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ABSTRACT Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the
growth and production stages of corn. In order to address this problem, this paper proposes amethod based on
K-means clustering and an improved deep learning model for accurately diagnosing three common diseases
of corn leaves: gray spot, leaf spot, and rust. First, to diagnose three diseases, use the K-means algorithm to
cluster sample images and then feed them into the improved deep learning model. This paper investigates
the impact of various k values (2, 4, 8, 16, 32, and 64) and models (VGG-16, ResNet18, Inception v3,
VGG-19, and the improved deep learning model) on corn disease diagnosis. The experiment results indicate
that the method has the most significant identification effect on 32-means samples, and the diagnostic recall
of leaf spot, rust, and gray spot disease is 89.24 %, 100 %, and 90.95 %, respectively. Similarly, VGG-16
and ResNet18 also achieve the best diagnostic results on 32-means samples, and their average diagnostic
accuracy is 84.42% and 83.75%. In addition, Inception v3 (83.05%) and VGG-19 (82.63%) perform best on
the 64-means samples. For the three corn diseases, the approach cited in this paper has an average diagnostic
accuracy of 93%. It has a more significant diagnostic effect than the other four approaches and can be applied
to the agricultural field to protect crops.

INDEX TERMS Corn leaf disease diagnosis, deep learning, transfer Learning, K-means clustering.

I. INTRODUCTION
Corn is currently the highest-yielding food crop around the
world, an important food, and industrial raw material. The
stable and healthy development of corn production plays a
pivotal role in food security, farmers’ income growth, and
the national economy. Corn diseases directly affect its yield
and quality. There are more than a dozen common diseases
in corn, most of which occur in leaves, ears, and roots.
Among them, leaf spots and rust are typical [1]. Leaf spot,
there are oval or rectangular, spindle-shaped lesions on the
leaves, with yellow-brown halos around them, 5-10cm long
and 1.2-1.5 cm wide. In severe cases, several lesions are
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connected, and the leaves die early. Rust disease mainly
occurs in the middle and upper leaves of the plant. At first,
small light-yellow dots scattered or clustered on the front of
the leaf, then protruded and expanded to round to oblong,
yellowish-brown, or brown, and the surrounding epidermis
turned up. Gray leaf spot, also known as corn Cercospora
leaf spot and corn mildew, is a more severe disease. The
initial stage of the disease is light brown spots in the shape
of water stains, which extend parallel to the veins and are
often rectangular. However, the diagnosis of corn diseases has
mainly relied on agricultural exports for field identification.
This method has many shortcomings, such as subjective,
high cost of time and energy, low efficiency, and so on [2].
Therefore, it is vital to be able to accurately and quickly
identify corn leaf diseases.
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With the enhancement of computer data processing capa-
bilities, machine learning technology combined with image
processing is becoming increasingly popular in the intelligent
diagnosis of plant diseases [3]. Many accomplishments have
been made [4]–[10]. Local Gray Gabor Pattern (LGGP) is a
new texture feature that combines local binary pattern (LBP)
and Gabor filter, which was developed by Patil et al. For
soybean leaves infected with the mosaic virus, brown spot,
and pod mottle, the detection efficiency is about 96%, 68%,
and 76%, respectively [11]. Johannes et al. reported an image
processing algorithm that uses candidate hot spot detection
and statistical inference methods to analyze the early symp-
toms of three European epidemic wheat diseases (sepia, rust,
and brown spots) [12]. The above studies are all extract-
ing disease features through manual design. Although good
results have been achieved, they also have disadvantages such
as difficulty in feature extraction, poor adaptability, and weak
anti-interference ability.

This paper proposes a corn leaf disease diagnosis method
based on the K-means clustering and deep learning com-
bination to improve corn leaf disease diagnosis accuracy,
using transfer learning to train the deep learning model and
explore different K values. The proposed CNN model is
compared with classic deep learning models such as VGGNet
and ResNet to study the impact of clustering on diagnosis
results. The purpose of this work can effectively diagnose
three common corn leaf diseases, which can be applied to the
agricultural sector for crop protection.

The main contributions of this work are summarized as
follows: First is to use K-means clustering to segment disease
images. The second is to propose a deep learning model
for corn leaf disease diagnosis, which is improved based on
VGG-19. The third is that our method can be used to classify
and diagnose corn leaf diseases.

The rest of this paper is organized as follows: Section ii
gave the related work. Section iii introduced corn data and
preprocessing methods and proposed a deep learning frame-
work for corn disease diagnosis. Section iv explained the
experimental process and analyzed the experimental results.
Section v summarized the whole work and pointed out the
directions for future work.

II. RELATED WORK
Accurate modeling and finding the most critical factors in
the analysis is one of the required steps in preprocessing
stage [13]. However, the convolutional neural network is
critical for feature extraction [14]. It can automatically extract
image features and has good adaptability to image displace-
ment, scaling, and distortion [15]. Therefore, deep learning
models are applied in the current research because of their
excellent efficacy [16]. Deep learning is rapidly becoming the
standard technology for image classification [17]. It has been
applied to many fields such as medical image recognition,
remote sensing image recognition, autonomous vehicle driv-
ing, and face recognition, text clustering, lunar impact crater
identification, and age estimation, epidemic prevention and

control [18]–[31]. In the field of agriculture, many studies
have been conducted on the classification of plant pests and
diseases [32]–[37], such as tea [38], apple [39], [40], rice [41],
mango [42], cucumber [43], etc.

Saeed et al. [44] proposed an automated crop disease
identification system that was evaluated algorithmically on
tomato, corn and potato crops. They used partial least square
(PLS) regression, fusion and selection of features extracted
by the CNN model, which were then passed to multiple
classifiers to obtain the final recognition. The average accu-
racy achieved by the PLS-based fusion and selection method
is about 90.1%, which not only improves the recognition
accuracy but also reduces the computation time.

Almadhor et al. [45] developed an artificial intelligence
(AI) driven framework to detect and classify the most com-
mon guava plant diseases. They constructed a high-resolution
guava image dataset. Using 1E chromatic image segmen-
tation to isolate guava disease regions, a combination of
color and texture features was applied instead of individual
channels for disease detection and classification and the best
recognition results were obtained on a set of RGB, HSV and
LBP features.

Oyewola et al. [46] proposed a technique to detect cas-
sava mosaic diseases. Both the dataset was expanded and
the cassava disease images were balanced by unique block
processing. Some of the images have low contrast and poor
resolution, they are improved with low contrast using gamma
correction and decorrelation stretching to enhance the color
separation of images with significant band correlation. In this
work, the researchers chose eight performance metrics to
evaluate the proposed model.

Cap et al. [47] proposed a novel suppressor super-
resolution method (LASSR) specifically for the diagnosis of
leaf diseases. LASSR detects and suppresses artifacts to a
large extent and can generate high-resolution images, thus
the performance of automatic diagnosis of plant leaf diseases.
Experiments with this method on five cucumber diseases
showed that training with data generated by LASSR signifi-
cantly improved over 21% on unseen test data sets compared
to baseline.

III. MATERIALS AND METHODS
A. DATA ACQUISITIONS AND PROCESSING
1) DATASET
The corn data set used in this study is from the Crop Disease
Recognition of the 2018 Artificial Intelligence Challenger
Competition (challenger.ai). Three types of corn leaves (gray
spot, rust, leaf spot) were selected for diagnosis. Three hun-
dred images of each disease are chosen, resulting in a total
of 900 disease images. Part of the disease images is illustrated
in FIGURE 1.

2) IMAGE PREPROCESSING USING K-MEANS CLUSTERING
The K-means algorithm is often used in image segmentation.
There is rich color information in the corn leaf disease image,
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FIGURE 1. Corn leaf disease images.

and by observing the disease image, it is found that the back-
ground, disease spots, and uninfected areas have apparent
color differences. Therefore, use the K-means algorithm for
clustering of disease images can remove some noise rea-
sonably and efficiently and facilitate subsequent diagnosis.
FIGURE 2 shows the schematic diagram of the image seg-
mentation process.

FIGURE 2. Image segmentation flowchart.

The K-means clustering algorithm requires a predeter-
mined number of clusters, and each pixel in the image was
divided into various classes, with the number of clusters K
will affect the image clustering effect. In this study, 2-means,
4-means, 8-means, 16-means, 32-means, and 64-means clus-
tering were performed on corn disease images. FIGURE 3
gives the clustering results of different K values.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional Neural Network (CNN) is a neural network,
which is employed to recognize and classify images. It is
one of the representative algorithms of deep learning and has
achieved outstanding results [48], [49]. In identifying plant
species and diseases [50], studies have shown that CNNs can
be more competitive in performance than traditional feature

extraction methods [51], [52]. A typical CNN architecture
mainly includes convolutional layers, pooling layers, and
fully connected (FC) layers, which are described below.

When it comes to CNN, you have to mention the con-
volutional layer, which extracts specific features of images
through convolution kernels of different sizes. After multiple
applications of the convolutional layer, a set of feature maps
of the input image can be extracted. IfHi represent the feature
map of the i-th layer of CNN, which is defined as follows:

Hi = ϕ (Hi−1Wi + bi) (1)

where Hi is the feature map of the current layer, Hi−1 is the
feature map of the network of the previous layer. Wi repre-
sents the weight of the i-th layer, and bi is the bias vector of
the i-th layer and ϕ() represents the convolution function.

The pooling layer is sandwiched between continuous con-
volutional layers and has no parameters. It downsamples the
output of the previous layer, reducing the dimensionality of
each feature map while retaining most of the relevant details.
Through compressing the amount of data and parameters, this
approach avoids overfitting. Assuming that f li represents the
output feature of the i-th local perception in the l-th pooling
layer, then f li can be expressed as follows:

f li = down
(
f l−1i , s

)
(2)

where down() represents the downsampling function, f l−1i is
the feature vector of the previous layer, and s is the pooling
size.

Generally, there will be one or several FC layers between
successively stacked convolutional layers, pooling layers, and
output layers. The purpose of the FC layer is to use the
extracted features to classify images. The Softmax function
is usually used to classify and predict the features extracted
from the previous layer. The definition of Softmax is defined
in Equation 3.

Softmax(zj) =
ezj∑K

k=1 e
zk (j = 1, . . . ,K )

) (3)

Among them, zj is the output value of the i-th node, andK is
the number of output nodes, that is, the number of categories.
Through the Softmax function, the output value of the multi-
category can be converted into a probability distribution in
the range of [0, 1] and the sum is 1.

After the convolutional layer and the FC layer, there will
be a Rectified Linear Units (ReLU) layer using ReLU as the
activation function. In the usual sense, it refers to the ramp
function in mathematics, that is as below.

f (x) = max (0,x) . (4)

In the neural network, the ReLU function is used as the
activation function of the neuron, which is the nonlinear
output result of the neuron after the linear transformation
wT x + b. In other words, for the input vector x from the
previous layer of the neural network into the neuron, the neu-
ron using the ReLU function will outputmax

(
0,wT x+ b

)
to
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FIGURE 3. Examples of K-means clustering.

the next layer of neurons or as the output of the entire neural
network.

It can enhance the nonlinear characteristics of the entire
neural network without changing the convolutional layer or
FC layer itself.

1) VGGNET
Researchers from Oxford University Visual Geometry Group
and Google DeepMind developed VGGNet, which can
perform excellent classification in convolutional neural net-
works. It contains 16 or more convolutional layers, pool-
ing layers, and FC layers. The most prominent feature of
VGGNet is that through the combination and stacking of 3×3
convolution kernels, more small features in the input field are
extracted [53].In FIGURE 4, by constructing and combining
multiple 3×3 convolution kernels, the same calculation effect
as the convolution kernel size of 5 × 5 or 7 × 7 can be
obtained. The continuous small-size convolution kernel has
better nonlinearity than a single larger convolution kernel.
VGGNet divides the network into five parts, comprising
multiple 3 × 3 convolutional networks in series. After the
convolutional layer, there is a maximum pooling layer, then
three FC layers, and a Softmax classification layer. Many
levels of networks are included in VGGNet. The depth of
them varies from 11 to 19 layers. The more usually used ones
are VGG-16 and VGG-19.

FIGURE 5 provides a network structure diagram of
VGG -19; the VGG-19 network contains 19 weight layers,
which are 16 convolutional layers and three FC layers. Input
a 224 × 224 × 3 image. All convolutional layers use 3 × 3
convolution kernels. Every 2 or 4 convolution kernels are
continuously stacked to form a convolution sequence to sim-
ulate a larger receptive field effect. In order to maintain the

FIGURE 4. Use two 3 × 3 convolution kernels instead of 5 × 5 convolution
kernels.

translation invariance of the model, the 2× 2 pooling window
is employed in the pooling layer, which can make the size
of the feature map after convolution smaller. Three contin-
uous FC combines the FC layer, the number of channels is
4096 4 096 1000, and finally classified and output by the
Softmax classifier with 1000 labels.

FIGURE 5. The structure of VGG-19.

2) OTHER CNNS
In addition to Oxford University’s VGGNet [54],
Google’s [55] and Microsoft’s ResNet [56] models are also
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TABLE 1. The parameters of the proposed CNN model.

widely used in image classification tasks. ResNet proposes to
solve the problem of deep network learning degradation by
learning residual F (x) (Equation 5). FIGURE 6 shows the
residual learning unit.

F (x) = H (x)− x (5)

where x is the network input and H (x) is the output.

FIGURE 6. Residual learning unit.

Inception Module is the first to use branching process-
ing of convolution kernels (also called Bottleneck Layer),
as shown inFIGURE 7. It introduces the idea of factorization
into small convolutions, which split a larger two-dimensional
convolution into two smaller convolutions, such as splitting
the 5 × 5 convolution kernels into a 5 × 1 and a 1 × 5
convolutional kernel. This convolutional structure splitting
can handle richer features and increase feature diversity.

C. TRANSFER LEARNING
To get better machine learning results, we use transfer
learning. Specifically, knowledge from one domain (source
domain) is transferred to another domain (target domain).
The ImageNet data set includes approximately 1.2 million

FIGURE 7. Inception module.

images and 1000 categories, whereas the data set obtained
in this study is 900 images and three disease categories.
For comparison, there is insufficient corn disease data to
train a deep network, so transfer learning technology is used.
Without adding data, fine-tune the Inception V3, VGG-16,
ResNet18, and VGG-19 networks: Create and load the weight
pre-trained by ImageNet, and connect a new FC layer.

D. PROPOSED FRAMEWORK
As mentioned above, VGGNet has robust and accurate clas-
sification capabilities. Because the model is highly portable,
it is often used for transfer learning [57].

This paper proposes a corn disease diagnosis CNN model.
It is an improvement over VGG-19, with five convolutional
layers, five maximum pooling layers, two FC layers, and
an output layer with a Softmax classifier. Experiments have
shown that the 0-th, 5-th, 10-th, 19-th, and 28-th layers of the
VGG-19 network have positive effects on feature extraction,
so these five layers are included in the feature extraction part
of the proposed CNN model. FIGURE 8 demonstrates the
complete structure of the proposed model.

Until being fed into the proposed CNN model, the image
is scaled to 224 × 224. The 64 initial convolution kernels
with a size of 3 × 3 are applied to the first convolution
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FIGURE 8. The structure of the proposed model.

layer (convolution-1). After each convolution layer from
convolution-1 to convolution-5 Layer, a 2 × 2 maximum
pooling is connected, with a step size of 2 and padding of
zero. The convolution kernels’ number of convolution-1 to
convolution-4 is 64, 128, 256, and 512 in that sequence. The
amount of convolution kernels continues to grow until convo-
lution 5, where it is already 512. The scale of all convolution
kernels is 3 × 3. The ReLU activation mechanism is used
after each convolutional layer to stimulate the neurons in the
next layer. The final FC layer has three neurons representing
the number of corn leaf diseases, and the result is used as
the input of the Softmax classifier. TABLE 1 displays basic
details about each layer of the CNN model.

The overall architecture of the proposed method is shown
inFIGURE 9, and the plant disease diagnosis method is sum-
marized as follows. To beginwith, use theK-means clustering
method to cluster the images. Then for model training, feed
the sample image into the deep learning network proposed
above, and apply the learned model to the classification pre-
diction of the test set image. Finally, obtain the outcome of
plant disease diagnosis. The preceding procedure is briefly
described in the following steps:
Step 1 Cleaning the Data: Remove duplicate data in dis-

eased images. Because of the unequal distribution of disease
data, 300 images of each disease were chosen randomly for
the experiment.
Step 2 Image Resizing: Change all images to a fixed size

of 224× 224 pixels.
Step 3 Data Split: The disease images are divided into two

parts, train and validation, with a ratio of 8/2. To cluster the
training certificate images, try different K values (2, 4, 8, 16,
32, 64).
Step 4 Model Training and Verification: Refer to the

method proposed, use the training set to train the model,
and employ the validation set to evaluate the model. To thor-
oughly verify the effectiveness of this method, many experi-
ments were repeated.
Step 5 Test:Apply images to verify the effectiveness of the

model, which are not involved in modeling. The output result
is compared to the real label, and the relevant performance
index is computed.

IV. RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
The experimental environment is Ubuntu 16.04 systems
using the Pytorch framework for training, and Python is
selected as the programming language. Computer GPU
memory is 8GB, equipped with Intel(R) Xeon(R) CPUE5-
2628 v3 processor.

In order to prevent model overfitting, we used 5-fold cross-
validation and applied the dropout technique in the network
structure. There are 720 training samples and 180 test samples
for each verification.

B. PERFORMANCE METRICS
Define the confusion matrix

[
Rij
]
, in which each column of

the matrix
[
Rj
]
(i = 1, 2, 3) represents the class prediction

of the sample by the classifier, and each row of the matrix
[Ri] (j = 1, 2, 3) represents the true category to which the
sample belongs. Three general metrics for evaluating the per-
formance of multiclass models can be obtained from the con-
fusion matrix.

The percentage of correctly labeled samples in all classi-
fied samples is known as accuracy. It can reflect the classifi-
cation performance of the model on data. Equation 6 shows
its definition.

accuracy =

∑3
i=1 Rii∑3

i=1
∑3

j=1 Rij
(6)

Equation 7 defines precision, which measures the proba-
bility of correctly predicted samples in all predicted i-type
samples. It denotes the classification effect of the classifier
(check accuracy).

precision =
Rii∑3
j=1 Rij

(7)

The recall is used to measure the probability that the pre-
diction is correct in the instances labeled as i. It can express
the effect of a certain type of recall. The recall calculation
process is described in Equation 8.

recall =
Rii∑3
i=1 Rij

(8)

The f1-score (f1) is calculated by taking the weighted
average of Precision and Recall (Equation 9). In other words,
F1 conveys a balance between Precision andRecall. Although
it is not as intuitive as accuracy, F1 is generally more valuable
than accuracy, mainly when the class distribution is uneven.

f 1 = 2∗
Precision∗Recall
Precision+ Recall

(9)

The receiver operating characteristic curve (ROC curve)
is a graphical tool widely used in classification problems to
evaluate the accuracy of prediction models. It reflects the
relationship between sensitivity and specificity. The X-axis is
specificity, the closer to zero the higher the accuracy; Y-axis
is sensitivity, the larger the y-axis the better the accuracy.

The area under the ROC curve is called AUC (Area Under
Curve), which is used to indicate the prediction accuracy, and
the higher the AUC value, that is, the larger the area under the
curve, the higher the prediction accuracy. The higher the AUC
value, that is, the larger the area under the curve, the higher
the prediction accuracy. The closer the curve is to the upper
left corner (the smaller the X and the larger the Y), the higher
the prediction accuracy.
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FIGURE 9. Corn disease identification flowchart.

FLOPs are used to evaluate the time complexity of the
model, which refers to the number of floating-point opera-
tions performed by the model for a complete forward propa-
gation after inputting a single sample. Lower FLOPs indicate
that the model requires less computation and the network
takes less time to execute.

C. RESULTS AND ANALYSIS
The diagnostic accuracy of the differentmodels in the original
images along with their parameters and FLOPs are recorded
in TABLE 2.

TABLE 2. Performance and parameters of different models.

Compared with other networks, the proposed model has
a simple structure, the number of parameters is 3.34E+09,
and the number of operations is significantly reduced to
1.68E+07, which is second only to ResNet18, and the
accuracy is 88.50%, which is higher than other models.

The proposed model removes some convolutional layers and
reduces the network depth based onVGG-19, which indicates
that it is possible to obtain good classification results even if
fewer feature maps are extracted.

From TABLE 3, for clustering preprocessing of different
K values, the proposed CNN model, VGG-19 and Inception
V3 have achieved the best results on 32-means image data,
whereas VGG-16 and ResNet-18 are on 64-means image
results, and they are inferior to the performance of the orig-
inal images. On clustering data with the same K value,
the proposed CNN model on 4-means, 8-means, 16-means,
32-means, and 64-means ranked first, respectively higher
than the second-place 5.50%, 6.00%, 7.05%, 8.98%, and
5.86%. Similarly, the 2-means has achieved good results in
second place. In addition, the proposed CNNmodel achieved
the best performance in 32-means samples.

According toTABLE 3, the proposed CNNmodel is better
than other models regardless of whether K-means preprocess-
ing is performed, and effective K-means preprocessing will
also bring more accurate diagnoses.

After 50 epochs of training, FIGURE 10 and FIGURE 11
depict the accuracy and loss curves of different models in
training. VGG-16 and VGG-19 converge very quickly, and
the training loss is finally about 0.3, but the accuracy on the
validation set is not satisfactory. In FIGURE 10, the loss
value of ResNet-18 is the largest among several models,
reaching 0.4. After training, the maximum accuracy of our
proposed method on the validation set can reach 96%, and
the minimum loss is 0.27.
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TABLE 3. The accuracy of models on different clustered images.

FIGURE 10. The training loss curves of different models.

FIGURE 11. The accuracy curves of different models.

Since the literature [58]–[61] used the same AI Challenger
data for similar crop disease research, it is comparable to
the method in this article. TABLE 4 records the comparison
results of the method in this article and the methods in the
above four papers.

In the study [58], 61 kinds of crop diseases and insect pests
were classified and identified based on the depth model of

TABLE 4. The comparison of different classification methods.

ResNet50. The authors pre-trained the model, adopted a fine-
tuning strategy and added some levels to complete the task of
crop disease level detection. Using transfer learning technol-
ogy, the detection and recognition accuracy of the final model
is 88.65%, which is lower than the accuracy of the method
in this paper. In [59], a residual dense network-based tomato
leaf disease identification model was proposed. The RDN
from the image supertask was converted into a classification
model by adjusting the model architecture. Part of the AI
Challenger open-source data was used to identify the color
of 9 tomato diseases. The Late Blight Water Mold sample
number was as many as 1536, while the Target Spot Bacteria
only had 74 samples. Although the final model reached 95%
accuracy, the sample was not balanced. The problem did
not give a solution. Ai et al. [60] designed the Inception-
ResNet-v2 network model to identify 27 diseases of 10 crops,
obtained 86.1% accuracy through training the model, and
developed a WeChat applet for plant leaf image recognition.
Like [59], the problem of sample imbalance is not considered,
and the structure is very complicated and the amount of cal-
culation is huge. Xin et al. [61] proposed a multi-scale resid-
ual neural network, using AI Challenger combined with a
self-sampling book to identify 8 types of grape diseases.
Multi-scale ResNet introduces multi-scale convolution to
change the response of the bottom layer of ResNet to different
scale features and uses the added SENet to improve the
feature extraction ability of the network. Experimental results
show that the average recognition accuracy of this method
reaches 90.83%. The above results show that, compared with
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existing related research, themodel proposed in this paper has
a better cost performance and competitive advantage in terms
of the number of parameters and recognition accuracy, and is
more suitable for deployment on devices with low hardware
requirements.

During model training, a single test set may have con-
tingency and randomness. Therefore, in order to verify the
stability and accuracy of the proposed model, the experiment
uses 5-fold cross-validation to evaluate the model. TABLE 5
shows the model performance of each fold.

TABLE 5. Performance of the proposed model in five-fold
cross-validation.

It can be seen from the table that different data divisions
have little influence on the results. The single cross-validation
model predicts that the various indicators are distributed
between 91% and 95%, with small fluctuations. After five
calculations, the precision, recall, and F1 of the proposed
model are finally stable at about 93%. Therefore, it is reliable
to use the average value of the five-fold cross-validation as
the final corn classification performance.

FIGURE 12 shows the classification confusion matrix of
the three corn leaf diseases. Following the definition of statis-
tical parameters related to the confusion matrix, we analyzed
and calculated three statistical parameters from the confusion
matrix, as listed in TABLE 6, to better show the details of the
methods proposed to achieve this diagnosis.

FIGURE 12. Confusion matrix of corn disease detection.

According to TABLE 5 and FIGURE 12, it can be
seen that 52 out of 55 gray spot diseased leaves were

correctly identified, with a recall of 90.95%; 53 out of 62 leaf
spot diseased leaves were correctly identified, with a recall
of 89.24%; All 63 rusty leaves were correctly identified, and
the recall was 100%. This shows that although our method
has achieved good results with the average value of various
evaluation indicators, it has not yet reached the ideal diag-
nosis result in leaf spot diseased leaves. Nearly 17% of leaf
spots were predicted to be gray spots. The reason is that the
symptoms of gray spot and leaf spot are similar and difficult
to distinguish, and some corn leaves have more than one
disease. This is a challenge for the diagnosis of corn leaf
disease.

TABLE 6. Evaluation indicators of diagnosis results.

In this paper, three different types of corn disease ROC
curves are drawn to further evaluate the classification and
diagnosis capabilities of the model. FIGURE 13 is the ROC
curve of the classification results of 3 different types of corn
diseases. The AUC values of gray spot disease, leaf spot
disease, and rust disease are 0.973, 0.972, and 1 and the
average AUC of the proposed model is 0.98. It can be seen
that the proposed method in this paper has good classification
ability for 3 different types of corn leaf disease images.

FIGURE 13. The ROC curves of different types of corn diseases.

Although the method proposed in this article has achieved
certain results in the classification and diagnosis of corn
leaf disease, due to the small experimental samples in this
article, the simple sample background, and the limitations of
experimental conditions, the method proposed in this article
still has many problems that need to be solved in the future.

(1) In this work, our research on corn leaf diseases is based
on a small data set, which contains fewer sample types, and
most of the disease images are obtained under controlled
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conditions, which cannot meet the actual needs for disease
identification. In future research, it is necessary to improve
the disease data set, fully collect disease images under differ-
ent conditions, and at the same time improve the diagnosis
effect of the model in the actual complex environment.

(2) The model proposed in this paper is currently only for
the classification and diagnosis of maize leaf viruses, and
the generalization ability of this model needs to be further
verified. In future research, we will extend to other corn
diseases and even other crops, and study the adaptability of
the model proposed in this article, to further improve the
model in order to achieve satisfactory extrapolation ability.

(3) In addition, although we have proved that image pre-
processing with a suitable K-means clustering algorithm is
helpful for the classification and diagnosis of corn leaf dis-
ease, an exhaustive brute force search is used for the selection
of effective values of K. Future work will be committed to
applying swarm intelligence optimization methods [62]–[65]
to find the most suitable value of K.

V. CONCLUSION
This paper proposes a method based on K-means and an
improved deep learning network to identify corn leaf dis-
eases. K-means clustering algorithm is used in the image
preprocessing stage to perform simple segmentation of dis-
eased images. Compared with images that have not been
pre-processed by clustering, proper K-means clustering can
greatly improve the performance of model classification and
diagnosis. In addition, under the same experimental con-
ditions, compared with the traditional networks VGG-16,
VGG-19, ResNet18, and Inception V3, the proposed deep
learning network structure in this article is simple, reducing
the number of parameters and the number of model calcula-
tions, and at the same time, it has higher performance than
other models. Therefore, the proposed method is suitable
for deployment on a disease recognition platform with low
hardware conditions.
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