of the SAD-PL
training with soft labeling. As shown in Figure 7, the label-
ing accuracy reaches approximately 96%, corresponding to
PM = 0.04, and1yu(t) converges to 0.1% or less as the epoch
increases.

Tables 2 and 3 show the evaluation results for anomaly
detection models on CIFAR10 and MNIST-C, respectively.

In Table 2, the SAD-PL proposed achieves a better detection
performance than existing unsupervised and semi-supervised
methods with an average AUC of at least 64.37%. The
SAD-PL with hard labeling also represents an average AUC
that is 1.69% higher than the supervised deep SAD. We can
see that the SAD-PL with soft labeling has a 5.22% improve-
ment in the average AUC compared to the SAD-PL with
hard labeling. This result represents an average AUC that is
only 2.43% lower than the supervised SAD-PL. In Table 3,
the SAD-PL similarly achieves a higher performance than the
existing unsupervised and semi-supervised models, with an
average AUC of at least 90.05% in the experiment using the
MNIST-C dataset. The SAD-PL also represents an average
AUC that is at least 5.22% higher than the supervised deep
SAD. The proposed method with soft labeling has a 2.38%
improvement in the average AUC compared to the SAD-PL
with hard labeling.

By comparing Table 1 and 2, we can see that the SAD-PL
(Soft) shows higher improvement in average AUC to the
SAD-PL (Hard) when the unlabeled data set is rather compli-
cated as CIFAR10 images. The reason of improvement is that
the SAD-PL (Soft) learns the statistics of unlabeled normal
data by employing the ensemble networks at the expense of
longer computation time. However, if statistics of unlabeled
data are similar with the labeled normal data, then SAD-
PL (Hard) can show compatible performance to the SAD-PL
(Soft).

Next, we investigate the effect of including labeled data
during training on the MNIST, CIFAR10 and MNIST-C
datasets by increasing the ratio of labeled training data from
0% to 10% and presenting the averaged AUCs of 30 times.
We compute the average AUCs according to the one vs. rest
evaluation method on theMNIST and CIFAR10 datasets. The
ratio of abnormal samples in labeled and unlabeled data is
maintained at 5% and 1%, as in the previous experiments.
Figure 8 shows variations of performance in the average
AUCs for the semi-supervised models according to the ratio
of labeled data during training. The HSC, a classification
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TABLE 2. Average AUCs in % for one vs. rest evaluation on CIFAR10 dataset.

TABLE 3. Average AUCs in % for evaluation on MNIST-C dataset.

model, shows high improvement in the average AUC as the
labeled data increase. In particular, HSC presents a higher
averageAUC than theDeep SADwhen the ratio of the labeled
data is 5% or more. The Deep SAD, a regression model that
is trained with distance loss, shows robust performance, even
with a small amount of labeled data. However, the SAD-
PL, having both properties of regression and classification
by learning with complementary objectives, represents a high
average AUC compared to the existing HSC and the Deep
SAD. The SAD-PL with hard labeling has a similar average
AUC to the HSC average as the ratio of the labeled data
increases. Note that the SAD-PL with soft labeling represents
a remarkably high average AUC, even with a high proportion
of labeled data during training.

Similar to the experiment above, we investigate the effect
of including abnormal samples in the unlabeled data dur-
ing the training with the MNIST, CIFAR10 and MNIST-
C datasets. To do this, we increase the anomaly ratio,
which is the proportion of abnormal samples in unlabeled
training data, from 0% to 10% and represent the average
AUCs of 30 times. We also use the one vs. rest evalua-
tion method on the MNIST and CIFAR10 datasets. For the
experiment, we keep the labeled data at 95% of the train-

FIGURE 8. Average AUCs according to ratio of labeled data for evaluation
on (a) MNIST, (b) CIFAR10, and (c) MNIST-C dataset.

ing data and include 98% and 2% of normal and abnor-
mal samples, respectively. Figure 9 shows the variations of
performance for the average AUCs of the unsupervised and
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FIGURE 9. Average AUCs according to anomaly ratio in unlabeled data for
evaluation using (a) MNIST, (b) CIFAR10, and (c) MNIST-C dataset.

semi-supervised models according to the anomaly ratio in
unlabeled data during training. In Figure 9, the unsupervised
and semi-supervised approaches assume that the unlabeled
data consisting of only normal samples represent perfor-
mance degradation in the average AUCs as the anomaly ratio
in unlabeled data increases. However, the semi-supervised
models have a high performance in the average AUC com-
pared to the unsupervised models by learning abnormal sam-
ples in labeled data. However, the SAD-PL represents the
improvement in performance for the average AUCs as the
anomaly ratio in unlabeled data increases via probabilistic
labeling. This performance variation appears in both hard and
soft labeling.

IV. CONCLUSION
Unlike existing semi-supervised anomaly detection algo-
rithms, which are trained by assuming that most of the sam-
ples in unlabeled data are normal, we propose the SAD-PL,
which can be applied when abnormal samples are included
in unlabeled data. The proposed SAD-PL uses LOF scores

obtained from both labeled and unlabeled data and then esti-
mates the labeling probability on the unlabeled data by using
the LOF scores. Because of probabilistic labeling and com-
plementary objective function, the SAD-PL has properties of
regression and classification. Through experiments, we show
that the SAD-PL presents a higher performance in the aver-
age AUCs, displays tighter decision boundaries and achieves
higher learning efficiency than the existing algorithms. Addi-
tionally, the SAD-PL shows an improved performance in the
average AUCs as the abnormal data ratio in unlabeled data
increases, whereas the existing algorithms show performance
degradation. Therefore, the SAD-PL can be a good candidate
for providing stable detection performance, regardless of the
existence of abnormal samples in unlabeled data. While the
proposed SAD-PL shows stable superior detection perfor-
mance, efficient algorithm for probabilistic labeling without
LOF computation is an interesting topic for future research.

REFERENCES
[1] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Monatavon, W. Samek,

M. Kloft, T. G. Dietterich, and K. R. Müller, ‘‘A unifying review of deep
and shallow anomaly detection,’’ Proc. IEEE, vol. 109, no. 5, pp. 756–795,
Feb. 2021.

[2] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, ‘‘Intrusion detection
system: A comprehensive review,’’ J. Netw. Comput. Appl., vol. 36, no. 1,
pp. 16–24, Jan. 2013.

[3] M. Ahmed, A. N. Mahmood, and J. Hu, ‘‘A survey of network anomaly
detection techniques,’’ J. Netw. Comput. Appl., vol. 60, pp. 19–31,
Jan. 2016.

[4] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and
C. Wang, ‘‘Machine learning and deep learning methods for cybersecu-
rity,’’ IEEE Access, vol. 6, pp. 35365–35381, 2018.

[5] J. Rabatel, S. Bringay, and P. Poncelet, ‘‘Anomaly detection in monitoring
sensor data for preventive maintenance,’’ Expert Syst. Appl., vol. 38, no. 6,
pp. 7003–7015, Jun. 2011.

[6] L. Martí, N. Sanchez-Pi, J. Molina, and A. Garcia, ‘‘Anomaly detection
based on sensor data in petroleum industry applications,’’ Sensors, vol. 15,
no. 2, pp. 2774–2797, Jan. 2015, doi: 10.3390/s150202774.

[7] D. Ramotsoela, A. Abu-Mahfouz, and G. Hancke, ‘‘A survey of anomaly
detection in industrial wireless sensor networks with critical water system
infrastructure as a case study,’’ Sensors, vol. 18, no. 8, p. 2491, Aug. 2018,
doi: 10.3390/s18082491.

[8] A. Rabaoui, M. Davy, S. Rossignol, and N. Ellouze, ‘‘Using one-class
SVMs and wavelets for audio surveillance,’’ IEEE Trans. Inf. Forensics
Security, vol. 3, no. 4, pp. 763–775, Dec. 2008.

[9] H. Lim, J. Park, K. Lee, and Y. Han, ‘‘Rare sound detection using 1D
convolutional recurrent neural networks,’’ in Proc. Workshop Detection
Classification Acoustic Scenes Events, 2017, pp. 80–84.

[10] K. Lee andC.H. Lee, ‘‘Abnormal signal detection based on parallel autoen-
coders,’’ J. Acoust. Soc. Korea, vol. 40, no. 4, pp. 337–346, Jul. 2021.

[11] H. Yang, K. Lee, Y. Choo, and K. Kim, ‘‘Underwater acoustic research
trends with machine learning: General background,’’ J. Ocean Eng. Tech-
nol., vol. 34, no. 2, pp. 147–154, Apr. 2020.

[12] H. Yang, K. Lee, Y. Choo, and K. Kim, ‘‘Underwater acoustic research
trends with machine learning: Passive SONAR applications,’’ J. Ocean
Eng. Technol., vol. 34, no. 3, pp. 227–236, Jun. 2020.

[13] H. Yang, S.-H. Byun, K. Lee, Y. Choo, and K. Kim, ‘‘Underwater acoustic
research trends with machine learning: Active SONAR applications,’’
J. Ocean Eng. Technol., vol. 34, no. 4, pp. 277–284, Aug. 2020.

[14] B. Schölkopf, R. Willianson, A. Smola, J. S. Taylor, and J. Platt, ‘‘Support
vector method for novelty detection,’’ in Proc. NIPS, Cambridge, MA,
USA, 1999, pp. 582–588.

[15] D. M. J. Tax and R. P. W. Duin, ‘‘Support vector data description,’’Mach.
Learn., vol. 54, no. 1, pp. 45–66, Jan. 2004.

[16] L. Ruff, R. A. Vandermeulen, N. Görnits, L. Deecke, S. A. Siddiqui,
A. Binder, E. Müller, and M. Kloft, ‘‘Deep one-class classification,’’ in
Proc. ICML, Stockholm, Sweden, 2018, pp. 4393–4402.

142980 VOLUME 9, 2021

http://dx.doi.org/10.3390/s150202774
http://dx.doi.org/10.3390/s18082491


K. Lee et al.: Semi-Supervised Anomaly Detection Algorithm Using Probabilistic Labeling (SAD-PL)

[17] Z. Ghafoori and C. Leckie, ‘‘Deep multi-sphere support vector data
description,’’ in Proc. SIAM Int. Conf. Data Mining, Toronto, ON, Canada,
2020, pp. 109–117.

[18] S. Goyal, A. Raghunathan, M. Jain, H. Simhadri, and P. Jain, ‘‘DROCC:
Deep robust one-class classification,’’ in Proc. ICML, 2020, pp. 109–117.

[19] H. Song, Z. Jiang, A. Men, and B. Yang, ‘‘A hybrid semi-supervised
anomaly detection model for high-dimensional data,’’Comput. Intell. Neu-
rosci., vol. 2017, Nov. 2017, Art. no. 8501683.

[20] S. Akvay, A. A. Abarghouel, and T. P. Breckon, ‘‘GANomaly: Semi-
supervised anomaly detection via adversarial training,’’ in Proc. ACCV,
Perth, WA, Australia, 2018, pp. 622–637.

[21] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller,
K. R. Müller, and M. Kloft, ‘‘Deep semi-supervised anomaly detection,’’
in Proc. ICLR, Addis Ababa, Ethiopia, 2020, pp. 1–23.

[22] D. Hendrycks, M. Mazeika, and T. Dietterich, ‘‘Deep anomaly detection
with outlier exposure,’’ in Proc. ICLR, New Orleans, LA, USA, 2019,
pp. 1–18.

[23] L. Ruff, R. A. Vandermeulen, B. J. Franks, K. R. Müller, and
M. Kloft, ‘‘Rethinking assumptions in deep anomaly detection,’’ in Proc.
ICML, Jul. 2021, pp. 1–17. [Online]. Available: https://sites.google.com/
view/udlworkshop2021/accepted-papers/UDL2021-paper-011.pdf

[24] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, ‘‘LOF: Identifying
density-based local outliers,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, New York, NY, USA, 2000, pp. 93–104.

[25] J. Neyman and E. S. Pearson, ‘‘On the problem of the most efficient tests
of statistical hypotheses,’’ Philos. Trans. Roy. Soc. London A, vol. 231,
nos. 694–706, pp. 289–337, 1933.

[26] J. T. Barron, ‘‘A general and adaptive robust loss function,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Long Beach,
CA, USA, Jun. 2019, pp. 4331–4339.

[27] Y. Lecun, C. Cortes, and C. Burges. (Jun. 28, 2010). MNIST
Handwritten Digit Database. AT&T Labs. [Online]. Available:
https://yann.lecun.com/exdb/mnist/

[28] A. Krizhevsky. (Apr. 8, 2009). Learning Multiple Layers of Fea-
tures From Tiny Images. [Online]. Available: https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf

[29] N. Mu and J. Gilmer, ‘‘MNIST-C: Robustness benchmark for computer
vision,’’ in Proc. ICML Workshop, Jun. 2019, pp. 1–11. [Online].
Available: https://www.gatsby.ucl.ac.uk/ balaji/udl2019/accepted-
papers/UDL2019-paper-37.pdf

[30] A. F. Emmott, S. Das, T. Dietterich, A. Fern, andW.-K.Wong, ‘‘Systematic
construction of anomaly detection benchmarks from real data,’’ in Proc.
ACM SIGKDD Workshop Outlier Detection Description (ODD), Chicago,
IL, USA, 2013, pp. 16–21.

KIBAE LEE (Graduate Student Member, IEEE)
received the B.S. degree and M.S. degree in ocean
system engineering from Jeju National University,
in 2016 and 2017, respectively, where he is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Ocean System Engineering. His research
interests include machine learning, acoustic signal
processing, and sonar systems.

CHONG HYUN LEE (Member, IEEE) received
the B.S. degree in electronic engineering from
HanyangUniversity, in 1985, theM.S. degree from
Michigan Technological University, in 1987, and
the Ph.D. degree in electronic engineering from
Korea Advanced Institute of Science and Tech-
nology (KAIST), in 2002. He is currently work-
ing as a Professor with the Department of Ocean
System Engineering, Jeju National University. His
research interests include machine learning, sonar

signal processing, and smart RF sensor design.

JONGKIL LEE received the B.S. degree in
mechanical engineering from Pusan National Uni-
versity, in 1984, and the M.S. degree and the
Ph.D. degree in mechanical engineering from The
University of Utah, in 1990 and 1993, respec-
tively. He is currently working as a Professor
with the Department of Mechanical Engineer-
ing Education, Andong National University. His
research interests include underwater acoustics,
noise and vibration, fiber optic sensors, dynamics,

and energy harvesting systems.

VOLUME 9, 2021 142981


