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ABSTRACT Despite the rapid growth of Wireless Local Area Networks (WLANs), the energy con-
sumption caused by wireless communication remains a significant factor in reducing the battery life of
power-constrained wireless devices. To reduce the energy consumption, static and adaptive power saving
mechanisms have been deployed in WLANs. However, some inherent drawbacks and limitations remain.
We have developed the concept of Context-Aware Listen Interval (CALI), in which the wireless network
interface, with the aid of a Machine Learning (ML) classification model, sleeps and awakes based on the
level of network activity of each application. In this paper we develop the power saving modes of CALI.
The experimental results show that CALI consumes up to 75% less power when compared to the currently
deployed power saving mechanism on the latest generation of smartphones, and up to 14% less energy when
compared to Pyles’ et al. SAPSM power saving approach, which also employs an ML classifier.

INDEX TERMS 802.11, energy consumption, power save mode (PSM), NS2, wireless local area
network (WLAN), Wi-Fi.

I. INTRODUCTION
IEEE 802.11Wireless Local Area Networks (WLANs) are in
pervasive deployment, and considered one of themost rapidly
growing technologies in the world [1]. In an infrastructure-
basedWLANs, wireless devices, through aWireless Network
Interface Controller (WNIC), transfer data wirelessly with an
Access Point (AP) [2]. However, energy consumption and
consequently battery depletion of WLAN devices, remains
one of the major issues [3], [4].

To reduce the amount of energy consumed by the WNIC,
a number of power saving approaches have been devised
including Static Power Save Mode (SPSM) [5], Adaptive
PSM (APSM) [9], and Smart Adaptive PSM (SAPSM) [10].
However, several limitations with these approaches have been
reported in the literature [6]–[11].

Unlike other power saving approaches, we have devel-
oped the concept of a Context-Aware Listen Interval (CALI),
where the WNIC, with the aid of a Machine Learning (ML)
classification model, sleeps and awakes based on the level of
network activity of each application.

In this paper, we develop the power saving modes of CALI.
CALI’s power saving modes optimize the sleep and awake
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cycles of theWNIC in accordance with applications’ network
interactivity. The following contributions are reported in this
paper:
• We have created four scenarios of mobile applications’
network traffic based on our previously defined four
CALI power saving modes: Buffering, Dynamic Listen
Interval (DLI), Low, and Awake. These traffic scenarios
reflect the traffic of applications with a diverse set of
network behavior.

• Three sets of energy parameters reported in major pre-
vious studies have been adopted.

• The CALI power saving modes are evaluated by com-
paring the levels of energy consumption with exist-
ing benchmark power saving approaches, including
APSM and SAPSM using the three sets of energy
parameters.

• Simulation results, using the NS2 simulation engine, are
reported observing CALI’s energy consumption while
varying individual energy parameters between the max
and min used in the three parameter sets.

In our previous work [12], we have conducted a com-
prehensive study of classifying smartphone applications’
network traffic and proposed the framework for the context-
aware network traffic classification approach based on ML
classifiers for optimizing WLAN power saving.
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The remainder of this paper is organized as follows:
Section II reviews related work, including deployed power
saving protocols in WLANs. This is followed by a review
of power saving approaches proposed in the literature.
Section III describes the CALI framework, and the experi-
mental setup employed in this study. Experimental results and
their analysis are presented in Section IV. Section V draws
conclusions and identifies future research directions.

II. RELATED WORK
This section reviews the deployed power saving protocols in
WLANs, in particular SPSM and APSM including their com-
parative drawbacks. This is followed by a critical review of
power saving approaches proposed in the scientific literature.

A. REVIEW OF KEY DEPLOYED POWER SAVING
PROTOCOLS
1) STATIC PSM
In the WLAN Infrastructure Basic Service Set (IBSS), the
802.11 standard defines SPSM to reduce the amount of
energy consumed by the WNIC when the wireless devices
are connected to an AP.

The WNIC of a wireless device in SPSM operates in two
modes: awake mode and sleep mode. In the awake mode,
the radio transceiver of a wireless device is on and ready to
receive and transmit consuming significant amount of power.
While in sleep mode, the transceiver is off, meaning that the
wireless device cannot receive or transmit in order to conserve
power [5].

In SPSM, the AP announces the presence of any buffered
packets intended to a wireless device via a Traffic Indication
Map (TIM) in a beacon frame. Thus, the wireless device stays
in sleep mode and periodically wakes up during its listening
interval (multiples of the beacon interval) to listen to the TIM
in the beacon frame. If the TIM does not indicate packets for
the wireless device at AP, the wireless device immediately
goes back into sleep mode to save power.

In the case a TIM indicates the existence of buffered pack-
ets at AP, the wireless device remains awake and generates
the Power Save Poll (PS-Poll) frames to retrieve the buffered
packets from the AP. Upon receiving PS-Poll frames, the AP
transmits the buffered packets to the wireless device, one
packet at a time and receives its corresponding acknowledg-
ment until all buffered packets are received successfully and
the AP finally indicating the existence of no more packets by
setting the value of the More Data field to zero [13], [14].

The SPSM conserves energy by allowing a wireless device
to sleep and waking up periodically. Nevertheless, SPSM suf-
fers from latency issues for the following two reasons: firstly,
when a wireless device generates the PS-Poll frames in order
to retrieve the buffered packets one at a time from AP [6], [7].
Secondly, when a delay of 100-300ms is introduced when
the WNIC is off during the beacon intervals and there are
incoming packets for a wireless device buffered at AP [8].
These issues impact on the performance of both, real-time

applications such as VoIP and interactive applications such
as web browsers.

2) ADAPTIVE PSM
APSM has been deployed within the most recent genera-
tion of mobile devices to overcome the delay of the WNIC
being off during the beacon interval and the delay caused by
the PS-Poll frames. In APSM, a wireless device adaptively
switches between sleep and awake mode depending on the
network traffic [9]. In APSM, by default, a wireless device
remains in SPSM [15]. To switch from SPSM mode to the
awake mode, the wireless device notifies the AP by sending
a null data frame with the power management bit set to
zero. When the AP receives the null frame, it stops buffering
packets for the wireless device. To switch back into SPSM
mode, the wireless device sends a null data frame with the
power management bit set to one, so that the AP resumes
buffering packets for the wireless device [7], [16].

APSM operates based on a threshold, i.e., ingress and
egress packets between a timer start and expiry are counted.
If the counted packets exceed the threshold, the WNIC
switches to the awake mode. On the other hand, if the counted
packets are below the threshold, the WNIC remains in SPSM
mode [10].

Latency related issues found in SPSM are eliminated in
APSM. However, the WNIC of a wireless device does not
take into consideration the type or the importance of network
traffic, it switches between two modes based on network
activity thresholds alone. This may lead to the WNIC being
switched into awake mode unnecessarily, receiving low pri-
ority traffic consuming energy which could be better used for
more important traffic [7], [10].Moreover, theWNIC remains
in awake mode for an idle timeout period before being fully
switching back to SPSM [11].

B. STATE-OF-THE-ART LITERATURE REVIEW
This subsection reviews a number of key power saving
approaches proposed in the literature.

In [17] He and Yuan propose a time division multiple
access approach based on MAC protocol, called scheduled
PSM. In this approach, the beacon interval is divided into an
equal number of slices by an AP. The slices can be assigned
to a single wireless device or multiple wireless devices. The
TIM was restructured to hold slice assignment information.
Scheduled PSM eliminates channel contention, as each wire-
less device wakes up on its designated time slot to retrieve the
buffered data from the AP, and sleeps during its non-allocated
time slots to save power. This approach conserves energy as
the channel is contention free, but time slots will be wasted
if a wireless device does not wake up at its designated time
slot. Also, this approach suffers from additional delay: data
frames arriving at the current beacon interval will only be
scheduled for transmission to a wireless device in the next
beacon interval. Finally, all the time slots are identical in
size, which may not be appropriate for small frames or light
traffic.
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Opportunistic Power Saving Mode (OPSM) is proposed
in [18]. The application of OPSM is limited to a specific
scenario: wireless devices are engaged in web browsing
to download short files with a short duration of inactivity
or think time in between downloads. The authors of [18]
observed that the throughput share of an individual wireless
device decreases in SPSMwhenmultiple wireless devices are
associated with a single AP and download files simultane-
ously. Therefore, to gain themaximum throughput and reduce
energy consumption, only one wireless device is permitted to
download a file at a time in OPSM. During this time other
wireless devices remain in sleep mode. One additional bit
has been added to the beacon header indicating whether the
AP is currently serving another wireless device. To avoid a
number of wireless devices from initiating a file download
simultaneously on completion of the service of the current
wireless device, wireless devices wait for a random period of
time before initiating their file download.

Rozner et al. [7] introduced a Network Assistant Power
Management solution (NAPman). The authors conducted a
variety of experiments to show that current implementations
of PSM strategies in wireless devices and APs are not effi-
cient due to competing background traffic which increases
the energy consumption of a wireless device and decreases
the network capacity due to unnecessary retransmissions.
To mitigate these issues, NAPman employs virtualization and
an energy-aware scheduling algorithm for AP based on the
First Come First Serve (FCFS) policy that applies only to
packets of wireless devices that are awake at a given time.
By leveraging AP virtualization, contention among wireless
devices is mitigated, as several virtual APs from one physical
AP are created. Each wireless device is connected to its own
dedicated copy of a virtual AP. As NAPman relies on virtual-
ization, one physical AP can only support a limited number
of virtual APs. This causes disruption when the number of
assigned wireless devices to virtual AP exceeds the threshold
limit.

In [19] Omori et al. present a power saving approach
that utilizes Network Allocation Vector (NAV) periods set
by the Request to Send (RTS) and Clear to Send (CTS)
handshake mechanism. The proposed approach allows other
wireless devices to sleep when they overhear the CTS or RTS
during the NAV duration. Moreover, the NAV duration is
extended which allows multiple bidirectional burst transmis-
sion between a device and an AP. In their previous work [20]
the authors of this approach utilized NAV duration by allow-
ing the burst transmission in an unidirectional manner for
incoming packets from AP only.

Studies [8] and [21] explore conserving power by utilizing
multiple radios of wireless devices. Authors of [8] introduced
Bluesaver, which employs Bluetooth and WiFi combined at
an AP and wireless device. The wireless device switches
between WiFi and Bluetooth radios. The wireless device
receives and sends packets over Bluetooth when it is within
range of the Bluetooth radio of the AP. When a higher data
rate is required or a wireless device is out of range of the

Bluetooth radio of the AP, it switches toWiFi radio. However,
this approach requires an additional Bluetooth adaptor at
the AP.

Zhang and Li [21] developed a WiFi-ZigBee message
delivery scheme, which delegates some of WiFi operations to
ZigBee radio. In this case, the WiFi radio of a wireless device
is turned off, and instead, low power ZigBee radio is utilized
to discover the presence of WiFi networks. It then listens to
incoming beacon frames from theAP to detect the presence of
any buffered packets intended to a wireless device. However,
the developed scheme in [21] requires an external chipset on
smartphones.

Other researches [22]–[24] focused on decreasing the
radio’s clock rate to conserve energy. SloMo [22] proposed a
transceiver that enables a wireless device to operate at a lower
clock rate during transmitting and receiving. E-Mili [23]
allows the WNIC to operate at a lower clock rate during
idle listening and transits to the full clock rate during data
transmission and reception. In [24] the authors proposed
Sampless WiFi, which enables the wireless device to recover
under-sampled packets via multiple transmissions.

Li et al. [25] proposed DLI to reduce the energy con-
sumption caused by unnecessary wakeups. In this scheme,
the listen interval of a wireless device is incremented by 1
each time a wireless device wakes up during its listen inter-
val and finds the presence of no packets buffered at AP.
Moreover, a wireless device reverts its listen interval to 1
when it finds the presence of buffered packets at the AP.
The proposed scheme conserves power in comparison with
SPSM by adjusting longer listen intervals, but an additional
delay will be added if packets of interactive applications are
buffered at an AP during the increased listening interval.

Attempting to eliminate the issues related to APSM,
authors of [10] proposed SAPSM, which is based on cate-
gorizing smartphone applications as either low or high pri-
ority apps using an ML classifier. Consequently, the traffic
of applications, which have been tagged as high priority,
switches the WNIC into awake mode. Conversely, network
traffic of low priority applications keeps the WNIC in SPSM
conserving energy. To train the ML classifier and set appli-
cations’ priority, a study was conducted. In this study, par-
ticipants interacted with a range of applications that have
diverse levels of network interactions. Initially, all applica-
tions are configured with SPSM, and based on the partici-
pants’ experience with the selected application, the priority
of each application was determined. The priority is set to
high if the observed delay by a participant is unacceptable.
In contrast, it is set to low if the observed delay has not
impacted the participants’ experience. The Support Vector
Machine (SVM) classification model that was used in the
study has achieved an accuracy of 88.1%.

However, no additional priority levels or modes have been
proposed for this approach to cater for applications with,
for instance, very low levels of background interactivity or
applications using buffer streaming. Instead, the approach
operates the WNIC in SPSM for all low priority applications.
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Li et al. [26] introduced a similar approach to SAPSM,
which is also based on prioritizing smartphone applications
into low and high priorities. Authors of this approach con-
ducted measurements of smartphone applications’ usage.
Based on these measurement results, two features that reflect
network interactivity: the receiving rate and the screen touch
rate were extracted. Finally, based on these two features,
a prioritization scheme that classifies applications’ network
traffic into low or high priorities was presented. For high
priority applications the network traffic will be operating in
the awakemode, and for low priority applications the network
traffic will remain operating in SPSM. The proposed scheme
in [26] was only evaluated against a user study. Moreover,
no further priority or mode was considered for applications
that are capable to operate with extended periods of WNIC
listening intervals.

III. FRAMEWORK AND EXPERIMENTAL SETUP
A. FRAMEWORK
1) CONTEXT-AWARE LISTEN INTERVAL (CALI)
Unlike other power saving approaches reported in the liter-
ature, CALI proposes the concept of a context-aware listen
interval, where the WNIC, with the aid of an ML classifica-
tion model, sleeps and awakes based on the level of network
activity of each application.

In ML, classification is defined as a learning method that
maps or classifies instances to corresponding class labels
which were predetermined in a given dataset. According to
Han et al. [27] data classification is a two-step process; the
first step is learning, where a classification model is built
from a given dataset, the data from which a classification
model is learned called a training set. The second step is the
classification, where amodel is used to predict class labels for
previously unseen data. The dataset, which is used to test the
classifying accuracy of the learnedmodel is called the test set.

We have constructed a real-world dataset based on the net-
work traffic of nine smartphone applications, which reflects
a diverse array of network behavior and interaction. For high
levels of network interactivity, both Google Hangouts and
Skype audio and video calls were selected. For traffic with
intermittent interactions, Gmail and Facebook were chosen.
For applications with the lowest level of interactions New
Star Soccer (NSS) and New Star Cricket (NSC) were con-
sidered. Network interactions of these applications mostly
occur during fetching advertisements. For the network traffic
that reflects applications with audio buffering capabilities,
the XiiaLive internet radio application was employed.

All applications were downloaded through Google Play,
including the Network Log application, which was used to
capture the network traffic and to extract the set of six
input features form the network activities of each applica-
tion. These features are: 1- receiving data rate in Kbytes/sec,
2- transmitting data rate in Kbytes/sec, 3- total received
Kbytes, 4- total transmitted Kbytes, 5- total number of
received packets, and 6- total number of transmitted packets.

These features are statistical-based and unique for spe-
cific types of applications. Additionally, inspection into the
packet content is not required to extract these features, hence
statistical features have low computational overhead and
are applicable for both encrypted and unencrypted traffic
[28], [29]. Moreover, these features reflect the applications’
network interactivity better than non-network features like
touch screen rate, as regularly touching the screen, does not
always mean that network traffic is occurring. For instance,
video games are highly interactive in terms of user and
screen, but practically non-interactive in terms of network
interaction.

We have manually labeled instances of the nine applica-
tions according to the levels of traffic interactivity in the
background of each application. Fig. 1 shows the receiving
data rate in Kbytes/sec of the first 50 instances which reflect
varying levels of network interaction.

Fig. 2 illustrates the flowchart of CALI, where instances
of real-time network traffic of each application were cap-
tured, and then manually labeled to the right output or class.
We have labeled all instances of applications with a high
level of interaction as high, instances of applications with
an intermittent level of interaction were labeled as varied,
whereas instances of applications with the lowest level of
interaction were labeled as low. Finally, instances of audio
streaming application with buffering capability were labeled
to buffering.

After labeling the input samples of the captured traffic of
each application, an ML classifier learns to map the input
features of each sample to an output class from the training
set, constructing an ML classification model.

The next step is the classification, where an ML classifica-
tionmodel is used to predict class labels for previously unseen
data. Test set is used to test the classifying accuracy of the
learned model.

In [12] we have employed eight commonly used ML clas-
sifiers to classify the traffic of the nine applications using
the WEKA data mining tool [30]. The applied ML classifiers
were: Multilayer Perceptron (MLP), Naïve Bayes, Decision
Tree C4.5, SVM, Bayes Net, Radial Basis Function (RBF),
Random Forest, and K-nearest neighbor (KNN). To vali-
date the accuracy of each ML classifier in mapping the
inputs to the correct output class 10-fold cross-validation
was employed. Results in our previous paper [12] showed
that more than 99% of accuracy can be achieved with these
algorithms and indicated that ML classifiers can be usefully
applied for classifying smartphone applications’ network
traffic based on different levels of interaction.

2) CALI POWER SAVING MODES
In order to optimize the sleep and awake cycles of the
WNIC in accordance with the applications’ network activity,
we have defined four CALI power saving modes. These
power saving modes enable additional power saving oppor-
tunities and have been devised based on the classified out-
put traffic of the captured samples from a varied range of
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FIGURE 1. Arrays of network behaviour characterized by levels of traffic interaction.

FIGURE 2. Context-aware listen interval.

smartphone applications’ network traffic that reflect a diverse
array of network behaviour and interactions. Hence, the ML
classification model classifies the new unseen samples into
one of the classes, and the WNIC will be adjusted to operate
into one of CALI power saving modes. Moreover, CALI

handles applications, which it cannot map to one of the four
modes by reverting theWNIC to operate in SPSMmode. That
means, the worst possible performance is that of SPSM, but
if one of the four modes applies, a significant performance
improvement with respect to power saving is achieved.
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a: AWAKE MODE
When the ML classification model classifies the new unseen
samples of highly interactive applications to the output class
high. Consequently, the WNIC is set to operate in awake
mode.

b: DLI MODE
The ML classification model classifies the traffic samples of
applications with varied levels of interactivity to the output
class varied. The WNIC will be adjusted to operate in DLI
mode. We have considered employing the DLI methodology
introduced in [25]. So, the listen interval is incremented by 1
at each time a wireless device wakes up during the listen
interval and finds no packets buffered at the AP. The listen
interval reverts back to 1 when interactions occur. To prevent
the listen interval from growing excessively we set an upper
bound of 10 = 1000ms for the listen interval. Applications
such as Gmail and Facebook have intermittent network inter-
actions and do not always receive data. Therefore, assigning
the background traffic of these applications to the awake
mode would not be efficient.

c: LOW MODE
The ML classification model classifies the traffic of applica-
tions with the lowest level of interactions to the output class
low. Consequently, the WNIC will be switched to operate
on low mode, with an extended value of the listen interval.
This is beneficial as network interactions of these applications
mostly occur during fetching advertisements.

d: BUFFERING MODE
The ML classification model classifies samples of audio
streaming applications with buffering capability to the output
class buffering. The WNIC will be set to operate in buffer-
ing mode. The buffering mode was defined for applications
that allow users to stream audio over the Internet, according
to [31] these applications are capable to buffer several sec-
onds of audio stream. For such applications, switching off
the WINC for short periods of time does not impact on the
playback streaming quality.

B. EXPERIMENTAL SETUP
Due to a rapid revolution of wireless technology, new
enhancements are required to be tested and analyzed in a
rapid and cost-effective manner. Analytical modeling, real
deployment, and simulation are the most commonly used
methods in communication networks for evaluating the per-
formance of a proposed system or framework [32]. Analytical
methods are based on simplified models, on the other hand,
real deployment is complex, costly, and time-consuming.
Alternatively, simulation allows network scenarios to be eas-
ily built, modified, and analyzed. Simulation allows parame-
terization, in which a system could be modeled with any level
of detail required [32], [33].

Consequently, for our experimentation we have used the
network simulator NS2 [34]. NS2 has been widely used
to measure performance parameters in wired and wireless
networks. To support the power management functions in
WLAN, we used the NS2 extension proposed in [35], which
has been applied in several studies including [36] and [37].
This NS2 extension provides PSM mechanisms, such as the
PS-Poll, AP buffer, and TIM. Furthermore, it includes an
energy model which uses four energy parameters: txPower,
rxPower, idlePower, and sleepPower. During the experimen-
tation we adjusted the listen interval of CALI based on the
type of application’s network traffic.

To experiment with the four CALI power saving
modes, we configured four corresponding traffic scenarios
(Buffering, DLI, Low, and Awake) using a Tcl script.

The buffering scenario uses traffic from the XiiaLive inter-
net radio application using a random station with a 128kbps
stream.

For the DLI scenario, the traffic of 30 emails in Gmail
and receiving 30 Facebook posts at random intervals was
employed.

For the low scenario, NSS was run several times.
We observed that the duration of one game is about
110 seconds, after that time an advertisement will be loaded.

Finally, for the awake scenario, traffic of 10min Skype
video call was used.

As smartphones’ applications spend longer in receiving
packets than transmitting, the downlink receiving traffic has
been considered in our simulation. From the dataset, we have
used the following features as inputs to configure the four
corresponding traffic scenarios of CALI power savingmodes:
1- receiving data rates, 2- number of received bytes, and
3- number of received packets. The simulation environment
is based on Ubuntu 10.04.4 LTS with a simulation duration
of 600 seconds and initial energy of 1000 J.

To explore the behavior of the CALI power saving modes,
three sets of energy parameters reported in major previous
studies have been adopted. Each set consists of 6 energy
parameters; Set 1 has beenwidely employed in studies includ-
ing [25], [38], [39]. Set 2 reflects the energy parameters
of Wavelan WNIC [5], [40], whereas Set 3 reflects the
energy parameters of Intel WNIC [41], [42]. The six parame-
ters are:
txPower: the power consumption during packet
transmission.
rxPower: the power consumption during packet reception.
idlePower: the power consumptionwhen aWNIC is awake
and not transmitting or receiving packets.
transitionPower: the power consumption when a WNIC
transits from the sleep to idle state and vice versa. Thismust
be twice of idelPower [38].
transitionTime: The amount of time required when a
WNIC transits from sleep to idle state and vice versa.
sleepPower: The power consumption when a WNIC is in
sleep state.
The three sets of energy parameters are shown in Table 1.
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TABLE 1. Sets of energy parameters.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
This section evaluates the performance of CALI power saving
modes by comparing the levels of energy consumption of
CALI with existing power saving approaches. We selected
APSM as the most current approach deployed in smartphones
and SAPSM as a recent technique also employing ML.

Fig. 3 shows the energy consumption of CALI, SAPSM,
and APSM in buffering mode for the 3 sets of energy param-
eters. We set the listen interval of CALI to 10 = 1000ms.
The listen interval value has been determined to not affect
audio quality in several experiments with the audio streaming
application XiiaLive. We found that the added delay did not
impact the playback streaming quality as was also noted
in [10] and [31]. For all 3 sets of energy parameters, CALI
consumes less energy in comparison to SAPSM and APSM.
In Set 2, CALI consumes 14.14% less energy compared to
SAPSM and 75.89% when compared with APSM. For all
3 sets of energy parameters, APSM consumes more energy
in comparison to SAPSM and CALI. This is due to the
behavior of APSM with this type of traffic, as the WNIC
remains awake and always on. When the values of rxPower
and idlePower increased in Set 2, more power was consumed
using APSM compared to Set 1 and Set 3.

FIGURE 3. Comparison of CALI, SAPSM, and APSM in buffering mode
against the 3 sets of energy parameters.

Figs. 4 to 6 show the levels of energy consumption of
CALI, SAPSM, and APSM in DLI mode for the 3 sets
of energy parameters. Recall that for DLI mode, the listen
interval of a wireless device is incremented by 1 at each
time a wireless device wakes up during its listen interval and
does not find any packets buffered at the AP, and reverting

to 1 when interactions occur. We adjusted the listen interval
of CALI to 2,4,6,8, and 10, for applications with varied
levels of network activity (Gmail and Facebook), as these
applications have intermittent network interactions and not
always receive data. Based on 30 emails and 30 Facebook
posts, CALI consumes less energy in comparison to SAPSM
and APSM for all 3 sets of energy parameters. Fig. 5 shows
CALI consumes 8.58% to 14.37% less energy compared to
SAPSM when the listen interval is set to between 2 and 10.
This increases to between 44.48% and 48.00% less energy
in comparison with APSM. In contrast, APSM consumes
more energy than SAPSM and CALI in all 3 sets of energy
parameters.

Although these applications run in the background non-
interactively and do not always receive data, SPSM could add
an approximate delay of 100-300ms of delay when theWNIC
is off during the beacon intervals, but buffered packets are
available at the AP. This added delay could reach 1000ms in
the case of CALI when the listen interval is increased to 10.

FIGURE 4. Comparison of CALI, SAPSM, and APSM in DLI mode against
set 1 of energy parameters.

FIGURE 5. Comparison of CALI, SAPSM, and APSM in DLI mode against
set 2 of energy parameters.

The levels of energy consumption of CALI, SAPSM, and
APSM in low mode are shown in Fig. 7. For all 3 sets of
energy parameters CALI consumes less energy than SAPSM
and APSM. In the experiments the listen interval of CALI
was set to 20. Besides after the playing time of 110 seconds
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FIGURE 6. Comparison of CALI, SAPSM, and APSM in DLI mode against
set 3 of energy parameters.

FIGURE 7. Comparison of CALI, SAPSM, and APSM in low mode against
the 3 sets of energy parameters.

when the network traffic to load the advertisements occurs,
we also observed a small level of network interaction during
playing time.While small this was sufficient to switch APSM
to awake mode. In Set 2, CALI consumes 14.39% less energy
compared to SAPSM and 41.83% when compared to APSM.

FIGURE 8. Comparison of CALI, SAPSM, and APSM in awake mode
against the 3 sets of energy parameters.

Fig. 8 shows the levels of energy consumption of CALI,
SAPSM, and APSM in awake mode for the 3 sets of energy
parameters. As awake mode reflects applications with higher

levels of network traffic, the WNIC is always on. Therefore,
in all 3 sets of energy parameters, the levels of energy con-
sumption of CALI, SAPSM, and APSM are identical.

Further investigation was carried out observing the behav-
ior of CALI, as we varied the values of individual energy
parameters between their max and min across the three sets.
We chose each individual energy parameter and gradually
increased its value from the minimum as in Set 1 to match
the max value as in Set 2. The values for the other energy
parameters were kept unchanged.

Figs. 9 to 13 show the energy consumption of CALI in
buffering mode as the value of the individual power parame-
ters were varied.

FIGURE 9. Levels of energy consumption of CALI in buffering mode
against the value variations of txPower energy parameter.

Fig. 9 shows the energy consumption of CALI in buffer-
ing mode for changing values of txPower 1.4W (Set 1),
to 1.675W (Set 2). In this context, txPower reflects the energy
consumption of the acknowledgment packets sent by the
wireless device to an AP upon receiving the destined packets.

FIGURE 10. Levels of energy consumption of CALI in buffering mode
against the value variations of rxPower energy parameter.

Fig. 10 illustrates levels of energy consumption of CALI
in buffering mode when incrementing rxPower from 0.9W
(Set 1), to 1.425W (Set 2). rxPower reflects the energy con-
sumption of the wireless device while receiving packets from
an AP.
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As mentioned before, the value of transitionPower must
be twice of idelPower. Therefore, we have incremented the
values of transitionPower along with the value of idelPower.
Levels of energy consumption of CALI in buffering mode
when incrementing transitionPower and idelPower from val-
ues in Set 1 to values in Set 2 are shown in Fig. 11.

The transitionTime value identical in all 3 sets of 0.002s.
In order to further analyze its impact on energy consumption,
we have varied transitionTime between 0.005s and 0.0008s.
The impact of increasing and decreasing the transitionTime
on energy consumption of CALI in buffering mode is shown
in Fig. 12.

FIGURE 11. Levels of energy consumption of CALI in buffering mode
against the value variations of idelPower and transitionPower energy
parameters.

FIGURE 12. Levels of energy consumption of CALI in buffering mode
against the value variations of transitionTime.

Fig. 13 shows levels of energy consumption of CALI in
buffering mode while increasing sleepPower from 0.06W
(Set 1), to 0.177W (Set 2). As can be expected, we observe
that the value of sleepPower parameter has a major impact on
the levels of energy consumption of CALI in comparison to
the other energy parameters.

Fig. 14 shows the levels of energy consumption of CALI,
SAPSM, and APSM in buffering mode when increasing
sleepPower from 0.06W (Set 1), to 0.177W (Set 2). CALI
consumes less energy than SAPSM and APSM. The power

FIGURE 13. Levels of energy consumption of CALI in buffering mode
against the value variations of sleepPower energy parameter.

FIGURE 14. Levels of energy consumption of CALI, SAPSM, and APSM in
buffering mode against the value variations of sleepPower energy
parameter.

consumption of APSM remains static, as the WNIC remains
awake and thus the value of sleepPower has no impact on
energy consumption.

V. CONCLUSION AND FUTURE WORK
Regardless of the rapid growth and popularity of WLANs,
the energy consumed by WNIC during wireless communica-
tion remains crucial to power-constrained wireless devices.
To reduce the amount of energy consumed by WNIC, SPSM
and APSM have been deployed inWLANs. However, several
limitations with these approaches have been reported in the
literature. Attempting to address some of these limitations,
authors of [10] proposed SAPSM. SAPSM is based on cate-
gorizing smartphone applications into low and high priority
apps using an ML classifier. However, no additional prior-
ity or mode has been proposed, e.g., for applications with
very low levels of network interactivity or applications using
buffer streaming.

Unlike other power saving approaches reported in the lit-
erature, our approach is based on the concept of context-
aware listen interval. With this approach, the WNIC, with the
aid of an ML classification model, sleeps and awakes based
on the level of network activity of each application. In this
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paper, we have developed the four power saving modes of
CALI using experimentation employing the NS2 simulator.
The simulation results have demonstrated their efficacy in
substantially reducing energy consumption.

Our approach relies on an ML classification model to
optimize energy efficiency of power-constrained wireless
devices. Therefore, the computational cost of training and
testing the ML classifier is crucial [43], [44]. In [12] we have
demonstrated high accuracy and low computational cost for
building a classification model. Clearly, this is a one-off cost
during deployment. Additionally, the cost of our approach at
runtime is minimal as the WNIC simply operates in one of
the CALI power saving modes, once the classification of the
traffic is completed.

In future work, we envision to implement our approach in
a smartphone testbed.
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