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ABSTRACT This paper presents a comprehensive hardware accelerator architecture of YOLOv3-Tiny
targeted for low-cost FPGAwith a high frame rate, high accuracy, and low latency. The proposed accelerator
implements all YOLO layers in hardware including zero pad layer, convolution layer, leaky ReLU layer,
batch normalization layer, max-pooling layer, and up-sampling layer. The architecture is built based
on data flow and control flow hybrid architecture. The data preparation and computation process work
asynchronously using the data flow paradigm, while the overall governing process is controlled by proposed
custom instruction set which adopts the principle of control flow paradigm. The principle of General Matrix
Multiplication (GEMM) is adopted to compute the convolution process. We designed a GEMM processor
using an optimum size of systolic array architecture. The systolic core is small and the overall architecture
supports the multicore system, making it scalable to be implemented on larger size FPGAs.We also proposed
a hardware architecture for mapping feature maps into matrix form for GEMM convolution which can
save on-chip memory space. Lastly, we modified the original YOLO algorithm to further optimize it in
our hardware. The modification includes reducing the bit precision to reduce memory space and bandwidth
requirement, merging the normalization layer with the convolution layer to reduce arithmetic complexity, and
adding a newDLQ layer to keep the bit size small while maintaining the accuracy. Based on the experimental
results, our proposed design manages to achieve a frame rate of 8.3 FPS with the throughput of 31.5 GOPS,
outperforming the same convolution computation that is performed by Ryzen 5 3600 CPU up to 69.3×
in latency. Moreover, our proposed design also has the smallest clock cycle ratio up to 1.75× than other
commercial accelerators. The system is useful and suitable for edge computing applications.

INDEX TERMS Accelerator, GEMM, low-cost FPGA, YOLOv3-Tiny.

I. INTRODUCTION
In recent years, the advancement of the Internet of
Things (IoT) and the Artificial Intelligence (AI) technologies
have opened a new type of problems. IoT has created a
new paradigm of connectivity, where every device with an
attached sensor can be connected to the cloud (internet).
Meanwhile, artificial intelligent (AI) has started becoming a
new emerging technology that can be applied in many fields.
AI needs a lot of training data to build an accurate model.
The data can be provided by the IoT applications through the
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sensors that can be used to improve services and products in
industries. This combination does not only lead to the field
of cloud computing, where AI is trained and deployed on
the cloud, but it also raises more concerns as the following
factors [1], [2]:

• Latency: AI is usually implemented in a real-time sys-
tem. In the traditional cloud computing model, deploy-
ing AI on the cloud will introduce additional latency
because the data needs to travel over the internet before
it can be fetched into AI.

• Bandwidth: The increasing number of IoT will result in
more data being generated. Transmitting all of the data
will cause great burden on network bandwidth.
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• Availability: AI cloud services rely on internet
connectivity.

• Security and Privacy: Data generated by IoT might be
considered as private data. Sending data over the internet
makes it vulnerable to data stealing and loss of privacy.

In relation to the above mentioned concerns, people started
to deploy AI directly on the edge device, where the IoT sensor
is placed. This implementation, known as edge computing,
also comes with potential trade-off problem between energy
consumption and computing power. AI needs high computing
power to deliver best results. On the other hand, IoT needs
low energy consumption, which limits the computing power
of the device. To overcome this problem, people started to
develop edge friendly AI algorithm and also developing new
specialized hardware architecture for AI (AI chip). In the
current state of AI, people usually divide the AI process
into training and inference processes [3]. Training the AI is
usually computationally intensive and a lot of precision is
needed, thus the training process is usually done on the cloud.
On the other hand, the inference process, especially in a real-
time application, needs to be done fast (with low latency),
thus this process is usually done on the edge device.

One of the fields, where edge computing can be beneficial,
is computer vision. It includes vehicle counting for traffic
analysis, advanced driver-assistance system (ADAS), and
face recognition system for security purposes. Several meth-
ods exist to implement computer vision solutions, but one of
the most promising solutions came in the year 2012 when
AlexNet won the ImageNet competition by achieving error
of 15.3% [4]. AlexNet used a deep convolutional neural
network which consists of convolutional layers, max-pooling
layers, and fully connected layers. Since then, many solutions
for computer vision problems built on a multi-layer structure
consisting of convolutional layers, max-pooling layers, and
fully connected layers.

In the following years, the solution for computer
vision develops into a network known as Convolu-
tional Neural Network (CNN). Some of the popular net-
works that had been developed are R-CNN [5], Fast
R-CNN [6], and Faster R-CNN [7]. These R-CNN types of
networks work in a similar approach. There are twomain pro-
cesses that working together. The first is the region proposal
which will select the possible candidate to be categorized as
an object in the picture. And, the second is a deep neural
network that will be responsible for the object classification.
The resource sharing between these two processes usually
resulting in high computational load.

In order to lower the computational load, another approach
known as YOLO (You Only Look Once) [8] had been devel-
oped. One of the major advantages of using YOLO is that
it can predict the position of the object (bounding box)
and the classification of objects in the same computation
process and thus greatly reduce computational loads. The
early version of YOLO is focused on low latency purposes
with low accuracy trade-off. However, more recent version
called YOLOv3 is targeted for both low latency and higher

accuracy applications [9]. More specifically, there is also
another variant called YOLOv3-Tiny, that is optimized for
edge computing application.

Although computational load of YOLO is lower than its
predecessor, the load is often still too high to be handled
by a general-purpose CPU. Another candidate for hardware
accelerator that can process high computational load would
be GPUs. However, GPUs are known to be too costly in
terms of energy consumption and their form factors are too
large to be deployed on embedded system solutions [10], [11].
This paper addresses this problem by building YOLOv3-Tiny
accelerator on a relatively low-cost (off the shelf) FPGA that
can be easily deployed on edge computing applications.

One of the first works related to YOLOv3-Tiny accel-
erator was built on high-performance FPGA [12] which is
still not suitable for low-cost application on edge computing
solutions. Other works tried to build this accelerator using
low-cost FPGA [13], but still suffer from the relatively high
latency problems (532 ms). One of the most computationally
expensive in YOLO is the 2D convolution process. Both
of these works [12], [13] are using the same approach to
compute the convolution process by using sliding windows.
This approach is preferred because of its simplicity to be
implemented and its practicality to be scaled inmore complex
design. However, the drawback of this approach is lack of
flexibility when there are variations of kernel dimension and
inefficiency. Moreover, the number of channels is growing
large, since the computation is done per kernel per channel.
The other approach for convolution is by using General-
ized Matrix Multiplication (GEMM) where the kernel and
feature map need to be converted to the matrix form [14].
By using GEMM, the variations of kernel dimension and
size of channel are not problems because all the calculations
are performed as matrix multiplications. The example of this
approach is used by Google TPU [15] which uses the systolic
core to compute the matrix multiplication. The biggest draw-
back of using GEMM is the need to convert kernel and feature
map into the matrix form. The conversion process usually
consists of complex memory access patterns and inefficient
data storage because the data needs to be duplicated. The
process of conversion is usually done in software by using
a general purpose CPU which can significantly increase the
latency, especially if the CPU is slow. Because of these rea-
sons, the GEMM method is suboptimal for edge computing
implementation.

The architecture of YOLOv3-Tiny accelerator is proposed
in this paper built on GEMM principle using systolic core.
However, unlike Google TPU that implements one big size of
systolic core, our systolic core is smaller and it also supports
multi-core architecture. It makes our architecture is easily
scalable to other FPGAs. To address the problem of conver-
sion into matrix form, our accelerator also provides mapping
module that can map kernel and feature map into the matrix
form. The result of this mapping is the compressed form of
matrix which will save on-chip memory space. Also, this
mapping process is pipelined into entire YOLO process and
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as a result, it can reduce the latency of the accelerator. The
main contributions of this work are as follows:

• We propose YOLOv3-Tiny hardware accelerator based
on small size systolic core which is suitable for edge
computing platform.

• We perform detail profiling of hardware dataflow based
on input stationary dataflow. This dataflow can be used
as a model to estimate the energy consumption for dif-
ferent workload.

• We propose hardware implementation for the com-
pressed im2col() function which maps the input FMAP
into the compress matrix form for GEMM computation.
The compressed matrix form takes space ≈ 7.89 times
less than direct/naive implementation of im2col().

• We perform detail profiling for each module in our
accelerator, including the architecture and scheduling
strategy to achieve fully pipelined architecture.

The rest of the paper is structured as follows. Section II
presents the background knowledge and preliminary work
that are required for implementing the YOLOv3-Tiny using
hardware. In Section III, we describe our hardware dataflow
which shows the data movement and memory hierarchy in
our accelerator. In Section IV, we give the detailed explana-
tion about our accelerator architecture. Section V explains
about the processing flow between the host CPU and the
accelerator, as well as the processing flow inside FPGA.
Section VI discusses the implementation of our own custom
instruction set. Section 42 discusses the implementation and
the testing of our overall system. Section VIII contains sev-
eral parts including: 1) an evaluation of our accelerator in
the form of memory access analysis, 2) im2col() function
analysis, 3) comparison with other AI accelerator in other
platforms (CPU, GPU, & ASIC), and 4) comparison with
other previous works. Finally, the paper is concluded in
Section IX.

II. BACKGROUND
This section presents the background knowledge of our
works. Subsection II-A discusses the overview of our
YOLOv3-Tiny model and how we break the inference pro-
cess into several batch layers. Subsection II-B discusses
the convolution operation and the parameter naming which
will be used throughout the paper. Subsection II-C and
subsection II-D review the max pooling and upsampling
operations in YOLO. Subsection II-E discusses the method
to merge batch normalization computation into convolution
process. Subsection II-F discusses the method that we used to
reduce the bit precision and how it affected the performance
of the system. Subsection II-G discusses the additional layer
that we add into inference process as the consequence of
reducing the precision. Subsection II-H discusses the method
that we used to compute the convolution. Subsection II-I
discusses the process of mapping FMAP (feature map) into
the FMAP matrix (the term FMAP is equal to the activations
in deep neural network [3]) using im2col() function.

A. YOLOv3-TINY MODEL
Our YOLO model performs prediction in 2 scales. First,
by using 14 × 14 grid for big object detection, and second
by using 28 × 28 grid for small object detection. The input
image size will be 448× 448 pixel with three RGB channels.

Table 1 shows the entire inference process of YOLOv3-
Tiny. We will separate all this layers into several batch layers
where each batch layer consist of only one convolution layer.
As a result, we will have 13 batch layers. The accelerator will
compute each batch layers sequentially, so only one batch
layer can be computed at a time.

TABLE 1. YOLOv3-Tiny inference process.

We also do some modifications on our YOLO algorithm
so it can fit well into the hardware. Some of our modifica-
tions include reducing the bit precision, merging batch nor-
malization operation with convolutional layer, and add new
quantization layer to preserve the bit width in computation.

B. CONVOLUTION OPERATION
Convolution (2D) is the main computing operation that will
be accelerated by our accelerator. In this section we will
introduce formally how the 2D convolution computation is
executed and the parameters naming convention which we
will used throughout this paper. Figure 1 shows the parameter
naming which will be used in entire paper, it also illustrates
the 2D convolution on multiple channel image (3D tensor)
using multiple channel multiple filter (4D tensor). Mathemat-
ically, this convolution process can be described using the
following equation:

O[k][p][q]=
C−1∑
c=0

R−1∑
r=0

S−1∑
s=0

I [c][Up+ r][Uq+ s]

×F[k][c][r][s]+ B[k]
0 ≤ k < K , 0 ≤ c < C, 0 ≤ r < R, 0 ≤ s < S

P=
H − R+ 2pad

U
+ 1,Q =

W − S + 2pad
U

+ 1,

(1)
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FIGURE 1. CNN computation and parameters naming.

where:

I = Input FMAP,
F = Filter weight,
B = Bias,
O = Output FMAP,
H = Input FMAP height,
W = Input FMAP width,
C = Input channel,
R = Filter kernel height,
S = Filter kernel width,
K = Output Channel,
P = Output FMAP height,
Q = Output FMAP width,
pad = Number of padding, and
U = Number of stride in convolution.

In our case, we use pad = 1 when R and S are 3, and use
pad = 0 when R and S are 1. Thus, the input FMAP and
output FMAP size will be the same (H == P andW == Q).
We also always useU = 1 for all batch convolution layer. For
following sections, we will omitted the index notation of any
tensor operation. For example, Equation (1) can be simply
written as follows:

O = I × F + B. (2)

Notice that Equation (2) is referring to the same tensor
multiplication in Equation (1).

C. MAX POOLING OPERATION
Max pooling is a down-sampling operation. It reduces FMAP
size depending on the max pooling size and the stride value.
Figure 2 shows the example of a max pooling operation that
is performed on 4× 4 FMAP. Max pooling takes the biggest
value out of its window area and effectively reduces the
FMAP height and width to the half. Mathematically, it can
be represented as a max() function from a set of number.
Suppose that we have four values of FMAP in a set consisting
{1, 5, 2, 6} as Figure 2. Thus, the max pooling results:

max({1, 5, 2, 6}) = {6}. (3)

D. UpSampling OPERATION
Up-sampling operation is the reversal of max pooling oper-
ation. It increases FMAP size by doubling the height and

FIGURE 2. Max pooling operation illustration.

FIGURE 3. Up sampling operation illustration.

width of FMAP. Figure 3 shows the example of up-sampling
operation performed on 2 × 2 FMAP. This operation takes
every pixel in FMAP and duplicates its area by 4 times.
It is effectively doubles the height and the width of output
FMAP. Mathematically, it can be represented as a duplicate()
function to a list of a set of number by 4 times as illustrated
in Figure 3:

duplicate({{6}, {14}, {8}, {16}})

= {{6, 6, 6, 6}, {14, 14, 14, 14},

{8, 8, 8, 8}, {16, 16, 16, 16}}. (4)

E. MERGING BATCH NORMALIZATION
INTO CONVOLUTION
Batch normalization is the element wise operation that will
be applied to the output of convolution layer in Equation (2).
To reduce the number of operations, we will merge the batch
normalization into the convolution process. This process can
be achieved by rearranging the equations. Following is the
equation of batch normalization that will be applied to each
elements of matrix O:

Onorm =
γ

√
σ 2 + ε

O+
(
β +

γµ
√
σ 2 + ε

)
, (5)

where:

Onorm = Output FMAP after normalized,
O = Output FMAP,
σ 2

= Estimated variance of O,
ε = Small constant to prevent numerical error,
µ = Estimated mean of O,
γ = Parameter to control variance of Onorm, and
β = Parameter to control mean of Onorm.
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We can further simplify the equations by writing A =

γ
√
σ 2+ε

and D =
(
β +

γµ
√
σ 2+ε

)
, thus the Equation (5)

becomes:

Onorm = AO+ D. (6)

Furthermore, we can substitute O from Equation (6) with
expression from Equation (2) and the equations becomes:

Onorm = A (I × F + B)+ D. (7)

By rearranging Equation (7), we get the convolution equa-
tion with new weight and new bias as the following:

Onorm = I × Fnew + Bnew, (8)

where Bnew = AB + D is a new bias and Fnew = AF is a
new weight. By merging the batch normalization with convo-
lution, we can reduce the resources as well as the computation
time.

F. REDUCING PRECISION (QUANTIZATION)
Reducing the number of bits for either weight or feature map
have several benefits. First, it can reduce the amount of data
movement resulting in lower energy consumption. Reducing
data movement can also increase throughput, since it reduces
memory bandwidth requirements. Second, it also reduces the
amount of on chip memory required for a given number of
weights, activations, and/or partial sums [3]. In our version of
YOLOv3-Tiny, we use reference weight with 32-bit floating-
point precision.

We use linear symmetrical quantization method to convert
the parameter from 32-bit floating point into 8-bit signed
integer. We choose linear quantization to reduce energy con-
sumption and memory space during the computation time.
By choosing linear quantization, we manage to do the mul-
tiplication in 16-bit and accumulation in 32-bit. By choosing
symmetrical method, we eliminate the need to use zero point
during quantization, thus it reduces the number of operation.
The first step in quantization is to find the scale then use
the scale to find the quantized value. The overall process of
quantization can be explained as follows [20]:

scale =
max − min
2b − 1

qx = round
( x
scale

+ zp
)

(9)

where:

x = Parameter to be quantized (floating),
max = Maximum value of parameter in1tensor(floating),
min = Minimum value of parameter in1tensor(floating),
b = Number of bits (we used 8-bit),
zp = Representation of zero floating in quantized value,
scale = Scaling parameter in 1 tensor (floating), and
qx = Quantized value of parameter (8-bit integer).

In Equation (9), we use round() function to round the
value to the nearest integer. In our case, the zp value will

be zero, because zero floating point will be represented as
zero in 8-bit signed integer (symmetrical quantization). Our
version of YOLO reduces the precision of weight and FMAP
up to 8 bits, while maintaining the mAP of 75% tested on
our custom dataset (derived from VOC 2007 dataset). In real
VOC 2007 dataset, the total number of image is 9963 images.
We took 2665 images from the real VOC 2007 dataset, used
the 2400 images for training and the remaining 265 images
for testing. We measured that we only got 2% drop in mAP
(in original YOLOv3-Tiny model, we got 77% mAP when
tested against our custom dataset).

G. DLQ LAYER
The inference process in one batch layer can be seen
in Figure 4. The process consists of four layers such as con-
volution layer, batch normalization layer, activation function
layer, and max pooling. The output of max pooling usually
will be used by similar inference process in the next batch
layer.

FIGURE 4. Typical inference process in one batch layer.

Because we apply quantization (for FMAP, weight, and
bias), the inference process in one batch layer needs to be
modified in order to preserve the bit precision. The modified
inference process can be seen in Figure 5. In order to prevent
more loss in accuracy, the activation function operation will
be done in 32-bit floating point number. Because of this, two
additional layers are required: (1) the dequantization layer
before the activation function layer and (2) the quantization
layer after the activation function layer. The dequantization
layer will dequantize back the result of batch normalization
into 32-bit floating point, while the quantization layer will
quantize the result of activation function layer back to 8-bit
signed integer.

Similar to Section II-E where we merge the batch
normalization layer and convolution layer, the activation
function layer can be merge with both dequantization
layer and quantization layer by rearranging the equations.
The quantized value of a number, as we can see from
Equation (9), is obtained by dividing the number with its
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FIGURE 5. Modified inference process in one batch layer.

scale. To dequantize the value of a number, we just need to
reverse the process by multiplying the number with its scale.

dqx (x) = x × scale (10)

Mathematically, Leaky ReLU formula can be written as
following

LeakyReLU (x) =

{
x if x ≥ 0
ax otherwise

(11)

where a is scaling coefficient with value 0 < a < 1. The out-
put of Equation (11) will be quantized using the Equation (9).
Combining the Equations (9), (10), and (11), we obtain the
DLQ (Dequantization - Leaky ReLU - Quantization) formula
as following:

DLQ (x) =

{
x scale+ if x ≥ 0
x scale− otherwise.

(12)

By merging these three equations, we can reduce both
resource used and computation time.

H. CONVOLUTION AS GENERAL MATRIX MULTIPLICATION
Convolution is often done by using sliding window approach,
where there are separate hardware block for each kernel.
In modern CNN architecture such as YOLO, the kernel
size and dimension often vary across multiple batch layers.
Designing separate hardware block for each kernel increases
resource utilization and makes the hardware become rigid.
Transforming convolution as generalized matrix-matrix mul-
tiplication (GEMM) makes the hardware design kernel size
agnostic [17]. To use GEMM in convolution, both the weight

and FMAP need to be transformed into matrix form (2D ten-
sor). The process of transforming weight tensor (4D tensor)
into matrix is quite straight forward, we just need to reshape
the weight dimension from F[K ][C][R][S] to F[K ][CRS].
For FMAP, the transformation process into matrix form will
be more complex. It will expand the size of FMAP and dupli-
cate some data from the initial FMAP 3D tensor. The size
of FMAP matrix also depends on dimension of F , the stride
value, and pad value. Formally, the name of function to
transform FMAP into matrix FMAP is known as im2col()
function. The details of this function will be explained in next
section.

Figure 6 illustrates the convolution process using GEMM.
In the example, the weight with initial shape F[K = 1][C =
1][R = 2][S = 2] is reshaped to F[K = 1][CRS = 4]. While
the FMAP with initial shape I [C = 1][H = 3][W = 3] is
transformed to FMAP matrix with shape I [CRS = 4][PQ =
4]. Once the weight and FMAP in matrix form, we can com-
pute 2D convolution as matrix multiplication. The resulting
matrix multiplication has dimension of O[K = 1][PQ = 4].

FIGURE 6. 2D convolution using matrix multiplication.

I. Im2col FUNCTION
Im2col (im2col()) function performs the transformation
of 3D tensor I [C][H ][W ] to 2D tensor matrix. The matrix
will have the dimension of I [CRS][PQ], where RS is the size
of filter kernel and PQ is the size of output FMAP. The size
of the output FMAP is derived fromHW size of input FMAP,
which also affected by the filter size, stride and padding value
(Refer to Equation (1) for complete relationship betweenHW
and PQ).

More generally, im2col() function is described in
Algorithm 1. As shown, there will be an increase in total
weight size of matrix compare to its 3D tensor form. The
ratio between matrix and 3D tensor FMAP size is RSPQ

HW .
In the example from Figure 6, the input FMAP matrix size
increase with the ratio of RSPQ

HW =
2×2×2×2

3×3 =
16
9 . In our

case, we select the stride and padding value, thus we have
HW == PQ. Because of this, the output matrix size is RS
times larger than the original 3D tensor FMAP.

Transforming the weight directly using im2col() function
will increase the FMAP matrix size by RS times larger (in
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Algorithm 1 Im2col Function
1: /* Variables: */
2: fmap[C][H][W]
3: mat_fmap[CRS][PQ]
4:

5: for c=0 in range(0,C) do
6: for p=0 in range(0,P) do
7: for q=0 in range(0,Q) do
8: for r=0 in range(0,R) do
9: for s=0 in range(0,S) do

10: mat_fmap[c*R*S+r*S+s][p*Q+q] =

fmap[c][U*p+r][U*q+s]
11: end for
12: end for
13: end for
14: end for
15: end for

most cases RS = 9). This will cause a problem, especially
in edge computing application, because of limited on-chip
memory capacity. If on-chip memory capacity is not enough
to store all FMAP matrix, then after applying im2col() func-
tion, we need to store the FMAP matrix in off-chip mem-
ory. It will increase total latency and energy consumption.
To address this problem, we will use tiling strategy to trans-
form a tile of FMAP into a tile of matrix FMAP and store the
tile in compressed matrix form. Thus, we can save on-chip
memory space. By using this strategy, we managed to trans-
form FMAP into FMAP matrix without storing the matrix
FMAP in off-chip memory. The detail of this strategy will be
explained in Section IV.

III. PROPOSED HARDWARE DATAFLOW
Dataflow is one the most important aspect in designing AI
accelerator. Dataflow defines some specific rules for control-
ling activity of an accelerator including the ordering opera-
tion, scheduling process in temporal and spatial space, tiling
strategy, and the data orchestration across multiple memory
hierarchy in datapaths. The Dataflow usually is described
using the loop nest pseudocode.

Figure 7 shows the abstraction of memory level in our
accelerator. The DDR memory is located outside the FPGA
chip, L1 memory located inside the FPGA chip in the form of
BRAM, while L0 memory also located inside the FPGA chip
in the form of registers near the processing element. In the
term of latency and energy cost, L0 memory is the fastest,
L1 memory is medium, and DDR memory is the slowest.
However, in the term of memory capacity, L0 memory is the
smallest, L1 memory is medium, and DDR memory is the
largest. Our goal is to schedule the data movement in each
memory level, thus we can minimize the latency and energy
consumption of our accelerator.

Because the sizes of L1 memory and L0 memory are
smaller than DDR memory, we need to tile the FMAP from
DDR memory to L1 and L0 memories. Figure 8 shows the

FIGURE 7. Memory hierarchy in accelerator.

FIGURE 8. Tiling strategy for first batch layer.

tiling strategy for the case of the first batch layer. There are
4 parameters, which will dictate our tiling and dataflow pro-
cess: H1, W1, NH1, NW1. Each values of these parameters
is derived from following equations:

W1 = 14

NW1 =
W
W1

H1 =
MemSize
W × C

NH1 =
H
H1

(13)

where:

W1 =Width for systolic array,
NW1 = Number of W1 in FMAP width,
H1 = Number of FMAP rows store in L1 memory,
NH1 = Number of H1 in FMAP height,
H = Input FMAP height,
W = Input FMAP width,
C = Input channel, and
MemSize = Allocated L1 memory for FMAP.
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We choose the tiling size of W1 to be 14. The reason for
this is because the smallest FMAP width that we need to
process is 14 pixel. If we do the computation in smaller size
input FMAP, choosing larger value for more than 14 will be
redundant. The other parameters (NW1,H1,NH1) will be
vary across different batch layer. For the case of first batch
layer, input FMAP dimension is I [C = 3][H = 448][W =
448]. Applying these properties to Equation (13), we will get
the parameter value in Figure 8.

We use input stationary dataflow to optimize the reuse
of input data (each pixel in IFMAP only need to be read
once in every batch layers). L1 memory acts as global buffer
for all data types (IFMAP, weights, bias, and partial sum)
and L0 memory acts as small memory to store the IFMAP
during computation. Algorithm 2 shows the dataflow for our
accelerator. There are 8 loop level on our dataflow. The out-
ermost loop in line 10 describes the loop iteration over NH1

Algorithm 2 Input Stationary Dataflow Loop Nest
1: /*Memory Level: */
2: ifmap[C][HW] // DDR Memory
3: ofmap[K][HW] // DDR Memory
4: weight[C][K][RS] // DDR Memory
5: ifmap_buffer[C][H1*W] // L1 Memory
6: weight_buffer[K][RS] // L1 Memory
7: ofmap_buffer[K][H1*W] // L1 Memory
8: ifmap_pe[RS][W1] // L0 Memory
9:

10: for nh1 in range(0, NH1) do
11: ifmap_buffer = LoadFmap(ifmap, C, H1, W, nh1)
12: for c in range(0, C) do
13: weight_buffer = LoadWeight(weight, K, RS, c)
14: for h1 in range(0, H1) do
15: for nw1 in range(0, NW1) do
16: ifmap_pe = Fill(ifmap_buffer, RS, W1, nw1,

h1, c)
17: for parallel core in range(0, Ncore) do
18: K1,K2 = AssignBound(K, core)
19: for parallel rs in range(0, RS) do
20: for parallel w1 in range(0, W1) do
21: for k in range(K1, K2) do
22: idx = AddrIdx(w1,nw1,h1,nh1)
23: ofmap_buffer[k][idx] +=

weight_buffer[k][rs] *
ifmap_pe[rs][w1]

24: end for
25: end for
26: end for
27: end for
28: end for
29: end for
30: end for
31: ofmap =WriteFmap(ofmap_buffer, K, W1, nh1)
32: end for

parameter. During this loop, we do the read operation for
input FMAP (described in line 11) in which the accelerator
reads the first H1 rows of FMAP in every channel and stores
it in L1memory. The second loop in line 12 describes the loop
iteration over C parameter. During this loop, the accelerator
reads the KRS value of weight in the first channel from
DDR memory to L1 memory (described in line 13). The next
two loops (line 14 and line 15) iterate over H1 and NW1
parameters. During these loops, we will fill L0 memory with
FMAP value from L1 memory. This process is described in
line 16 using the Fill() function. In addition, the Fill() func-
tion also implements padding and im2col() function trans-
forms the input FMAP into the matrix form. The next three
loops (line 17, line 19, and line 20) are ‘‘for parallel’’ loops.
It means that, we will implement parallel architecture for
these loops in hardware. Loops in line 19 and 20 describe the
size of our systolic array, which is RS×W1 == 9× 14. The
loop in line 17 describes the number of systolic core that will
be implemented in the hardware (where each core consist of
9×14 systolic array). The loop in line 21 describes the MAC
operations over K2−K1 iterations. The value of K2 and K1
are the bounds in which each core does the computation (e.g.,
for the case of Ncore = 2 and K = 16, the first core will
compute from K1 = 0 until K2 = 7 and the second core
will compute from K1 = 8 until K2 = 15). Finally, the final
partial sum value (output FMAP) will be written out to DDR
memory in the end of first loop (line 31).

IV. PROPOSED HARDWARE ARCHITECTURE
This section explains the detail of proposed hardware accel-
erator architecture. First, we give an overview of our entire
system in Subsection IV-A. From that section, our architec-
ture can be separated into five sections. The first section is
Input Bias Path, which will be explained in greater detail in
Subsection IV-B. The second section is Input FMAP Path,
which will be explained in Subsection IV-C. Next, the Input
Weight Path will be explained in Subsection IV-D. The fourth
section is the Matmult Core, where we will compute the
process of convolution in matrix multiplication. This will be
explained in Subsection IV-E. The last sectionwill discuss the
post processing after the convolution that will be explained in
Subsection IV-F.

A. SYSTEM OVERVIEW
Figure 10 shows the top level view of the entire system. From
the top level, the host CPU will give command to accelerator
through AXI Lite protocol communication. Essentially, there
are only two parameters that host CPU needs to provide for
the accelerator. The first is the DDR’s address location of
instruction and the second is the total number of instructions
to be read from DDR. The total number of instructions cor-
responds to the total number of batch layers. As explained
in Section 1, for our model, there will be 13 instructions that
correspond to 13 batch layers. After the host CPU gives a start
signal the accelerator, all instructions will be loaded to the
BRAM instructions and the process of computation for each
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FIGURE 9. Architecture of the accelerator.

FIGURE 10. Top level of the accelerator.

batch layer will be started. For each batch layer, the process
starts from reading the instruction from BRAM instructions,
decoding the instruction, and fetching it to the YOLOv3-Tiny
Accelerator.

Figure 9 provides the inside of YOLOv3-Tiny Accelera-
tor. The accelerator consists of several modules that can be
categorized into five sections:

• Input Bias Path, consists of bias reader module and bias
matrix generator module.

• Input FMAP Path, consists of FMAP reader module,
zero pad module, mapping module, and FMAP matrix
generator module.

• Input Weight Path, consists of weight reader module,
weight ordering module, and weight matrix generator
module.

• Matmult Core, consists of 9 × 14 systolic array to
compute the matrix multiplication and matrix addition.

• Output FMAP Path, consists of DLQ module, max
pooling (MP) module, up-sampling module, output
ordering module, and output writer module.

To achieve fully pipeline architecture, each module in the
accelerator is separated by FIFO.

For I/O DDR memory access, we use AXI Full protocol
with the accelerator as the master. By using this, we elim-
inated the need of host CPU to manage the data transfer
process between DDR and accelerator. Thus, our host CPU
is completely free of any task. There are three input paths to
our accelerator and one output path from our accelerator. The
three input paths are each for bias, FMAP, and weight, while
the output path is used to write the result to DDR.

B. INPUT BIAS PATH
Input bias path consists of bias reader module and bias matrix
generator module. The bias readermodule’s task is to produce
the DDR address from which the bias data will be read.
It also handle all signals related to AXI Full protocol. The
bias matrix generator module’s task is to form the bias matrix
that will be used byMatmult Core. The bias matrix dimension
will beB[K ][14], whereK is number of output channel and 14
is corresponding to the width (W1) of our systolic array. The
detailed explanation including the architecture and the timing
of bias reader module and bias matrix generator module will
be explained in following sections.

1) BIAS READER MODULE
The bias readermodule consists of the address generator FSM
to get bias from the DDRmemory. The address generator will
generate the DDR address and pass the address to AXI Full
master (as shown in Figure 11). AXI Full master will handle
the process of AXI Full protocol and get the data from DDR.
The bias data will be read during read operation and it will be
written to the next FIFO during write operation. During one

FIGURE 11. Architecture of bias reader.
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read operation, we get the total of 16 numbers of bias. This
number is chosen because it is the greatest common divisor of
bias number across all batch layers. It is also required for AXI
Full protocol [18], where the bit width of data transfer must
be 2n (where n minimum is 3 and maximum is 10). In our
case, each bias is 32 bits, thus the total of 512 bits (16 words)
of data are transferred at a time. The process of reading bias
happens once outside the loop nest of Algorithm 2. This
module manages to achieve execution process with 1 clock
cycles of initiation interval and the latency of 3 clock cycles.
The detail of scheduling process can be seen on Figure 12.

FIGURE 12. Operation scheduling in bias reader module.

2) BIAS MATRIX GENERATOR MODULE
This module generates the bias matrix with the size of
B[K ][14], whereK is the number of output channel. Figure 13
shows the architecture of bias matrix generator module. The
read operation happens once every 16 clock cycles, where in
every clock cycles the bias data will be duplicated 14 times
before they are written out to the FIFO. Figure 14 shows the
example of B[16][14] bias matrix that will be produced when
K is equal to 16.

FIGURE 13. Architecture of bias matrix generator.

The bias matrix generator module manages to execute
with 1 clock cycles initiation interval and the total latency is
4 clock cycles. The detail of scheduling process for this mod-
ule can be seen on Figure 15. The process starts from control
operation, which acts as the control unit. It determines which
operation will be executed in every clock cycle. Following
that, the read operation will execute to read 16 words of bias
from input FIFO and will store the read results in RegIn

FIGURE 14. The process of bias matrix formation.

FIGURE 15. Operation scheduling in bias matrix generator module.

registers. As a note, the read operation can be performed from
input FIFO or BRAM bias. Store and duplicate operation can
be executed on the same time. The store operation stores the
16 words of bias in BRAM, while the duplicate operation
duplicates the fist word of bias (out of 16) 14 times in single
clock cycles before it will be written out to the output FIFO
during the write operation. In the next clock cycles, the dupli-
cate operation will be performed again up to 16 times before
this module do the next read operation.

C. INPUT FMAP PATH
Input FMAP path consists of FMAP reader module, zero
pad module, mapping module, and FMAP matrix generator
module. In the term of Algorithm 2, FMAP reader module
performs the LoadFmap() function while zero pad mod-
ule, mapping module, and FMAP matrix generator mod-
ule perform the Fill() function. The FMAP reader module’s
task is similar to bias reader module. It produces DDR
address and handles all related signals for AXI Full proto-
col. Zero pad module task adds zero padding surrounding the
image in every channel. Not every layer needs zero padding.
In some cases, the zero padding process can be skipped.
Mapping module and FMAP matrix generator module per-
form the Im2col() transformation of FMAP (as explained
in Section II-I). Mapping module will produce the compress
matrix form of FMAP tile, while FMAP matrix generator
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FIGURE 16. Illustration of zero padding process.

will expand the compress matrix into the large FMAP matrix
where the convolution will be performed. For our accelera-
tor, both mapping module and FMAP matrix generator are
specialized to perform Im2col() function with U = 1 and
RS = 3× 3 = 9.

1) FMAP READER MODULE
FMAP reader module has similar architecture and function-
ality to the bias reader module in Figure 11. The scheduling
process for this module is also similar to Figure 12. For one
read operation, we get 16 adjacent value of FMAP in one
channel. We will refer this 16 adjacent values as one data
packet. The number 16 is chosen based on the requirement of
AXI Full protocol [18]. The reading pattern of FMAP follows
the loop nest in Algorithm 2. If we describe the input FMAP
as I [c][h][w], the reading order starts from index w = 0 until
w = W − 1, index h = 0 until h = H1− 1, and index c = 0
until c = C−1, respectively.Wewill repeat this processNH1
times. For example, in the next reading process, we will start
from index h = H1 until h = 2H1− 1.

2) ZeroPad MODULE
This module will handle the process of padding the FMAP
with zero value. To simplify the explanation, we use smaller
size of FMAP as an example. Figure 16 illustrates this process
with example of FMAP size 4×4 (where in our implemented
design, the input FMAP size on the first batch layer is 448×
448). Assume that the stream wide is two words, thus every
packet of data received by this module is always two values at
a time (while in our real implementation, the data packet has
16 words of values). In the Figure 16, the packets are shown
with time-stamp number. This time-stamp shows the order
of packet that will be received (left side of Figure 16) and
produced (right side of Figure 16) by this module. The output
is the zero padding result of FMAP except the top and bottom
padding of the FMAP. The top and the bottom paddings are
not generated because they will be generated later in the
FMAP matrix generator module. By this way, we can reduce
the bandwidth of data transfer betweenmodules and also save
on-chip memory spaces.

Figure 17 shows the internal architecture of ZeroPad mod-
ule. It consists of mux in the beginning to choose the target of
read operation. It is either to read from the input FIFO or the

FIGURE 17. Architecture of ZeroPad module.

Zero ROM which stores the zero values. The read operation
will split the packet from FIFO, where one word from data
packet is stored in RegLast registers and the other one is
stored in RegOut registers. The RegLast value is initialized by
zero every time there is changes in FMAP row. TheWriteLast
operation is happening on the same time with the Read opera-
tion. The WriteLast operation will merge the values from the
RegLast registers into the RegOut registers. Then, the Write
operation will write out the RegOut register value to the out-
put FIFO. Figure 18 shows the detail of operation scheduling
in ZeroPad module. The module manages to achieve 1 clock
cycles initiation interval with the latency of 2 clock cycles.

FIGURE 18. Operation scheduling in ZeroPad module.

3) MAPPING MODULE
This module purpose is to transform the data packet from
previous module into the suitable data form for FMAPMatrix
Generator module. We called this suitable data format as
compressedmatrix form. The size of compressedmatrix form
depends on systolic array width size (which also has the tile
size W1) and the kernel size (RS). Continuing the output
of zero padding process from Figure 16, we use RS = 9
with systolic array width size of 2 (W1 = 2). Figure 19
shows the example illustration of mapping process from the
previous module. The figure describes the input and the
output results of this module along with the time-stamp to
show the order of data received and produced. Notice that the
input stream width is 2 words and the output stream width
is 4 words. The output stream width was chosen to adjust
with the systolic array width size. For the case of U = 1
and RS = 9, we choose the output stream width of W1 + 2.
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FIGURE 19. Illustration of mapping process.

For this example, because W1 = 2, the output stream width
is 4 words. In our real implementation, we chooseW1 = 14,
thus output stream width is 16 words.

The procedures of mapping input to output in this module
are as follows:

1) Concatenate the input data packet with stored data, thus
it matches the output stream size.

2) Duplicate and store the overlapped areas between out-
put data packet to handle the halos (cross tile depen-
dencies between computing tile in convolution).

Figure 20 shows the internal architecture of Mapping mod-
ule. It consists of three registers that interchange the data
to concatenate and store the overlapped area between out-
put data packets. Figure 21 shows the detail of operation
scheduling in Mapping module. It manages to achieve initia-
tion interval from 1 clock cycle to 3 clock cycles. There are
total 5 operations that will be performed in this module. The
Read operation reads the data packet from input FIFO into
RegIn register. Store and StoreIn operations duplicate the data
from RegIn registers into RegTemp and RegOut registers.
StoreTemp operation will merge the data from RegTemp
registers into RegOut registers. And, Write operation writes
the data packet from RegOut registers into the output FIFO.

FIGURE 20. Architecture of mapping module.

4) FMAP MATRIX GENERATOR MODULE
FMAP matrix generator module will expand the compress
matrix form to large FMAPmatrix. Continuing example from
previous module, Figure 22 shows the example how the out-
put from mapping module in Figure 19 will be transformed
into fully FMAP matrix which will be computed by the
systolic array. The time-stamp on input and output data show
the order of data being received or produced. The words size
of each output data packet shows the width of systolic array,
while the height of output matrix shows the height of systolic
array. For the example in Figure 22, the systolic array size is 9

FIGURE 21. Operation scheduling in mapping module.

FIGURE 22. Input data and output produce from FMAP matrix generator
module.

by 2 (while in our real implementation, the systolic array size
is 9 by 14).

The internal architecture for this module is shown
in Figure 23. There are total of five operations in this module.
Store operation reads the data from input FIFO and stores it
into the BRAM FMAP. Read operation reads data either from

FIGURE 23. Architecture of FMAP matrix generator.
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FIGURE 24. Operation scheduling in FMAP matrix generator module.

ROM (filled with zero values) to produce the top and bottom
paddings, or from BRAM FMAP. ShiDup operation is shift
and duplicate operations to form the FMAPmatrix as we have
explained in Section II-I. Write operation writes the result
into output FIFO and Control operation schedules the entire
operation to determine whether the read operation reads the
data from the ROM or the BRAM FMAP.

The detailed process of FMAP matrix formation in this
module can be seen on Figure 25, using the example from
Figure 22. The process is split into four parts. In the first
process (Figure 25(a)), the first four data from input FIFO
have been stored in BRAMFMAP (it tooks the total of 4 clock
cycles). While in the same process of storing data to BRAM,
this module starts write operation to produce the output with
the time-stamp 1 to 3, which only need the zero value from
the ROM (it took the total of 3 clock cycles). To produce the
output with time-stamp 4 to 6, the module will perform Read
operation from BRAM FMAP (specifically to read the input
time-stamp 1 from BRAM) and perform ShiDup and Write
operations. The similar process also happens to produce the
output time-stamp 7 to 18. Figure 24 shows how the oper-
ation to produce the first 12 output from Figure 25 will be
scheduled. This module manages to achieve scheduling with
1 initiation interval and the total latency is 5 clock cycles.

In the second process (Figure 25(b)), to produce the output
with the time-stamp 19 to 21, the module performs Read
operation from BRAM FMAP to get the input time-stamp 1.
After performing ShiDup and Write operations to produce
output time-stamp 19 to 21, the input time-stamp 1 in BRAM
won’t be used anymore and the module will perform Store
operation to overwrite the input time-stamp 1 in BRAM with
new input time-stamp 5. By this way, the BRAM spaces can
be minimized by storing the needed data only. The process to
produce the output with the time-stamp 22 to 36 also follows
in similar way. The input time-stamp 2 in BRAMwill also be
overwrite by input time stamp 6 once the output time-stamp
28 to 30 have been produced. The third process (Figure 25(c))
also follows the same procedure to produce output with the
time-stamp 37 to 54. The input time-stamp 3 and 4 in BRAM
will also be overwritten by the input time-stamp 7 and 8.
In last process (Figure 25(d)), no further data in BRAM will

be overwritten. It only produces the output based on the input
time-stamp 5 to 8 and the zero values from the ROM.

D. INPUT WEIGHT PATH
Input weight path consists of weight reader module, weight
ordering module, and weight matrix generator module.
In the term of Algorithm 2, these 3 modules perform the
LoadWeight() function. Weight reader module task is similar
to bias reader module and FMAP reader module. Weight
ordering module will convert the data format, thus it will
be easy for the weight matrix generator module to form the
weight matrix. Weight matrix generator module will produce
the weight matrix F[K ][RS = 9], where K is the number
of output channel and RS = 9 corresponds to the row size of
systolic array. The detailed explanation for each modules will
be explained in following sections.

1) WEIGHT READER MODULE
Weight reader module has similar architecture and function-
ality to Bias Reader Module in Figure 11. The operation
scheduling is also similar to Figure 12. It accesses weight
form DDR memory through AXI Full protocol [18]. It has
input and output streams widths of 16 words, thus in one
access, it can get 16 adjacent weights values from DDR.
As Equation (1), the default way to store weight is by the fol-
lowing index order of tensor F[k][c][r][s]. In order to fit with
our proposed dataflow, we will rearrange the storing order of
weight in the DDR toF[c][k][r][s].Since our L1memorywill
only store weight per F[c][r][s], this module will repeatedly
read weight from the DDR as many as C × NH1 times by
the dataflow in Algorithm 2. Although this means we access
the same weight NH1 times, it only affects a little in the
overall bottleneck. The reason is because the weight needs
to wait for the FMAP data before the convolution process is
started. As Figure 9, the pipeline stage of input FMAP path
is 4 stages, while the input weight path has only 3 pipeline
stages. This means at the end of pipeline stage, the weight
needs to wait for the FMAP data before the MatMult Core
starts the computation. While waiting, the Weight Reader
module can start reading the data from the beginning again.
In addition, this access pattern reduces the overall on-chip
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FIGURE 25. Process of FMAP matrix formation in FMAP matrix generation
module.

memory utilization because we don’t need to store all weight
values as we will read them again in the repeating process.

2) WEIGHT ORDERING MODULE
Weight ordering module has similar functionality to mapping
module in the input FMAP path. The task is to prepare the
weight to a suitable data format, thus it will be easy for the
next module (Weight Matrix Generator module) to produce
the weight matrix. It also has the same architecture to map-
ping module, which can be seen on Figure 20. It consists of 3
registers to interchange the data.

Figure 26 shows the example of the input data and the
output from weight ordering module with the time-stamp to
show the order of data being received and produced. In the

FIGURE 26. Input data and the output produced from weight ordering
module.

example, the input data has the width stream of 16 words
and there are the total of 9 data packets. Each data packet
has been labeled by the time-stamp which shows the order of
data arrived (in case of input time-stamp) or the data produced
(in case of output time-stamp). The output data has the width
stream of 9 words and there are total of 16 data packets.
To simplification, we can see this module as a stream width
converter that converts the stream width of 16 to 9.

The scheduling operation for this module is also similar to
mapping module, as shown in Figure 21. The only difference
is that the read operation is not always done in every clock
cycle but sometimes in every 2 or 3 clock cycles. The read
operation will be performed only when we need the data
from the input to produce the output data. For example,
as in Figure 26, the first output time-stamp requires only the
data from the first input time-stamp, thus we perform the read
operation to get the first input time-stamp. The second output
time-stamp requires the part of first input time-stamp and also
the other part of the second input time-stamp. Thus, we per-
form the read operation again to get the second input time-
stamp. The third output time-stamp needs only the second
input time-stamp which had been read before, thus the read
operation won’t be performed again until it needs the next
input time-stamp to produce the next output time-stamp.

3) WEIGHT MATRIX GENERATOR MODULE
Weight matrix generator module main task is to produce the
weight matrix F[K ][RS = 9]. Figure 27 shows the internal
architecture of Weight Matrix Generator module. It consists
of register, BRAM weight to store temporary the value of
weight that will be used in the near time, and mux to select
the target of the read operation. There are 4 operations in
this module. Read operation loads the data to RegIn reg-
isters from either the input FIFO or BRAM weight. Store
operation and Write operation can execute in the same time.

VOLUME 9, 2021 141903



T. Adiono et al.: Low Latency YOLOv3-Tiny Accelerator for Low-Cost FPGA Using General Matrix Multiplication Principle

FIGURE 27. Architecture of weight matrix generator.

The Store operation stores the data in RegIn registers into
the BRAM weight. And, the write operation will write the
output to output FIFO. The Store operation will execute only
when the new data packet from input FIFO has been read.
Lastly, the Control operation will be handled by the FSM
which schedules the next operation in every clock cycle and
determines the target of the read operation.

There is no further data arrangement needed for this mod-
ule as the matrix form is already formed from the last module.
As shown in Figure 26, the right side of the figure produces
the 16 packets of data which corresponds to the weight matrix
with the size of K × 9, where K equals to 16. The BRAM
stores all K weights data in one channel only. When the new
weight from new channel is stored, it will overwrite the old
weight data. Depending on the choice of tiles size in block
matrix multiplication, the same K × 9 weight matrix needs
to be produced multiple times. This is the reason why the
weights values need to be store in the BRAM. Figure 28
shows how the operation will be scheduled. This module
manages to achieve 1 clock cycle of initiation interval and
3 clock cycles latency.

FIGURE 28. Operation scheduling in weight matrix generator module.

E. MATMULT CORE
Matmult core module consists of systolic arrays and BRAMs
to store the partial sums during the computation. It basically

FIGURE 29. Block matrix multiplication order.

implements the computation in Equation (1) with the
dataflow from Algorithm 2. FMAP matrix size should be the
multiple size of systolic array. For our case, we choose sys-
tolic array with the size of 9×14, because it is least common
multiple size of FMAP matrix size across all batch layers.
Figure 29 shows the example of how block matrix multi-
plication will be executed on MatMult Core. The order of
computation starts from computing the matrix multiplication
between matrix A and matrix D, then matrix A and matrix E .
Both results of these matrix multiplication will be stored in
partial sum BRAM. The next batch computation will be the
multiplication between matrix B and matrix F , then matrix B
and matrix G. The partial sum of this batch computation will
be added to the partial sum of last batch computation (matrix
multiplication between matrix AD and AE). It will be saved
on the same location of the last partial sum, thus it won’t
require new memory space. The last batch computation is
multiplication between matrix C and matrix H , then matrix
C and I . The result will also be added to the last partial
sum.

Figure 30 shows the internal architecture of MatMult core.
Systolic array consists of 9 × 14 processing element. Each
processing element consists of MAC (multiply-accumulate)
operation and one FMAP register to store one pixel of FMAP.
FMAP data from the FMAP matrix generator will be placed
inside each processing element as stationary data. The mov-
ing data will be weight matrix and bias or partial sum matrix.
One loop process of block matrix multiplication or addition
can be summarized as follows:

• First, load the FMAP to the processing elements. It takes
9 clock cycles where in each clock cycle, 14 processing
elements are filled at once.

• Then, compute the multiplication or the addition, while
streaming weight and bias or partial sum matrix data.
It takes K + 9 clock cycles depending on the number of
output channels for each layer.

The idle time for matrix multiplication/addition in one
loop process is only 9 clock cycles (during the FMAP filling
process). It is worthmentioning that the bigger output channel
K is, the more efficient our systolic arrays will be (idle time
to computation time ratio will be smaller). It takes 9 clock
cycles to execute 9 LoMap (Load Map) operations, then it
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FIGURE 30. Architecture of Matmult core.

takes 9 + K clock cycles for the computation. In the case of
multicore architecture, the computation will take 9 + K

Ncore
clock cycles, where Ncore is the number of MatMult Core.
During computation process, several operations executed at
the same time: (1) ReWei (Read Weight) operation to read
weight matrix and to stream it to systolic array. (2) ReSum
(Read Partial Sum) operation to read the last partial sum that
will be added to the next partial sum (or use bias matrix for
initial value). (3) StoSum (Store Partial Sum) operation to
store the accumulated partial sum to the partial sum BRAM
(or directly to output the FIFO when the final accumulated
result is obtained).

F. OUTPUT FMAP PATH
Output FMAP path consists of DLQ module, MP module,
Up Sampling module, Output Ordering module, and Out-
put Writer module. DLQ module combines the functional-
ity of Dequantization, leaky ReLU, and Quantization. Max
pooling module handles the max pooling operation of each
batch layer. Max pooling will reduce the size of the FMAP
(depending on the number of stride), while up-sampling
module will double the size of FMAP. Both max pooling
and up-sampling modules can also be skipped depending
on the parameter given by the instructions. Output ordering
module prepares the data format, thus it will be easy for the
output to be written into the DDR memory. Lastly, the output
writer works in similar way to the other reader modules
(Bias Reader, FMAP Reader, and Weight Reader). Instead of
reading from theDDR, its task is to write back to the DDR.
The details for each modules will be explained in following
sections.

1) DLQ MODULE
DLQ module performs the Dequantization, leaky ReLU,
and Quantization processes that have been explained in
Section II-G. Figure 31 shows the internal architecture of
DLQ module. It consists of 14 parallel multipliers to mul-
tiply the FMAP outputs of convolutions with the positive
scales or negative scales. The output of this multiplication
will become the quantized FMAP value in the form of 8-bit
data. Figure 32 shows how the scheduling in DLQ module
is performed. Because the scales are in fixed point numbers,
the multiplication processes are also done in fixed points and
it takes 4 clock cycles to finish a multiplication. Overall, this
module has initiation interval of 1 clock cycle and a latency
of 7 clock cycles.

FIGURE 31. Architecture of DLQ module.

FIGURE 32. Operation scheduling in DLQ module.

2) MP MODULE
MP module performs max pooling operation to the output
FMAP. It also can be skipped because not every batch layer
needs max pooling process. Figure 33 shows the ordering of
the FMAP output produced from the MatMult Core and the
DLQ module. The producing order is based on the channel.
In each channel, it produces 14 words width of data (1 data
packet). Because of this,MPmodule needs to store the FMAP
values before it can be compared to the other FMAP values
in different row in the same channel.

Figure 34 shows the internal architecture of MP module.
It consists of two comparators. The first comparator will
compare the FMAP value in the same row. The second
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FIGURE 33. FMAP output producing order.

FIGURE 34. MP module internal architecture.

comparator will compare the FMAP value in different row.
At the beginning, the BRAMMP is initialized with minimum
values, thus the first row of the FMAP is always stored in
the BRAM. Figure 35 shows an example how the FMAP
data is being processed inside the module. In this example,
we use the FMAP data packet with the width of 8 words. The
output of the first comparator will be reduced the width of
FMAP words to only 4 values (assuming MP size is 2 by
2 with the stride of 2). This output will be compared again
using the second comparator with another 4 width FMAP
words from different row (but still in the same channel), that
has been stored in the BRAM. The final output of the MP
module will be the max pooling result with the reduced width
of data packet (in the example of Figure 35, the input has
8 words width and output of 4 words width). To preserve the
words width, we will stored again the output words in another
BRAM (not shown in the Figure) and will output the final
results once the words width is the same as the input words
width. In our real implementation, this module receives the
data packets with the width of 14 words and produces the
data packet with the width of 14 words.

Figure 36 shows how the operations are scheduled. This
module has initiation interval of 1 clock cycle and a latency
(loop latency) of 3 clock cycles. The overall output latency
of this module will depend on the size of the FMAP being
processed. Specifically, it depends on the number of data
packets in each FMAP row. For example, the FMAP with
the size of 14 by 14 only has 1 data packets to read the data
in one row, because the width of our data packet is equal
with the number of data in one row. However, FMAP with
the size of 28 by 28 has 2 data packets to read one row
of FMAP. As a result, it needs to store more data packet
before it can be compared to the next row in the same
channel.

FIGURE 35. The working illustration of MP module.

FIGURE 36. Operation scheduling in MP module.

3) UP SAMPLING MODULE
Up-sampling module performs up sampling operation to
increase the FMAP size by duplicating each pixel area by 4.
It also can be skipped because not every batch layer needs up
sampling operation. Figure 37 shows the internal architecture
of up-samplingmodule. It consists of 3 registers and a BRAM
to store the up-sampling results. The RegIn registers store
the data packet of 14 words (1 data packet) during the Read
operation. The Dupli operation will duplicate the data in
the RegIn registers to the Duplicator registers which stores
the data packet of 28 words. This operation performs the
up-sampling operation for the FMAP data in the same row.
As a result, the data packet width will be doubled. The result
of Duplicator registers will be stored in BRAMUpSampling,
while the first 14 words of data packet will be loaded to the
RegOut registers during the Load operation. Lastly, theWrite
operation will write out the results to the output FIFO. Once
one full FMAP row has been produced, this module will
produce the same outputs again using the previous values that
had been saved on BRAM, where the up-sampling operation
performs the pixel area duplication by 4. The first 2 duplica-
tions are produced in the first row, the last 2 duplications are
produced in the next row which essentially the same row as
before. During this phase, the Read, the Dupli, and the Store
operations won’t be performed. It will just load the previous
values from the BRAM.
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FIGURE 37. Up sampling module internal architecture.

FIGURE 38. Operation scheduling in up sampling module.

Figure 38 shows how operations are scheduled in this mod-
ule. The operation started by the Read operation following by
the Dupli operation. The Store and the Load operations can
be executed on the same time. There are two possible sources
for the Load operation. The first Load operation is done
during the initial phase, where the source of Load operation
is from the Duplicator registers. The second load operation is
done when the Read, the Dupli, and the Store operations are
not performed and the source of the load operation is from
the BRAM Up Sampling. This module manages to achieve
initiation interval of 1 clock cycle and the maximum latency
of 4 clock cycles.

4) OUTPUT ORDERING MODULE
Output ordering module performs the stream width conver-
sion from 14 words width to 16 words width. The architec-
ture of this module is also similar to the Mapping Module
in the Input FMAP Path and the Weight Ordering Module
(Figure 20). It consists of memories variables (for this mod-
ule, we use BRAM) to exchange data words and the final out-
put stream has the width of 16. The reason why we are doing
this is because of the AXI Full protocol specification [18].
It requires to have the output stream width of 16 before it can
write the result back to the DDR. The operation scheduling
for this module is also similar to Figure 21. It has initiation
interval of 1 clock cycle and a latency (loop latency) of 3 clock
cycles.

5) OUTPUT WRITER
Output writer module performs similar task to the other
reader modules. However, instead of reading from the DDR
memory, this module will write the result to the DDRmemory

through AXI Full protocol. The internal architecture of this
module also similar to Figure 11 but with backward arrow
(indicating the write operation to DDR memory). The oper-
ation scheduling also similar to Figure 12. It has initiation
interval of 1 clock cycles and latency of 3 clock cycles.

V. PROCESSING FLOW
This section discusses how the processing flow between
ARM host CPU and FPGA chip will be executed. Figure 39
shows the working flow between ARM processor as the host
CPU and the FPGA chip as the accelerator. ARM processor
initiates the first process by setting up accelerator’s param-
eters and then triggers the start signal to the accelerator.
The accelerator will execute all the instructions given to it
(1 instruction 1 batch layer) until it trigger back finish signal
to the ARM processor. After that, ARM processor reads the
result and applies it to the image to form the boundary box
and the classification results.

FIGURE 39. Processing flow between ARM host CPU and FPGA chip.

The details of acceleration process inside the FPGA are
shown in Figure 40. The process is started by loading all the
instructions from the DDR memory into the BRAM instruc-
tion memory. Once all instructions have been loaded, the first
instruction will be fetched from the BRAM and then will
be decoded to get the necessary parameters for accelerator.
Once the acceleration process for one batch layer is started,
it will then execute in parallel and pipeline fashion until
all the outputs have been written back to the DDR. After
that, the process of fetching and decoding for the next batch
layer will be started. This process keeps repeating until all
instructions (all batch layers) have been executed.

FIGURE 40. The processing flow Inside FPGA.

VI. CUSTOM INSTRUCTION SET
This section discusses the implementation of custom instruc-
tion set for our hardware accelerator. The instruction is
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already prepared in the DDR memory and the user just needs
to pass the base address along with the number of instructions
through AXI Lite interface before triggering the start signal
to the accelerator. Figure 41 shows our custom instruction
fields. The total length of the instruction is 512 bits. The first
4 fields, where each field has length of 32 bits, are the base
address for bias, input FMAP, weight, and output FMAP for
each batch layer. The next 2 fields, where each field has the
length of 32 bits, are the positive scale and negative scale
values which will be used by the DLQ module. The last field
with the length of 320 bits consists of several parameters for
each batch layers.

FIGURE 41. Custom instruction fields.

TABLE 2. Details of parameters field in custom instructions.

Table 2 shows some of the parameters in the parameter
fields. Note that not all parameter is presented in table 2.
This is the simplification of some parameters. The other
parameters consist of several loop parameters which indicate
the number of executions for each module in the accelerator.
Some other loop parameters are derived during the instruction
decoding process. Table 2 also shows how the parameters
change across all 13 batch layers. The FMAP Dim field
contains the input FMAP size for each batch layer. TheKernel
Dim field contains the size of kernel used during convolution
layer. The Input and the Output Channel field contain the
number of the input channels and the output channels for
each batch layer. The Zero Pad field only has 2 possible
values. The value 1 means that zero padding process will be
executed and the value 0means that zero padding process will
be skipped. The Up Sampling field contains the stride number
of 2 by 2 max pooling window. If the number is zero, it means
the up sampling process will be skipped for that particular
batch layer. The Number of Tiles field contains the number of
block matrix multiplications will be processed in one loop of
computation before the output will be produced. All values of
these parameters are chosen to optimized the BRAMmemory
space limitation in our FPGA.

VII. EXPERIMENTAL SETUP
This section discusses the experimental setup that we used
for testing our design. Figure 42 shows how our system is

FIGURE 42. Experimental setup diagram.

organized. We use Xilinx Ultra96 V2 as our FPGA platform.
It is powered through 12 V voltage and 4 A current in DC
power source. We also use SD card which includes the image
for testing purpose. To access the FPGA, we use the PYNQ
as hardware abstraction layer. PYNQ is already installed in
the SD card and we can access the FPGA directly when it is
connected to the PC through USB cable.

We do the single image testing for detecting whether the
object (e.g., the cat) exists in some images or not. Figure 43
shows the live system setup when we tested our design. The
FPGA board is shown in bottom left corner of the image, it is
connected to the computer through USB cable.

FIGURE 43. Live experimental setup.

VIII. EVALUATION
This section discusses analysis and comparison of our accel-
erator. In Subsection 44, we analyze the dataflow and work-
load impact on the memory access. In
Subsection VIII-B, we discuss the impact of our im2col()
function implementation on the memory storage. In
Subsections VIII-C and VIII-D, we give the comparison of
our accelerator with other hardware platform (CPU, GPU, &
ASIC) and other FPGA hardware accelerator respectively.

A. NUMBER OF MEMORY ACCESS
In this section, we will derive the number of memory access
in each level of memory hierarchy. The number of memory
access can be used to estimate the energy consumption of
the accelerator (the higher the memory level in hierarchy,
the more expensive energy required to access the data).
At least the energy consumption from the data movement, it is
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FIGURE 44. L0, L1, and DDR memory access per batch layer (computed from Equation (14)).

usually the most dominant energy consumption. Rather than
giving an estimation of energy consumption in physical unit,
we derive the analytical model for our accelerator based on
the number of memory access [21]. By this way, we can use
this model even if we implement our accelerator in different
platforms.

The model is derived based on Algorithm 2. There are
3 data types which will be our concern: IFMAP (input
FMAP), OFMAP (output FMAP), and Weight. We neglect
the bias data movement, because the number of bias is small
compared to other data types. For each of memory level,
the number of memory access is as follows:

DDRN = DDRI + DDRW + DDRO
L1N = L1I + L1W + L1O
L0N = L0I , (14)

where:

DDRN = Total DDR memory access,
L1N = Total L1 memory access,
L0N = Total L0 memory access,
DDRI = IFMAP access on DDR memory,
L1I = IFMAP access on L1 memory,
L0I = IFMAP access on L0 memory,
DDRW =Weight access on DDR memory,
L1W =Weight access on L1 memory,
DDRO = OFMAP access on DDR memory, and
L1O = OFMAP access on L1 memory.

Start from the DDR memory level, the value of DDRI ,
DDRW , and DDRO can be derived from the number of
LoadFmap(), LoadWeight(), andWriteFmap() function calls,
respectively, as shown in Algorithm 2 lines 11, 13, and 31 that
are multiplied by the number of byte data accessed in one
function calls as follows:

DDRI = NH1× DRbyteI
DDRW = NH1× C × DRbyteW

DDRO = NH1× DRbyteO, (15)

where DRbyte is the number of byte accessed in one function
call for respective data types. The value of DRbyte differs
across batch layers. It is because the dimensions of FMAP
and filter are also vary.

In L1 memory level, the value of L1I can be derived from
the number of Fill() function calls in Algorithm 2 (line 16).
This function takes a set of values from L1 memory and
expands the values according to the padding and im2col()
function applied in each respective layer. Then, it stores the
value in the L0 memory. The value of L1W and L1O can be
derived from the number of L1 memory accessed during the
computing process (line 23) as follows:

L1I = NH1× C × H1× NW1× L1byteI
L1W = NH1× C × H1× NW1× K × L1byteW
L1O = NH1× C × H1× NW1× K × L1byteO, (16)

where L1byte is the number of byte accessed in one function
call or the number of data read from the L1 memory level for
respective data type. For L1byteI , the value will be different
depending on the use of im2col() function to expand the
IFMAP tile. Note that some batch layers use 1 by 1 filter.
In that case, im2col() function is not required. There are
2 possible values for L1byteI : 3× 16 (if im2col() is used) or
9 × 14 (if im2col() is not used). The values of L1byteW and
L1byteO depend on the systolic array size. For our implemen-
tation, the value will be 9× 14.
Finally, the value of L0I can be derived the same way as

L1W and L1O.

L0I = NH1× C × H1× NW1× K × L0byteI , (17)

where L0byteI has the same value as L1byteW and L1byteO.
Using this model, we can compute the memory access

size on each memory level. Figure 44 shows the memory
access size for all batch layers. As shown, the L0 memory
level dominates the memory size access across all batch
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layers, followed by the L1 memory and the DDR memory,
respectively. This result is to be expected, since we want to
minimize the memory access from the DDR and optimize the
memory access in the L0 memory level. The high number
of memory access to/from the L0 and the L1 memories also
indicates the high number of data reuse.

From this model, we can further estimated the energy
cost from the data movement by multiplying the result with
the amount of energy used per byte of data movement
(joule/byte) for each memory level in the targeted device.

B. ANALYSIS ON Im2col
In this section, we will evaluate the im2col() function imple-
mentation in our hardware, especially in the term of memory
size. As we know, the naive implementation of im2col()
function will expand the IFMAP size from the dimension of
I [C][H ][W ] to I [CRS][PQ]. In our YOLOmodel, we always
use the same type of convolution so PQ == HW and our
IFMAP size will expand by the RS times. Except for layer 8,
9, 11, and 13 (which uses 1 by 1 filter), we use 3 by 3 filter
for convolution, thus the IFMAP expansion ratio is 9.

Performing the naive im2col() function directly to IFMAP
will result 9 times size of expansion. To prevent this, instead
of directly transform IFMAP using im2col(), we transform
the IFMAP into compressed matrix form and store it to the
L1 memory. In general, the size IFMAP size expansion is as
follows:

TransformedSize
OriginalSize

=
H × C × PacketSize× W

W1

W × H × C

=
PacketSize

W1
. (18)

As mentioned in Section IV-C, for our case, the
PakcetSize = 16 and W1 = 14, thus the expansion ratio is
8
7 ≈ 1.14. Therefore, we can save storage space up to≈ 7.89
compared to the naive im2col() implementation. Figure 45
shows the bar chart of im2col() size expansion when it is
implemented naively vs using the compressed form.

FIGURE 45. FMAP size expansion caused by im2col () function
(Compressed vs Naive).

C. COMPARISON WITH CPU, GPU, & ASIC
The accelerator is implemented in Ultra96 V2 platform
board. It manages to run with the maximum clock frequency
of 250MHz and has a power consumption of 4.3 W. The
design takes 248 BRAMs, 242 DSPs, 27.3k LUTs, and 38.5k
FFs. The total latency for 1 image with the image size of
448 × 448, that going through 13 batch layers, is 121ms.
The theoretical peak GOPS for current version of design is
31.5 GOPS and has a power efficiency of 7.4 GOPS/W.

Table 3 shows layer by layer performance comparison
between Ryzen 5 3600 CPU and our accelerator implemen-
tation on FPGA. To be fair, we compare only convolution
time in CPU (which is only includes matrix multiplication
and is done by using standard python NumPy library) with
the overall execution time in our accelerator. The data prepa-
ration time and post-processing time are not included in CPU
execution time because there is no standard library that can
guarantee the quality of code. Thus, the code that implements
the data preparation and the post-processing in CPU will be
different from person to person. By comparing the result with
the same YOLOmodel that runs on AMDRyzen 5 3600 CPU
with 3.6 GHz clock speed, our accelerator is 69.3 times faster.

TABLE 3. Performance comparison to Ryzen 5 3600 CPU.

We also compare our accelerators with commercial AI
accelerators on the market that use different types of plat-
forms. First, we compare it to a GPU-based AI accelerator,
the Jetson Nano. Jetson Nano is a GPU-based hardware
accelerator for edge computing purposes [22]. Jetson Nano
achieves quite impressive inference performance, which only
requires 40 ms execution time for the YOLOv3-Tiny algo-
rithm using 32-bit floating point precision. The GPU on
Jetson Nano has been optimized so that it can work at a lower
clock frequency than the GPU on a PC. Even so, the clock
frequency still reaches 1.3 GHz and also requires a fairly high
power consumption of up to 10Watts. When compared to our
accelerators, our power consumption is 2.34× lower than the
Jetson Nano.

We also compare with another type of accelerator which is
an ASIC-based accelerator. The name is Intel’s Neural Com-
puting Stick (NCS) 2 [23]. In terms of platform, ASIC imple-
mentation of the Intel’s accelerator is indeed the most optimal
in terms of energy efficiency and computational performance.
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NCS has a clock frequency of 700 MHz and is capable of
performing computations with a precision of 16-bit floating
point. We tried running the YOLOv3-Tiny algorithm on NCS
and got an inference execution time of 55 ms. Compared to
the Jetson Nano, the execution time is still inferior. However,
in terms of power consumption, theNCS only requires 1Watt,
which means it is very power-efficient.

In Table 4, we compare the performance of AI accelerators
from 3 different hardware platforms. Comparing in terms
of power consumption is certainly unfair because acceler-
ators made using ASIC can certainly save further energy,
while GPU-based accelerators are definitely the most energy-
intensive. Meanwhile, when compared in terms of the overall
inference execution time, GPU-based accelerators still have
the advantage. Currently, GPU-based accelerators are still
the de facto standard in the industry because they have high
computing performance and have the most complete design
tools for developers. One of the things that causes GPUs
to have high computing performance is because GPUs have
a high level of parallelization and can run at high clock
frequencies as well.

TABLE 4. Performance comparison to GPU and ASIC based AI accelerator.

For fairer comparison, we decided to ignore performance
in terms of power consumption because it really depends on
the choice of a platform. As shown in Table 4, we compare
the performance in terms of architecture by calculating the
number of clock cycles required in one inference process.
A better architecture means it can complete computations
with fewer number of clock cycles. In addition, by comparing
the number of clock cycles, we can compare the computa-
tional performance of accelerators more fairly even though
their base clock frequencies differ due to the influence of
platform choice. From the number of clock cycles required
for one inference process, the accelerator that we built using
the FPGA platform has the least number of clock cycles.
This shows that in terms of architecture, our accelerator is
more optimal. In addition, we can also increase the number
of compute cores in our accelerator from 1 core to 8 cores.
As a result, the execution time of our accelerator dropped to
52 ms, less than the execution time on NCS which runs at a
higher clock frequency.

D. COMPARISON WITH OTHER WORKS
Table 5 shows the comparison between this work and other
works. The results in this table are mostly obtained from
the design tools we use, namely Xilinx Vivado 2020.1 [24].
Latency is calculated by measuring the average image infer-
ence time performed using the python standard time library
running on PS side. The GOPS value listed is the theoretical
peak GOPS value obtained from the following equation [3]:

operation
second

=

(
1

cycles
operation

×
cycles
second

)
× number of PEs

× utilization of PEs, (19)

where cycles
operation indicates the number of clock cycle needed

for 1 MAC operation (in our case, our systolic array only
needs 1 cycle per MAC operation), cycles

second indicates the clock
frequency, number of PE indicates the number of available PE
on accelerator (in our case, 1 MatMult core consists of 9×14
PE), and utilization of PE indicates the number of PE that is
actually used for computation. The utilization of PE depends
on the mapping strategy used, the model being executed, and
the scheduling strategy. Since we calculated the peak value of
GOPS, we assumed that PE utilization was 100%. However,
in reality, the PE utilization valuewill vary from layer to layer.

TABLE 5. Performance comparison to other accelerators.

Nguyen et al. [16] managed to achieve impressive latency
result for YOLO v2-Tiny accelerator by developing fully
pipeline architecture across the different batch layers. This
can be achieved by actually implementing entire batch layers
in FPGA and embedding the weight directly to the FPGA.
Thus, it reduces the bandwidth requirement for transfer-
ring weight values from the external DDR memory to the
FPGA. The trade-off for this implementation requires a lot of
resources. They managed to suppress this drawback a little
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by reducing the precision up to 6 bits and by using binarized
(one bit) weight value. In the end, this will reduce the clas-
sification accuracy while in our case, we maintain precision
of 8 bits for both FMAP and weight. Even after the resources
optimization, especially the BRAM and the LUT usages,
their designs are still relatively high and not suitable for
low-cost FPGA. Another drawback from directly embedding
the weight to the FPGA is also lack of hardware flexibility
and reprogrammability, which become the problems when
we need to update the weight values or changing the type
of network. In contrary, our hardware accelerator provides
its own custom instruction set which means our acceler-
ator can be reprogrammed to accelerate various types of
network.

Our convolution method using GEMM has more flexibil-
ity (generalization) and higher efficiency compared to the
previous works. For example by Yu and Bouganis, the com-
putation is done per kernel per channel [13]. In addition,
our accelerator does not need to be reinitiated by the host
CPU for every batch layer. It results in lower overall latency.
Our proposed design which is also to be targeted on low-
cost FPGA, manages to work in higher clock frequency
indicating better worst path delay. We also manage to get
GOPS improvement up to 3×, 2.4× improvement in power
efficiency, and 4× better latency with only 1.5× increment in
the DSP usage. Moreover, in-memory computing (IMC) can
be adapted for further works to reduce the off-chip memory
access [25].

The works by Ahmad et al. [12] builds YOLOv3-Tiny
accelerator in high performance FPGA. By using a lot of
DSPs, they managed to get impressive GOPS performance
and relatively low power consumption. Their accelerator is
focused to accelerate the convolution process only. The pre-
processing (zero padding) and post-processing (activation
function, max pooling, up sampling, etc) are done sequen-
tially by using the soft-core microprocessor Microblaze. The
sequential process of both the pre-processing and the post-
processing should affecting the overall latency performance
too. There is no report about their design latency but com-
paring to our design which done pretty much everything
in FPGA, the overall latency from their design should be
relatively high.

We also mention the comparison of platform cost that
is needed to implement the design. Compared to the other
works, we manage to implement our design on the least
expensive FPGA, indicating that our design is suitable to be
implemented on lost-cost FPGA for edge computing appli-
cation. To elaborate more, we also mention the compari-
son of the Gate Counts which give rough estimate of our
design size when implemented using ASIC. The estimate
gate count value is derived based on the FPGA resource
consumption [19] (roughly an FF equals to 7 gate counts
and an LUT equals to 6 gate counts). Compared to other
works, our design achieves the smallest gate counts numbers
indicating that our design will be smaller when implemented
using ASIC.

IX. CONCLUSION
This paper presented a comprehensive hardware accelera-
tor architecture for YOLOv3-Tiny implemented on low-cost
FPGA Ultra96 V2. The YOLO algorithm was modified to
optimize the hardware implementation. The modification
included (1) reducing the precision up to 8 bits, while still
maintaining the mAP of 75%, (2) merging the batch normal-
ization operation with convolution operation, and (3) merging
the dequantization, leaky ReLU, and quantization operation
into a DLQ operation. The accelerator was also built by
using GEMM principle for convolution. The proposed sys-
tem managed to achieve the frame rate of 8.3 FPS with
the throughput of 31.5 GOPS. We also introduced our own
custom instruction set which increases hardware flexibility
and reprogrammability when it comes to be implemented in
other types of networks. Based on evaluation, our hardware
accelerator managed to outperform the same task up to 69.3×
faster compare to AMD Ryzen 5 3600 CPU. Moreover, com-
pared to the other works, our accelerator has relatively small
design size and small latency, where the clock cycle ratio of
the proposed design is less 1.28× and 1.75× than that of the
NCS 2 and the Jetson Nano, respectively. The architecture is
useful and suitable for edge computing applications.
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