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ABSTRACT Monte Carlo Tree Search (MCTS) algorithms show outstanding strengths in decision-making
problems such as the game of Go. However, MCTS requires significant computing loads to evaluate many
nodes in the decision tree to make a good decision. Parallelizing MCTS node evaluations is challenging
because MCTS is a sequential process that each round of tree traversal depends on the previous node evalua-
tions. In this work, we present SpecMCTS, a new approach for acceleratingMCTS by speculatively traversing
the search tree. Many MCTS applications, such as AlphaGo Zero, use a deep neural network (DNN) model
to evaluate the tree nodes during the search. SpecMCTS uses a pair of DNN models, the speculation model
and the main model. The faster (but less accurate) speculation model accelerates the sequential tree search
while the more accurate main model improves the decision quality. SpecMCTS accelerates MCTS for the
game of Go by up to 2.09× on the NVIDIA T4 GPU. This performance improvement can be translated into
a better decision quality by performing a larger number of tree traversals within the time limit. For a fixed
decision time, SpecMCTS shows stronger gameplay (higher win rate) than the original sequential MCTS
and state-of-the-art MCTS parallelization approaches.

INDEX TERMS Monte Carlo Tree Search (MCTS), deep neural networks (DNNs), speculation, reinforce-
ment learning.

I. INTRODUCTION
Monte Carlo Tree Search (MCTS) demonstrated its effective-
ness in complex control domains that require future planning,
such as video games [1] and the game of Go [2]–[4]. MCTS is
typically applied to a Markov decision process setting where
an agent (e.g., an AI game player or an autonomous driving
program) makes decisions in the target environment based on
the current state. InMCTS, an agent ‘‘looks ahead’’ the future
scenarios by traversing the search tree. In the search tree,
each node corresponds to a state and edges represent actions
performed by the agent from the state. After performing the
look-ahead tree traversal many times, the agent selects the
best action predicted by the tree traversal.

For a complex decision-making process, exploring the
entire tree is infeasible. For example, in Go, the search tree
represents eachmove of the black or thewhite stone on theGo
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board that has 19 × 19 possible move positions and a game
episode typically consists ofmore than 200moves. Therefore,
the key objective of an MCTS algorithm is guiding the tree
traversal (i.e., narrowing the search tree) so that the agent
can selectively visit more important nodes to make a good
decision.

To select the next child to visit in the search tree, MCTS
algorithms, such as the upper confidence bound for trees
(UCT) [5], evaluate each node (details in Sec. II). Evaluating
a node state can be done by Monte-Carlo rollouts, which
sample a possible outcome from the state by ‘‘playing’’ or
‘‘simulating’’ the state using the environment simulator for a
certain period (or until the end of an episode). Each step of
actions performed by the agent during the rollout simulations
is usually determined using simplified computations than
the MCTS itself, such as random actions or a small neural
network (e.g., the original AlphaGo [2]). Although the rollout
simulations require considerable computing loads, a node
evaluation obtained through the rollout is just a sample of
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the estimated outcome. AlphaGo Zero improves upon the
original AlphaGo by eliminating such Monte-Carlo rollouts.
Instead, in AlphaGo Zero, a node is evaluated using a deep
neural network (DNN). The DNN model for the tree node
evaluation is trained using human-generated datasets from
professional players or datasets generated through self-play
between the reinforcement learning agents without human
knowledge.

Regardless of the node evaluation method (whether it
is based on Monte-Carlo rollout simulations or calculated
using DNNs) the dominant computing loads of MCTS come
from those node evaluations, rather than the tree traversing.
Therefore, to accelerate MCTS, either the time for a node
evaluation has to be shortened or multiple nodes have to
be evaluated in parallel. Reducing the node evaluation time
through approximation may result in poor decision results.
Parallelizing the node evaluations is not a trivial problem
because MCTS is inherently sequential. During the search
process usingMCTS, each tree traversal depends on previous
node evaluations.

There were many attempts to parallelize the MCTS pro-
cess [6]–[8], but most of the parallelization approaches result
in decision quality degradation. To evaluate multiple nodes
in parallel, the MCTS algorithm may end up including less
important nodes in the evaluation process as well.

In this work, we present a new MCTS acceleration
approach, called SpecMCTS, that balances the performance
and decision quality. SpecMCTS targets MCTS applications
that use a DNN model to evaluate a state, such as AlphaGo
Zero. SpecMCTS accelerates the search process by using a
pair of DNN models: the speculation model and the main
model. These models are trained for the same objective func-
tions, but they use different DNN configurations to be used
as different roles during the tree traversal.

The speculation model is a smaller, but a faster model
that approximates the node evaluation results to quickly
guide the next tree traversal. The main model is a full-size
DNN model that aims for higher accuracy. When evaluating
a node, SpecMCTS schedules the inference computations
for both DNN models at the same time. As soon as the
speculation model completes, the agent starts the next tree
traversal based on the approximated (i.e., speculated) node
evaluation. Although the speculation model may result in
less accurate node evaluations, the resulting decision quality
is better than the previous state-of-the-art for MCTS accel-
eration. The main model is processed in a separate thread
while the MCTS agent is advancing the search process ahead
using the speculationmodel. Once themainmodel completes,
the updated node evaluations are reflected in the search tree.
After the update, subsequent tree traversals are guided by the
more accurate node evaluations.

Many modern GPUs or neural processing units (NPUs)
achieve higher throughput with larger computation batches
or parallel execution of multiple threads [9], [10]. The orig-
inal MCTS that performs one node evaluation at a time
(i.e., sequential MCTS) under-utilizes such GPU or NPU

FIGURE 1. MCTS tree traversal phases.

platforms. SpecMCTS exploits the computational capacity of
GPUs by executing multiple inference tasks concurrently.

In this paper, we evaluate the performance and the decision
quality of SpecMCTS for the game of Go. Compared to the
sequential MCTS, SpecMCTS accelerates the tree traversal
process by up to 2.07× on the NVIDIA Tesla T4 GPU.
When the MCTS players are limited to a fixed decision
time, SpecMCTS can result in a higher win rate compared
to the sequential MCTS and the previous state-of-the-arts for
MCTS acceleration.

II. BACKGROUND: MCTS IN AlphaGo ZERO
To determine the next action, the MCTS search executes
multiple rounds of tree traversals (i.e., looking ahead the
future action sequences). Each node s in the search tree has
outgoing edges (s,a) for each of the possible actions. In a
board game like Go where two players alternately perform
actions, each level in the search tree represents the alternating
player’s actions. During MCTS, the agent also predicts the
opponent’s moves (actions) assuming both players are trying
to maximize the possibility to win the game.

In AlphaGo Zero, a node evaluation calculates two statis-
tics: the value v and the policy π . The value is a scalar
value v ∈ {−1,+1} that represents the expected outcome
of the game, where +1 is a win by the black stone and -1 is
a win by the white stone. The policy is a probability dis-
tribution that suggests an action out of the possible moves
(19 × 19 positions of the Go board plus an extra pass action).
An agent may directly use this raw policy output π to
determine the next action without MCTS, but it results in
inferior decision quality than MCTS [3]. The MCTS process
enhances decision quality over the raw policy. Through the
tree traversals, the agent builds more concrete predictions on
future outcomes and strengthens its action planning.

AlphaGo Zero uses a variant of the PUCT algorithm [11]
to guide the search traversal. Each edge in the tree maintains
the following set of statistics: N (s, a), W (s, a), and P(s, a),
where N (s, a) is the visit counts, W (s, a) is the accumulated
state values of all successor nodes that have been explored
through the current node, and P(s, a) is the raw policy π(a).

An MCTS agent repeatedly performs tree traversals, and
each tree traversal consists of the following three phases
(Fig. 1):
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1) Select: The search starts from the current root of the
tree and traverses down the tree. At a node st , the
search process selects the next edge at according to the
statistics stored in the search tree as follows:

at = argmax
a

(Q(st , a)+ U (st , a))

Q(s, a) =
W (s, a)
N (s, a)

U (s, a) = CpuctP(s, a)

√
6bN (s, b)

1+ N (s, a)

Q guides the agent to edges with a high average state
value (exploitation) and U guides the agent to edges
with a high policy probability and a low visit count
(exploration). Cpuct is a constant that determines the
level of exploration.

2) Expand and Evaluate: When the tree traversal
encounters an edge that never visited before, the search
process adds a new successor node (node s7 in Fig. 1)
and evaluates the node. AlphaGo Zero evaluates the
new state through a DNN inference, using the history
of the Go board status as the input to the DNN model.

3) Backup: To incorporate the new node evaluation in
the search tree, the visit counts (N ) and the state value
accumulations (W ) are updated along the reverse path
from the new leaf node to the root.

The tree traversal continues until the agent completes the
requested number of tree traversals or until the expiration of
the decision time limit. After the MCTS finishes, the agent
determines the next action to play. In the evaluation mode
(i.e., when not used for training), AlphaGo Zero selects the
action with the largest visit counts.

III. RELATED WORK
A. PRIOR WORK ON PARALLELIZING MCTS
Evaluating multiple tree nodes in parallel can accelerate the
MCTS process. To select multiple nodes, the basic sequential
MCTS algorithm explained in the previous section has to be
modified. Otherwise, an MCTS agent always traverses the
search tree through the same path and selects the same node
unless a new node evaluation result is reflected in the tree.

Earlier approaches for MCTS parallelization select multi-
ple nodes at the root of the tree search (root parallelization)
or multiple nodes at the leaf level (leaf parallelization) [6],
[12]. However, these simple approaches do not perform well
on a large search space, such as the game of Go.

AlphaGo Zero uses a technique called the virtual loss to
divert the agent to a different path [3]. The virtual loss tem-
porarily evaluates the selected node as having a negative value
that corresponds to a loss of the game. This temporarily added
virtual loss value is reverted after the actual node evaluation is
calculated. Since the virtual loss is applied all edges along the
path to the root, the next tree traversal would be less inclined
to take the same path and more likely to choose a different
node. The virtual loss technique shows better results than the
root parallelization or the leaf parallelization. However, the

decision quality is usually worse than the sequential MCTS
when the same number of tree traversals are executed.

WU-UCT is recently proposed as another variation of the
UCT algorithm for parallel MCTS [8]. WU-UCT uses a
different formula for selecting an edge when traversing the
tree. WU-UCT algorithm considers an extra node statistics
O(s, a) that reflects the number of evaluation threads that are
working on the edge.

B. MCTS ACCELERATION WITHOUT PARALLELIZATION
MCTS acceleration mechanisms that do not use paralleliza-
tion have been studied as well.

MPV-MCTS combines two neural networks of different
sizes [13]. Although the use of two neural networks is similar
to our approach, MPV-MCTS does not parallelize the node
evaluations. MPV-MCTS sequentially evaluates the nodes by
alternatively using the larger and the smaller DNN models
within the time budget.

DS-MCTS reduces the search time by terminat-
ing the search process prematurely based on the uncertainty
of the current state [14]. Such early termination can accelerate
the self-play training process by reducing the average search
time. However, in many decision-making situations, the time
for making a decision is often fixed, and obtaining a higher-
quality decision within the time limit is more important than
completing a single search fast.

IV. LIMITATIONS OF PARALLELIZED MCTS
To provide an intuition why a parallelized MCTS may result
in lower decision quality, we compare the timeline of the
sequentialMCTS and the parallelMCTS in Fig. 2 (a) and (b).
In the figure, the node (state) indices are numbered based
on the order the nodes are selected for the evaluation. For
example, s1 is the first node selected for evaluation and s2
is the second node selected for the evaluation. The evaluation
order is determined by the MCTS tree traversal, and the order
is not the absolute ID of the node. For each MCTS search, sn
may represent different nodes in the search tree.

The white rounded boxes in Fig. 2 represent the MCTS
select phases, and the numbers in the angle brackets represent
the range of the evaluated nodes that were reflected in the tree
statistics at the time of the next node selection. For example,
the third white box of the sequential MCTS (Fig. 2 ¶) depicts
the select phase for choosing the third node (s3) to evaluate.
At this moment, the MCTS tree knows the evaluation results
of the previously selected nodes s1 and s2. Therefore, the node
selection for s3 can bemade upon the knowledge accumulated
up to s2. Fig. 2 ¶ denotes this select phase as ‘‘Select 〈2〉’’.
When parallelizing MCTS, however, each node selection

might not be based on the complete knowledge that covers
all previously selected nodes. In Fig. 2 (b), the select phases
are repeated before the node evaluations to find multiple
nodes for an inference batch. The figure shows an example
where the batch size is three. In this case, a select phase is
forced to make a node choice without knowing the evalua-
tion results of the other nodes in the same inference batch.
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FIGURE 2. Comparison of MCTS tree traversal timelines.

When selecting the second batch for inference (Fig. 2 ·), s4,
s5, and s6 are chosen from a tree where the node evaluations
only up to s3 are reflected (i.e., ‘‘Select 〈3〉’’). In the sequen-
tial MCTS, s6 would have been selected on a tree where
s4 and s5 evaluations are reflected (i.e., ‘‘Select 〈5〉’’). There-
fore, the quality of the node selections by the parallel MCTS
could be inferior to that of the sequential MCTS.

More seriously, this sub-optimality accumulates as the tree
traversal continues. If the previous inference batch contained
less important nodes, the subsequent node selections are
made upon the less valuable information. This chain of sub-
optimal selections continues until the end of the game episode
since the MCTS agent does not discard the search tree after
deciding an action. The search tree with accumulated node
evaluation statistics is reused for selecting the next move.

V. SPECULATIVE TREE TRAVERSAL BY SpecMCTS
A. SpecMCTS OVERVIEW
SpecMCTS accelerates MCTS while complying with the
sequential nature of the tree traversal. Using two sepa-
rate DNN models, SpecMCTS decouples the sequential tree
traversal from the accurate node evaluations that require
longer computation time. The agent traverses the tree similar
to the sequential MCTS, but based on the approximated
node evaluations (π̂ and v̂) obtained using the speculation
model (f̂ ).

Since π̂ and v̂ are less accurate than the outputs from the
mainmodel (f ), the selected nodes are concurrently evaluated
using the main model as well. When the slower main model

finishes the more accurate node evaluations (i.e., π and v), the
differences are corrected in the tree statistics. Similar to the
backup phase in the sequential MCTS, the updates are also
applied to the nodes along the reverse path to the root node.

The main model inferences happen in different threads
using separate GPU streams. Therefore, the long inference
time of the main model does not become a direct bottleneck
for the tree traversal as long as the computation platform
has enough capacity to perform multiple inferences simul-
taneously. On a platform with a limited computing capacity,
we may throttle the speculation model execution by checking
the main model inference waiting queue in order to pre-
vent the main model evaluation results from being updated
too late.

Figure 2 (c) shows the timeline of SpecMCTS. The select
phases of SpecMCTS also indicate the range of speculated
node evaluations and main node evaluations reflected in the
search tree. For SpecMCTS, there are two numbers in the
bracket to distinguish the speculated node evaluations from
the node evaluations completed by the main model. ‘‘Select
〈a, b̂〉’’ means that the node evaluations are completed up to
the b-th node using the speculation model. Only the evalua-
tions up to the a-th node have been corrected with the main
model results. Usually, a < b unless the GPU switches the
execution order. We set a higher priority to the GPU stream
for the speculation model.

Figure 3 exemplifies the difference between the paral-
lel MCTS and SpecMCTS by depicting example search
tree instances. Figure 3 corresponds to the search phase in
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FIGURE 3. An example search tree state comparison during MCTS.

between T1 and T2 of Fig. 2. SpecMCTS selects s4 from a tree
where the node evaluations up to s3 are reflected. Although
only node s1 has been corrected with the main model results,
the search process can follow the similar tree traversal as the
sequential MCTS if the speculation model results are close
enough to the mainmodel results. The next node selection, s5,
is made on a tree after the node s4 is evaluated. Also, by this
time, node s2 is also corrected with the main model results.
Similarly, s6 is selected upon a search tree with more node
evaluation results. In contrast, the parallel MCTS selects all
of s4, s5, and s6 from a search tree with node evaluations only
up to s3. Compared to the parallel MCTS, each node selection
by SpecMCTS can be made out of a richer knowledge on the
search tree.

B. SpecMCTS ALGORITHM
Algorithm 1 describes the original MCTS algorithm. The
algorithm traverses the search tree Nt times (line 2). Within
each iteration, the agent performs the Select, Evaluate, and
the Backup steps as depicted in Fig. 1. The Select process
traverses the tree downwards from the root node (sr ) until it
finds a node that has not been expanded (lines 3-5). While
doing so, the agent selects the node with the highest Q + U
value at each level (line 4). The selected node is evaluated
using a DNN inference (line 6) and the node is indicated as
an expanded node (line 7). The obtained value from the node
evaluation is reflected in the tree by traversing upwards to the
root node (lines 8-10). After Nt traversals are finished, the
agent selects the edge (i.e., action) with the most visit count
(line 11).

The modified parts for SpecMCTS are highlighted with
an underline in Algorithm 2. The agent schedules the main
model inference to be computed in the background (line 6)

Algorithm 1 Sequential MCTS
Input: root node sr , main model f , number of traversals Nt

1 st ← sr
2 for {1..Nt}
3 while st is an expanded node F Select
4 at = argmax

a
(Q(st , a)+ U (st , a))

5 st ← child of st on edge at
6 π , v← f (st ) F Evaluate
7 P(st )← π , and mark st as an expanded node. F Expand
8 while st is not sr F Backup
9 at ← edge from the parent of st , and st ← parent of

(st )
10 W (st , at )← W (st , at )+ v, and

N (st , at )← N (st , at )+ 1

11 return argmax
a

(N (sr , a))

and then waits for the results from the faster speculation
model (line 7). Lines 8 and 12 show that the speculated
node evaluations are reflected in the search tree ahead of
the main evaluation results. SpecMCTS has an additional
node statistics V̂ that saves the value calculated by the
speculation model (line 9). V̂ will be used by Algorithm 3
to calculate the difference with the value from the main
model (1v). When the evaluation using the main model
completes, Algorithm 3 corrects the differences in the search
tree.

SpecMCTS resembles the speculative execution in
pipelined microprocessors. While the real outcome of a
branch instruction is being resolved, the processor specu-
latively executes the next instructions based on the branch
predictor’s quick decision. Unlike branch prediction inmicro-
processors, SpecMCTS does not discard the evaluation
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Algorithm 2 SpecMCTS

Input: root node sr , speculation model f̂ , main model f ,
number of traversals Nt

1 st ← sr
2 for {1..Nt}
3 while st is an expanded node F Select
4 at = argmax

a
(Q(st , a)+ U (st , a))

5 st ← child of st on edge at
6 Schedule f (st ) F Asynchronous main

evaluation
7 π̂ , v̂← f̂ (st ) F Speculative evaluation
8 P(st )← π̂ , and mark st as an expanded node. F Expand

9 ˆV (st )← v̂ F Save v̂
10 while st is not sr F Backup
11 at ← edge from the parent of st , and st ← parent of

(st )
12 W (st , at )← W (st , at )+ v̂, and

N (st , at )← N (st , at )+ 1

13 return argmax
a

(N (sr , a))

Algorithm 3 Updating Main Model Results
Input: π and v from f (st ), evaluated node st , root node sr

1 P(st )← π F Replace π̂ with π

2 1v← v− V̂ (st ) F Difference between v̂ and v
3 while st is not sr F Backup delta
4 at ← edge from the parent of st , and st ← parent of (st )
5 W (st , at )← W (st , at )+1v

results of wrongfully selected nodes because those node
evaluations also help to build the knowledge of the current
state.

VI. CONSTRUCTING THE SPECULATION MODELS
The speculation model should be a lightweight model that
closely matches the output of the main model. A spec-
ulation model can be created in many different ways,
such as DNN pruning, quantization, or matrix factorization
[15]–[17]. Although SpecMCTS is compatible with anyDNN
model compression technique, the compression for the spec-
ulation model should be aggressively geared towards having
a faster inference time rather than preserving the inference
accuracy.

In this paper, we construct the speculation models using
two different approaches. One of the approaches is training
a DNN model that has a smaller DNN structure, and the
other is punning a trained network to reduce the inference
time.

A. TRAINING A SMALLER DNN MODEL
Figure 4 depicts AlphaGo Zero’s DNN model. The model
starts with a convolution layer, followed by repeated residual
blocks. Each residual block has two convolution layers
plus a residual addition layer. After repeating the resid-
ual block 19 times, the network diverges into two different

FIGURE 4. The DNN model structure ofAlphaGo Zero.

branches for the value and policy outputs. Each branch has
another convolution layer, followed by fully-connected layers
to produce the outputs.

In this smaller model approach, we change the number of
residual blocks to construct lightweight speculation models.
Instead of the 19 residual blocks in the main model, the
speculation models use 4, 2, or 1 residual blocks. We train
the speculation models using the Knowledge Distillation
technique [18], where the main model acts as the teacher
model.

AlphaGo Zero is originally designed for reinforcement
learning that generates the training data through self-play.
In this work, we did not generate our own dataset to focus
on the performance improvements and the decision quality
differences when SpecMCTS is applied to actual gameplay
situations rather than the training phase. Instead, to train
the speculation model, we used a publicly available training
dataset shared by MiniGo.1 The MiniGo dataset contains
more than a billion training samples obtained through the
self-play procedure.

We trained the speculation models using the same hyper-
parameters used for AlphaGo Zero as follows:

• Optimizer: Stochastic gradient descent (momentum set
to 0.9)

• Learning rate: Start from 10−2, × 1/10 in every 200K
steps.

• Mini-batch size: 2,048
• L2 regularization parameter: c = 10−4

B. PRUNING A TRAINED DNN MODEL
DNN pruning is one of the popular ways to construct a
lightweight model. The pruning approaches can be classified
into filter pruning [19], [20] and weight pruning [15], [21],
[22]. Filter pruning finds less important filters (i.e., channels)
and eliminates the whole filter. In contrast, the granularity
of weight pruning is individual weight values in a filter.
Although weight pruning generally provides better accuracy

1gs://minigo-pub/v13-19× 19/data/
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TABLE 1. Comparison of the main and the speculation models.

with higher compression rates, the obtained performance
improvement may not be as high as the improvement from
filter pruning. To skip individual weight elements, the com-
puting hardware must support such sparse computations.
On GPUs, such computation with sparse filters has lim-
ited support. For example, the tensor cores in the NVIDIA
Ampere architecture support sparse computations, but the
maximum throughput gain is only up to 2×, and the weight
values have to be pruned in a structured way. In this work,
we tested a filter pruning approach called HRank [23] for an
aggressive execution time reduction. HRank selects feature
maps based on their rank to find filters to prune.

C. COMPARISON OF SPECULATION MODEL INFERENCE
TIME
Table 1 compares the characteristics of the main model
and the speculation models. The FLOPs (floating point
operations) count is based on the conventional 2D con-
volution algorithm. The inference latency is measured on
the NVIDIA Tesla T4 GPU using the TensorRT inference
engine [24].

In the smaller model approach, the ratio of layer reduction
is almost analogous to the execution time reduction. When
we reduce the number of residual blocks from 19 to 4, the
inference time is reduced by 4×.

To obtain a similar execution time improvement, the prun-
ing approach has to use a higher compression rate. This is
because we cannot change the number of layers in filter
pruning, and the layers have to be executed sequentially.
For instance, at a similar inference time of around 0.3 ms,
the speculation model with 4 residual blocks and 256 chan-
nels performs 3.53 GFLOPs. On the contrary, the pruned
model with 90 channels can conduct 2.02 GFLOPs of com-
putations only. The difference becomes larger on smaller
models.

Due to this limitation, if both models have a similar infer-
ence latency, the models obtained through the weight pruning
approach may have lower decision quality than the smaller
model trained from scratch. In Section VII-B, we evaluate
one of the speculation models obtained using the pruning
approach and confirmed that its decision quality is lower
than that of the speculation model obtained using the smaller
model approach.

This comparison does not mean that pruning approaches
are worse than the smaller model approach. This result

implies that SpecMCTS is sensitive to the quality and perfor-
mance trade-offs of the speculation model and a wider variety
of approaches to construct the speculation model has to be
evaluated as future work.

VII. EVALUATION
We implemented SpecMCTS on an open-source AlphaGo
Zero replica [25]. During the search process, DNN
inference tasks are performed using NVIDIA TensorRT
(version 7.2.2.3), which is a GPU runtime optimized for DNN
inference [24]. For a better inference performance, all models
are optimized to FP16 computations to utilize the Tensor
Cores in the GPU.

We tested the quality of the MCTS algorithms by perform-
ing many Go game matches between the compared MCTS
algorithms and calculated the win rate. To collect a large
number of game samples (more than 1,000 matches per each
win rate calculations), we utilized Google Cloud Platform’s
Tesla T4 GPU instances.

In this evaluation, we compare the following MCTS con-
figurations:

1) Sequential: The original sequential MCTS.
2) Spec-Ln: SpecMCTS configuration that uses a specu-

lation model with n residual blocks.
3) Spec-Pr: SpecMCTS configuration that uses a specula-

tion model obtained using the filter pruning approach.
We test only a single configuration (channels: 90) for
Spec-Pr.

4) VL-Bn: Parallel MCTS configuration with the virtual
loss technique where n node evaluations form an infer-
ence batch to be computed together.

5) WU-Bn: Parallel MCTS with the batch size of n.
Unlike VL-Bn, the tree traversal is guided by the
WU-UCT algorithm instead of AlphaGo Zero’s PUCT
algorithm.

A. MCTS TIME
Figure 5 compares the execution time of differentMCTS con-
figurations for selecting an action by performing 1,600 tree
traversals. On the T4 GPU (Fig. 5a), the sequential MCTS
takes more than 2.7 seconds to perform 1,600 tree traversals.
The GPU computing resources are under-utilized with the
sequential MCTS.

On the T4 GPU, Spec-L4 reduces the execution time by
1.73× compared to the sequential MCTS. The SpecMCTS
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FIGURE 5. MCTS search time comparison for different MCTS
configurations. Performance gains are indicated in the bar labels.

search time improvement is lower than the execution time
improvement of the speculation model alone. This is because
the speculation model and the main model are executed
on the same GPU in this evaluation. The performance of
SpecMCTS can be improved by using a faster speculation
model. By using smaller speculation models, Spec-L2 and
Spec-L1 increase the performance gain to 2.09× and 2.34×,
respectively.

The performance improvements of VL-Bn configurations
are affected by the inference batch size. On the T4 GPU,
when the batch size is increased from one (Sequential) to
four (VL-B4), the search process is accelerated by 1.71×.
However, the gain diminishes after the batch size is increased
beyond 8. WU-Bn models are not shown in Fig. 5 because
their execution time is almost identical to VL-Bnmodels with
the same batch size.

We also tested the scalability on a larger GPU, NVIDIA
A100 (Fig. 5b). On the A100 GPU, the MCTS time of all
configurations becomes shorter than their MCTS time on the
T4 GPU. However, the relative performance gains of Spec-
Lnmodels over the sequential MCTS do not get better on the
A100 GPU compared to the gains on the T4 GPU. The speed-
up of SpecMCTS is tied to the inference time difference of
the main model and the speculation model. On the contrary,
VL-Bnmodels show a slightly better performance on a larger

GPU. For instance, VL-B4’s performance gain is increased
from 1.71× on Tesla T4 to 1.93× on A100.

We can use a hybrid approach of SpecMCTS and the
virtual loss technique to make the SpecMCTS models have
comparable performance to VL-Bn models on a larger GPU.
Spec-Ln-Bk models use a small degree (k) of parallelism
when the speculation model is evaluating the search tree
nodes. For example, in the Spec-L4-B2 configuration, the
speculation model evaluates two nodes in parallel to schedule
two main model inferences at the same time. This enables the
SpecMCTS models to utilize the higher computing capacity
of a bigger GPU platform. Spec-Ln-B2 models achieve sim-
liar performance gain as VL-Bn models on the A100 GPU.

B. WIN RATE COMPARISON FOR THE SAME NUMBER OF
TREE TRAVERSALS
MCTS acceleration approaches deviate from the sequential
MCTS and result in decision quality degradation for the same
number of tree traversals. Figure 6 compares the win rate of
theMCTS configurations when they play matches against the
sequential MCTS.

For the Spec-Ln configurations, the win rate becomes
lower as the speculation model gets smaller. The win rate of
Spec-L4 agsinst the sequential MCTS is very close to 50.0%,
which means the decision quality is almost not degraded
from the sequential MCTS. The win rate with smaller models
are lower than 50%. For example, when the number of tree
traversal per decision (Nt ) is 100, the win rate of Spec-L1 is
degraded to 32.7%. However, the win rate of SpecMCTS is
higher than the win rate of the VL-Bn configurations with a
similar inference time. VL-B16, which has a similar MCTS
search time as Spec-L1, results in awin rate of 25.6%whenNt
100. Similarly, across allNt , Spec-L4’s win rate is higher than
VL-B4’s win rate, Spec-L2’s win rate is higher than VL-B8’s,
and Spec-L1’s win rate is higher than VL-B16’s.

The win rate gap between the Spec-Ln models and the
VL-Bn models diminishes as Nt increases. When Nt is 100,
Spec-L4 has a 6% higher win rate than VL-B4, but the win
rate of both models are almost similar when Nt is 1,600. The
win rates of both models are close to 50%, meaning that they
have similar decision quality as the sequential MCTS when
Nt is large. A large number of tree traversals can alleviate the
degradation of the node selection quality. An agent needs to
carefully select important nodes (i.e., more probable future
scenarios) for better decision quality. If the decision time is
short, each node selection highly matters. On the contrary,
if the decision time is long, the decision quality is less
sensitive to each node selection since the agent can visit a
sufficient number of important nodes to evaluate. Therefore,
if the decision time gets long enough, the differences between
the MCTS algorithms diminish.

As aforementioned, the speculation model obtained using
filter pruning has lower decision quality than Spec-Ln con-
figurations that have a similar execution time. Spec-Pr, which
has a similar performance as Spec-L4, shows lower win rates
than Spec-L4’s win rates.
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FIGURE 6. Win rate comparison for a fixed number of tree traversals (Nt ).

TABLE 2. Number of tree traversals executed within the fixed decision time limit of 1 second.

In SpecMCTS, the inaccurate node evaluations from the
speculation model are corrected later by the main model.
Without such correction by the main model, the speculation
models alone cannot achieve a good decision quality. The
hatched bars in the lower part of Spec-Ln graphs in Fig. 6
indicate the win rate when the agent only uses the speculation
model without the main model. For instance, when Nt is
1,600, if the speculation model of Spec-L4 is executed alone,
the obtained win rate is only 11.1%.

The WU-Bn models generally show lower win rates.
Please note that in [8], the WU-UCT algorithm is designed
for a different setting where Monte-Carlo rollout simula-
tions are used instead of using a DNN inference for node
evaluations.

C. WIN RATE COMPARISON FOR THE CONSTANT
AMOUNT OF DECISION TIME
Amore realistic scenario of MCTS application is each player
is given a constant amount of time for the decision rather
than fixing the number of tree traversals. In such a case, the
higher performance of MCTS algorithms can be turned into
a better decision quality by performing a larger number of
tree traversals within the time limit. Table 2 lists the number
of tree traversals within the fixed time limit of 1 second.
On Tesla T4, the sequential MCTS can execute only 580 tree
traversals for 1 second of decision time.Within the same time
limit, Spec-Ln and VL-Bn configurations can execute a much
larger number of tree traversals. The number of tree traversals
is decreased proportionally for a shorter decision time.

In Figs. 7 and 8, we evaluate the relative win rate between
the MCTS configurations when the decision time is fixed.

We compare seven MCTS configurations: Sequential, three
Spec-Ln (Spec-Ln-B2 for A100), and three VL-Bn. Unlike
the comparison in Fig. 6, where all MCTS configurations
play matches against the sequential MCTS only, all possi-
ble match configurations (i.e.,

(7
2

)
combinations) are tested,

and the overall win rate is calculated. Therefore, the win
rates in Figs. 7 and 8 represent the relative strengths of the
configurations.

When the decision time is fixed, the sequential MCTS
performs poorly because it can only execute a much smaller
number of tree traversals. For example, in Fig. 7, when the
decision time is 1 second on the T4 GPU, the win rate of the
sequential MCTS is only 37.4%. The win rate of the sequen-
tial MCTS is especially poor on longer decision time because
the sequential MCTS can explore only a small number of
nodes while other configurations can explore enough number
of tree nodes.

On the T4 GPU, the SpecMCTS configurations constantly
show higher win rates than other configurations. Also, in all
time limit cases, the best performing configuration is one of
the SpecMCTS configurations. As discussed in the previous
subsection, SpecMCTS is more effective when a quick deci-
sion is required. On the T4 GPU, when the decision time is
limited to 1/8 of a second, the average win rate of Spec-Ln is
57.1% while the average win rate of VL-Bn is 43.1%.

On the A100 GPU, the SpecMCTS models still exhibit
strong decision quality up to the decision time of 1/2 of a
second. This means that the SpecMCTS approach is scalable
to a platform with a large computing capacity as well if we
employ the hybrid approach (Spec-Ln-Bk). However, when a
decision time of 1 second is allowed, the differences between
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FIGURE 7. Win rate comparison for a fixed decision time limit on the NVIDIA Tesla T4 GPU.

FIGURE 8. Win rate comparison for a fixed decision time limit on the NVIDIA A100 GPU.

the Spec-Ln-B2 and VL-Bn models are not significant, and
some VL-Bn models show a slightly better win rate than
SpecMCTS. As aforementioned, when a longer decision time
is allowed, VL-Bn configurations also overcome the quality
degradation through a large number of tree traversals.

VIII. CONCLUSION
The sequential nature of the MCTS may leave the abundant
computing resources idle. SpecMCTS accelerates the MCTS
process by utilizing a pair of DNN models. The two DNN
models collaborate to accelerate the search process while
reducing the impact on decision quality. The speculation
model guides the MCTS agent to find important nodes to
evaluate while the accurate node evaluations are performed
in the background. Compared to the previous state-of-the-art,
SpecMCTS achieves similar speed-ups while having better
win rates when applied to the game of Go. SpecMCTS is most
effective when each player is limited to a short amount of time
to decide.

The performance and accuracy trade-offs in the specu-
lation model have a significant influence on the decision
quality of SpecMCTS. Future work can improve SpecMCTS
by thoroughly evaluating a wide variety of model compres-
sion techniques to construct the speculation model. Also, the

effectiveness of SpecMCTS in various domains should be
investigated.
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