
Received September 16, 2021, accepted October 8, 2021, date of publication October 15, 2021, date of current version November 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3120414

Consistency Validation Method for Java
Fine-Grained Lock Refactoring
YANG ZHANG , CHUNXIA LI , AND YU BAI
School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China

Corresponding author: Yu Bai (baiyu@hebust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61902108, in part by the Scientific
Research Foundation of Hebei Educational Department under Grant ZD2019093, and in part by the Natural Science Foundation of Hebei
Province under Grant F2019208305.

ABSTRACT Many existing refactoring tools reduce the possibility of lock conflicts and improve the
concurrency of the system by reducing lock granularity and narrowing the scope of locked objects. However,
such refactorings can lead to changes in concurrent program behavior, introduce concurrency errors, and
often even produce code that does not compile or can be compiled but has changed semantics. To address
the problem of changes in concurrent program behavior caused by transferring from coarse-grained locking
to fine-grained lock refactoring, a refactoring consistency validation method for fine-grained locking is
proposed. Firstly, the types of behavioral changes caused by the existing refactoring engine are analyzed in
terms of thread interactions. Secondly, the relevant consistency checking rules are summarized according
to the types. Finally, with the help of various program analysis techniques such as call graph analysis,
alias analysis and side-effect analysis, the corresponding checking algorithms are designed according to
the consistency checking rules to check the consistency of the program before and after refactoring.
We implement an automatic validation tool as an Eclipse plug-in. Our approach is verified by ten open-source
projects including HSQLDB, Xalan and Cassandra, etc. A total of 1,483 refactoring methods were tested,
and 60 inconsistent synchronization behaviors were found, which improved the robustness of refactoring in
terms of data dependence and execution order.

INDEX TERMS Fine-grained lock, refactoring, consistency validation, alias analysis, side-effect analysis.

I. INTRODUCTION
Locks are used to control access to shared resources by
multiple threads and are one of the most commonly used syn-
chronization methods, but the use of locks can easily lead to
lock contention. Lock contention is a phenomenon in which
multiple threads attempt to access a shared resource protected
by the same mutually exclusive lock during program execu-
tion. In a highly concurrent environment, especially when the
critical section is large or when threads enter it frequently,
the performance degradation caused by lock contention can
be significant. A critical section is a program fragment that
accesses a shared resource that cannot be accessed by mul-
tiple threads at the same time. One important property of a
lock is the lock granularity. Lock granularity is a measure of
the amount of data protected by a lock. A reasonable locking
granularity maximizes the use of shared resources, so it is

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

important to optimize the locking granularity. Coarse-grained
locking is a type of lock with a small number of locks and
a large amount of data protected by each lock. Fine-grained
locks are locks with a large number of locks, each protecting a
small amount of data. Usually, when choosing coarse-grained
locks, the lock overhead is low when accessing protected
data in a single thread, but the performance is poor when
multiple threads access it at the same time because of the
increased lock contention. Conversely, using fine-grained
locks increases lock overhead and reduces lock contention.

Due to the difficulty of developing concurrent programs,
program developers tend to use coarse-grained locking meth-
ods to reduce the burden, such as synchronous methods
or synchronous blocks in Java. However, coarse-grained
locking may actually result in many operations being exe-
cuted sequentially, reducing the efficiency of the program.
In order to optimize synchronization, developers have intro-
duced fine-grained synchronization mechanisms to reduce
the locking granularity and narrow the range of locked

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 149287

https://orcid.org/0000-0001-8641-2660
https://orcid.org/0000-0002-9799-0711
https://orcid.org/0000-0003-3264-185X

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

objects, reducing the possibility of lock conflicts. Since the
read operation itself does not affect the data integrity and
consistency, in suitable scenarios, using the read-write split
lock to replace the exclusive lock and partition the system
function points can effectively improve the concurrency of
the system. Among the fine-grained lock refactoring tools,
FineLock [1] adopts the read-write split lock approach and
implements a kind of automatic fine-grained lock refactoring
based on a push-down automaton to complete the automatic
conversion from coarse-grained locks to fine-grained locks,
which improves the refactoring efficiency compared with
manual refactoring.

In existing automated refactoring, improperly refining
coarse-grained locks can aggravate the uncertainty and con-
currency during the running of concurrent programs, and
the refactored programs may have new concurrent behav-
iors, such as deadlock, live lock, data contention, etc. For
sequential programs, developers are usually encouraged to
use regression testing techniques to ensure that refactoring
does not change the program behavior [2]. However, this
approach highlights its effectiveness when only very few
threads are scheduled in a concurrent environment.

There are many studies on the correctness of refactoring
concurrent programs. Some researchers believe that precon-
ditions can be set at the beginning of refactoring to prevent
inconsistent behavior, but automated refactoring tools cannot
check all preconditions for refactoring [3], [4], so they cannot
completely rely on checking preconditions to complete all
consistency verification. In addition, modular reasoning [5]
and framework protection behavior [6] have been proposed
to improve the correctness of concurrent programs. Among
the consistency detection tools for software refactoring, the
representative ones are Randoop [7]–[9] and EvoSuite [10],
which are not only able to detect errors introduced by refac-
toring, but also can help improve the efficiency of refactoring.
The refactoring detection method IDiff [11] can effectively
detect differences, moves and refactoring-related changes in
the source code and help to understand software evolution.
The model refactoring checking tool CVT [12] helps to solve
the problem of checking the consistency between the model
and its evolution. There have been some works on concurrent
program refactoring to detect inconsistent behavior before
and after refactoring [13], [14], but the correctness verifi-
cation in fine-grained lock refactoring has yet to be stud-
ied in depth. For example, although FineLock has a certain
consistency detection mechanism, it still lacks treatment for
ensuring data synchronization and consistency of execution
order. Using consistency checking methods to examine the
synchronization behavior before and after fine-grained lock
refactoring and the original external characteristics of the
program allows software developers and maintainers to gain
more insight into the evolutionary history of the software and
thus better maintain it.

To check the synchronization change of behavior caused by
fine-grained lock refactoring, the paper proposes a method to
check the consistency of refactoring.We analyzed three kinds

of behavior changes caused by the existing refactoring engine
and summarized the relevant consistency validation rules.
According to the proposed rule, variable overlapping vali-
dation, condition missing validation and sequential violation
validation are designed to verify the consistency before and
after refactoring. In experiments, we perform fine-grained
lock refactoring of the benchmark program by FineLock
refactoring tool, and then use the program before and after
refactoring as input to perform consistency checking. We val-
idated the tool on ten large scale real applications and detected
a total of 1483 refactorings for read-write lock separation
and found 60 inconsistent synchronization behaviors. Exper-
imental results show that the method proposed can effectively
discover the inconsistent synchronization behavior caused by
fine-grained lock refactoring. The main contributions of the
paper include the following:

• We found that the existing refactoring technology may
introduce concurrency errors that could change the order
of threads (see §3).

• We proposed a refactoring consistency validation
method oriented to fine-grained locks (see§4).

• We developed an automated verification tool imple-
mented as Eclipse plugins(see§5).

• We evaluated our tool on several real-world applica-
tions(see§6).

Finally, we conclude.

II. RELATED WORKS
The paper implements a refactoring consistency validation
tool for fine-grained locks. We mainly focus on two aspects
of related work: fine-grained lock refactoring and refactoring
verification.

A. FINE-GRAINED LOCK REFACTORING
In the area of concurrent code optimization through refactor-
ing, Schäfer, in collaboration with IBMT. J.Watson Research
Center, designed a refactoring tool for Java display locks,
Relocker [15], [16], to refactor synchronous locks into Reen-
trant locks and refactor Reentrant locks into Read-write locks.
Tao and Qian [17] proposed an automatic lock decompo-
sition refactoring method for Java programs to divide lock
protection domains based on class attribute domains, and
implemented the automatic refactoring tool in the form of an
Eclipse plug-in. Yu and Pradel [18] proposed a lock decom-
position method in their research on optimizing synchro-
nization bottlenecks, which reconstructs lock dependencies
and uses fine-grained locks to protect disjoint sets of shared
variables. Zhang et al. [19] proposed FineLock, an automatic
refactoring method for fine-grained locks, which uses lock
degradation and lock decomposition to achieve a fine-grained
way of protecting critical sections.

The above studies implement the fine-grained protection
of the critical section by lock allocation, lock reservation,
atomic block and lock degradation, lock decomposition and
other techniques to reduce the critical section competition,

149288 VOLUME 9, 2021

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

our research is to check the consistency of the change of
synchronization behavior before and after the fine-grained
lock refactoring, mainly for lock decomposition and lock
degradation.

B. REFACTORING VERIFICATION
In terms of consistency verification of refactorings, Ubayashi
et al. [20] proposed the concept of RbC (Refactoring by
Contract), a contract-based technique for verifying refactor-
ings, in order to deal with the bugs embedded in refactorings
of cut-oriented programming. The contract in RbC consists
of preconditions, postconditions and invariants. After the
introduction of RbC, it is checked whether the refactoring
preserves the behavior and whether it actually improves the
internal structure. Yin et al. [21] proposed a new method
for formal verification of the functional correctness of soft-
ware, Echo, which can be used to verify refactorings. Echo
mainly proves that the semantics of the refactored program
is equivalent to that of the original program. Garrido and
Meseguer [22] specified three useful Java refactorings, giving
detailed correctness proofs for two of them. Each of these
methods defines some specifications and conditions to verify
the correctness of the refactorings.

Software refactoring is the modification of software to
improve its structure, clarity, extensibility and reusability
without changing its functionality and external visibility.
Therefore, it is necessary to check the consistency of the
program before and after refactoring to verify the function-
ality and external visibility of the program after refactor-
ing. In terms of consistency testing for sequential programs,
Silva et al. [10] proposed a regression test suite to verify
refactorings, and regression tests can also be used for con-
sistency checking before and after refactorings. Abadi et
al. [23] proposed a method for verifying parallel code after
refactoring, which is based on symbolic interpretation, which
utilizes the original sequential code that has been tested and
verified in most cases and checks whether it is equivalent to
that code after refactoring. Dao et al. [11] proposed a tool
for consistency checking of behavior in model refactoring.
In the area of consistency checking for concurrent programs,
Hofer et al. [24] proposed a new approach to analyze lock
contention in Java applications by tracking locking events in
the Java virtual machine, which reveals the causes of lock
contention and identifies performance bottlenecks of locks.
Schäefer et al. [25] proposed a behavior-preserving tech-
nique to avoid changing program behavior. By analyzing the
possible causes of inconsistent behavior changes due to cur-
rent refactorings, a concurrent program behavior preservation
technique is proposed to address the causes of the problem.
The technique introduces synchronization dependencies and
simulates the ordering constraints of the Java memory model,
and proves that the technique can guarantee the behavior
retention. Silva et al. [12] proposed a refactoring consistency
detection method for concurrent software refactoring, which
uses control flow analysis and data flow analysis to detect
changes before and after refactoring, and synchronization

dependency analysis to detect changes in synchronization
dependencies before and after refactoring.

The above studies implement refactoring correctness
checking in various forms and automate the tools well, but
they are all performed for concurrent programs, and we focus
on consistency checking for refactored programs with fine-
grained locks.

III. MOTIVATION
This section shows code snippets of existing FineLock refac-
toring tools that change the behavior of programs before and
after software refactoring, giving the motivation for the paper.

To illustrate the change in synchronous behavior of the
program before and after the refactoring, the code structure
is illustrated. Figure 1 is a selection from the Guava API
documentation and shows the refactoring that splits a critical
area in Figure 1(a) into a critical area in Figure 1(b) that is
locked by a write lock and a read lock, respectively. If there
are two threads executing this code at the same time, the
synchronized modification in Figure 1(a) ensures that only
one thread is accessing the get() method at the same time,
the two threads return the result value of value, null and
multiple runs remain consistent. After refactoring, if the cur-
rent thread2 is acquiring the write lock when the write lock
has been acquired by thread1, the current thread enters the
wait state. When thread1 releases the write lock, the Java
memory model will refresh the shared variable value of the
local memory corresponding to the thread to null in the main
memory. If thread2 gets the write lock before thread1 gets the
read lock, the original operation semantics may be changed
if both return null.

Figure 2 shows two implementations of the process-
Cached() method, which is a typical cache processing oper-
ation taken from the Java API documentation for read/write
locks. The method processCached() simulates the operation
on the database and the cache by first determining whether
the data exists in the cache, and if so, reading the data directly
from the cache, otherwise writing the data from the database
to the cache.

In Figure 2(a), the method uses synchronized for synchro-
nization control, and the wholemethod is under the protection
of the lock is a coarse-grained protection. Figure 2(b) is a
fine-grained lockingmethod, which first obtains the read lock
and judges the cacheValid (lines 3-4), if the if condition does
not hold, it directly reads and releases the read lock (lines
15-17). If it holds, it releases the read lock to obtain the
write lock (lines 5-6), and when the cache is written from
the database, it obtains the read lock and then releases the
write lock to complete the lock degradation operation (lines 8-
11). However, after refactoring, the conditional statement and
its statement body are refactored to different critical areas.
If there are two threads executing this code at the same time,
even if the data is not in the cache at the beginning, both
threads may read the current state of the cache and store it in
their respective CPU cache, and if the state is not rechecked,

VOLUME 9, 2021 149289

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

FIGURE 1. Example of fine-grained lock decomposition for program behavior changes.

FIGURE 2. An example of fine-grained lock downgrading to change program behavior.

another thread may obtain the write lock and change the state
before.

Because of the exclusivity of the synchronized keyword,
all threads must pass through the shared area protected by
synchronized serially. Therefore, in Figure 3(a), method m()
is executed with flag1 and flag2 read directly after self-
incrementing, and if the if condition holds, the bug string
is output. When method m1() is executed, flag1 is also read
directly after the assignment operation, and if the if condition
is valid, the bug string is output. Figure 3(b) shows the refac-
tored code. Inmethodm(), firstly, a write lock is applied to the
self-increment operation (lines 7-12), and then a read lock is
applied to the if condition statement and the output statement
(lines 14-20). In method m1(), the assignment operation is
first locked with a write lock (lines 24-28), and then the if
condition statement and the output statement are locked with
a read lock (lines 30-36). After refactoring, the lock object of

method m() is rwlock and the lock object of method m1()
is nulock. If a thread executes the method in class C, the
execution order CS1->CS3->CS2->CS4may occur, making
the program unable to output the bug string.

From the above example, we can see that the refactoring
uses lock downgrading and lock decomposition to achieve
fine-grained protection of the critical section, which reduces
lock contention to some extent, but may lead to changes in
synchronization behavior due to improper lock downgrading
and lock decomposition, which may lead to program errors.

IV. CONSISTENCY VALIDATION RULES
The paper focuses on the consistency checking operation
of FineLock, a fine-grained lock refactoring tool that uses
a push-down automaton to construct different lock pat-
terns. Although consistency detection rules are defined in
FineLock to constrain the refactoring of lock degradation

149290 VOLUME 9, 2021

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

FIGURE 3. Example of fine-grained lock decomposition for program behavior changes.

and lock decomposition, there are still inconsistent behav-
iors as described in the previous section. In order to fur-
ther ensure the correctness of refactoring, we provide an
additional description of FineLock’s consistency checking
rules.
Definition 1 (Invariance of the External Behavior of

the Program Before and After Refactoring): The applica-
tion P before and after refactoring is denoted as Pbefore
and Pafter respectively, The external behavior of the pro-
gram is expressed as Behavior (P), and the external behav-
ior unchanged before and after refactoring is defined as
Behavior

(
Pbefore

)
≡ Behavior

(
Pafter

)
, otherwise it is

defined as Behavior
(
Pbefore

)
6= Behavior

(
Pafter

)
.

Definition 2 (Set of Critical Sections): The set of all
critical sections in an application P is defined as C =

{c1, c2, . . . , cn}, and the number of elements in the set C
is denoted by |C|, n = |C|. The set of critical sections of
Pbefore and Pafter is correspondingly expressed as Cbefore and
Cafter . Since the critical section needs to be divided during the
refactoring process of FineLock from coarse-grained lock to
fine-grained lock,

∣∣Cbefore∣∣ <
∣∣Cafter ∣∣. Since the code in an

application P is finite, it can be known that the critical section
contained in P is also finite, so C is a finite set.
Definition 3 (Critical Section Division) For ∀ci ∈

C (1 ≤ i ≤ n), a coarse-grained critical section ci can be
divided into k sub-critical sections, defined as ci =
{ci1, ci2, . . . cik}.

Definition 4 (Set of Read and Write Operations in Crit-
ical Section) The set of read and write operations of all
critical section C in a program P is defined as OP ={
OP1,OP2, . . . ,OPy

}
. For ∀ci ∈ C (1 ≤ i ≤ n) , ci can con-

tain several sets of read and write operations OPi, OPi =
{opi1, opi2, . . . opir } ⊆ ci. Correspondingly, the read opera-
tion is denoted as opri1, and the write operation is denoted as
opwi1.
Definition 5 (Set of Locks Before Refactoring): The set

of all locks used to protect the critical section Cbefore in an
application Pbefore is defined as the set S = {s1, s2, . . . sm}.
Due to C is a finite set, the code corresponding to

the critical section is usually protected by a lock. In the-
ory, a critical section can be protected by multiple locks,
but a critical section can be protected by no more than
two locks in practice, so S is a finite set. For ∀se ∈
S (1 ≤ e ≤ m) , se means at it contains both locking and
unlocking
operations.
Definition 6 (Lock Protection): For ∀ck ∈ C (1 ≤ k ≤ n),
∃se ∈ S (1 ≤ e ≤ m), if the critical section ck is in the
protection of the lock se, the lock protection relationship is
defined as se ⊕ ck .

A lock can protect multiple critical sections. The set of
these critical sections is ck . ck is a subset of Cbefore, that is,
ck ⊆ Cbefore, then the lock protection relationship is defined
as se ⊕ ck .

VOLUME 9, 2021 149291

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

Definition 7 (Refactored Lock Set): In the refactored appli-
cation Pafter , the set of all lock used to protect the critical
section Cafter is defined as set L = {l1, l2, . . . lt }.
For ∀la ∈ L (1 ≤ a ≤ t) , cv is a subset of Cafter , that is,

cv ⊆ Cafter , the lock protection relationship is defined as
la⊕cv. Definition 7 illustrates the difference between the lock
set before and after refactoring. After FineLock refactors the
synchronization lock into a read-write lock, the lock set is
represented by L.
Definition 8 (Conditional Layout): For ∀ci
∈ C (1 ≤ i ≤ n), ∃zj ∈ Z , zj−e ∈ Ze, where Z is a conditional
control set, Ze is a conditional end instruction set, zj, zj−e
are a certain control condition and condition end instruction
respectively. If zj, zj−e lie in the critical section ci at the same
time, it is defined as zj ∪ zj−e F ci. Conversely, it is defined as
zj ∪ zj−eF/ ci.
Definition 9 (Happens-Before Relation): For ∀ci ∈

C, {opi1, opi2, . . . opir } ⊆ ci (1 ≤ i ≤ n) ,

∃u, v (1 ≤ u ≤ r, 1 ≤ v ≤ r) the Happens-before relation is
defined as opiu→ opiv if opiu occurs before opiv. By virtue of
the transferability of the Happens-before relation, if opiu →
opiv and opiv→ opiw, then opiu→ opiw.

The Happens-before relationship is defined as a sequential
relationship between read and write operations based on the
Java memory model and is an important criterion for memory
consistency in the Java language. One way to establish this
relationship is through a synchronization relationship in the
program, where the operation before unlocking occurs before
the operation after unlocking to obtain the lock.

Based on the above definition, the consistency validation
rules for fine-grained lock refactoring are given below.
Rule 1 (Correspondence of Locks Before and After Refac-

toring): If we want to guarantee Behavior
(
Pbefore

)
≡

Behavior
(
Pafter

)
, before refactoring for ∀ck

∈ C (1 ≤ k ≤ n) , ∃se ∈ S (1 ≤ e ≤ m), there is se⊕ck . After
refactoring, for ∀cv ∈ C (1 ≤ v ≤ n) , ∃la ∈ L (1 ≤ a ≤ t),
la ⊕ cv. If cv ⊆ ck , there is a one-to-one correspondence
between se and la, denoted as se ↔ la.

Our consistency validation method focuses on fine-grained
locks refactoring, after the refactoring the critical sections
will still in locks protection. Therefore, it will change the
program behavior if the critical sections are without locks
protection after the refactoring. Rule 1 illustrates that the
critical area, which is in lock protection before refactor-
ing, remains in lock protection after refactoring, and there
is a one-to-one correspondence between the lock before
refactoring and the lock after refactoring. If rule 1 is bro-
ken, the consistency will be violated, but the violation of
consistency is not necessarily caused by breaking rule 1.
Rule 1 is a necessary and insufficient condition for behav-
ior consistent of the program before and after refactoring,
i.e. Rule1 ⇐ Behavior

(
Pbefore

)
≡ Behavior

(
Pafter

)
, but

Rule1 6⇒Behavior
(
Pbefore

)
≡ Behavior

(
Pafter

)
; ¬ Rule1⇒

Behavior
(
Pbefore

)
6= Behavior

(
Pafter

)
.

Rule 2: Before refactoring, for ∀ci ∈ C,

{opi1, opi2, . . . opir } ⊆ ci (1 ≤ i ≤ n) , ∃se ∈ S (1 ≤ e ≤ m),

there is se ⊕ ci. After refactoring, ci = {ci1, ci2, . . . cik},
if ∃la ∈ L (1 ≤ a ≤ t), there is se ↔ la, and for ∀cix , ciy
(1 ≤ i ≤ n, 1 ≤ x ≤ k, 1 ≤ y ≤ k, x 6= y), there is la ⊕{
cix , ciy

}
. For ∀opip, opiq (1 ≤ p ≤ r, 1 ≤ q ≤ r), if

{
opip

}
⊆ cix ,

{
opiq

}
⊆ ciy, opip and opiq access the same memory

location, and one of them is a write operation opwip

∣∣∣opwiq ,
after the lock is broken down, Behavior

(
Pbefore

)
6=

Behavior
(
Pafter

)
.

Rule 2 constrains the lock decomposition in terms of main-
taining the atomicity of the original critical area to ensure
that the atomicity of the original critical area is not broken.
If there are opip and opiq accessing the samememory location,
it is possible that the original operation semantics may be
changed due to thread interaction. It will cause problems of
visibility, atomicity, ordering. Rule 2 is a necessary and insuf-
ficient condition for behavior violation of the program before
and after refactoring, i.e. Rule 2⇒ Behavior

(
Pbefore

)
6=

Behavior
(
Pafter

)
.

Rule 3: For ∀ci ∈ C (1 ≤ i ≤ n), ∃zj ∈ Z , zj−e ∈ Ze,
there is zj∪ zj−e F ci. After the critical section is decomposed,
ci = {ci1, ci2, . . . cik}, for ∀cix ∈ C (1 ≤ x ≤ k), there is
zj∪zj−eF/ cix and there is no judgment statement identical to zj
in the sentence block judged by zj, then Behavior

(
Pbefore

)
6=

Behavior
(
Pafter

)
after lock decomposition.

Rule 3 illustrates that the original control condition and the
conditional end instruction are in the same critical section.
and after the decomposition of the critical section, it is possi-
ble to change the original operation semantics due to thread
interaction if they are not in the same critical section and
no secondary determination is made within the statement
block. Rule 3 will cause problems of visibility, violate the
consistency of the program. Rule 3 is a necessary and insuffi-
cient condition for behavior violation of the program before
and after refactoring, i.e. Rule 3⇒ Behavior

(
Pbefore

)
6=

Behavior
(
Pafter

)
.

FIGURE 4. The validation framework.

149292 VOLUME 9, 2021

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

Rule 4: Before refactoring, for ∀ci ∈ C (1 ≤ i ≤ n) , ∃se ∈
S (1 ≤ e ≤ m), there is se ⊕ ci. After refactoring ci =
{ci1, ci2, . . . cik}, if ∃la ∈ L (1 ≤ a ≤ t), such that
se ↔ la, and for ∀cij (1 ≤ i ≤ n, 1 ≤ j ≤ k), there
is la ⊕

{
cij

}
. When {opi1, opi2, . . . opir } ⊆ ci, for

∀opip, opiq (1 ≤ p ≤ r, 1 ≤ q ≤ r), if opip→ opiq in Cbefore,
then there is still opip→ opiq in Cafter .
Rule 4 constrains the refactoring of lock decomposition

by checking the Happens-before relationship of the read and
write statements in the critical section to ensure that the
relationship has not changed before and after refactoring.
In the refactoring object of FineLock tool, the code before
and after refactoring involves synchronization relationship,
and the Happens-before relationship can be established on
the basis of synchronization relationship, and then the rule
can be determined. Happens-before is a necessary and insuffi-
cient condition for behavior consistent of the program before
and after refactoring, i.e. ¬ Rule 4⇒ Behavior

(
Pbefore

)
6=

Behavior
(
Pafter

)
.

V. CONSISTENCY VALIDATION METHOD
A. OVERVIEW
In the process of checking consistency, the source program
Cbefore is firstly refactored with fine-grained locks to obtain
the refactored program Cafter . Based on the source code,
we use the WALA [26] software analysis tool to generate
the corresponding call graph and intermediate representation
IR for the source program Cbefore and the refactored program
Cafter respectively. the analysis methods used are mainly alias
analysis and side-effect analysis. Alias analysis is used to
solve the alias problem of accessing variables. The side-effect
analysis determines whether the relevant variables involved
in the critical section have negative effects and generates
read/write field sets. Finally, the variable overlapping vali-
dation, the conditional missing validation, and the sequential
violation validation are designed to verify the consistency
before and after refactoring according to the generalized con-
sistency test rules. The variable overlapping validation is used
to check whether the refactoring will destroy the data depen-
dencies that existed before the refactoring, the conditional
missing validation is used to analyze whether the refactoring
will result in competing conditions, and sequential violation
validation is used to analyze whether the refactoring will
cause deviations in the execution order of threads. The val-
idation framework is shown in Figure 4.

B. CALLGRAPH ANALYSIS
In the framework, theWALA analysis tool is used to generate
a Call Graph for the source and refactored programs. In the
specific generation process, we first obtain the object selected
by the user in the inspection operation through Eclipse JDT,
and then store the object in the analysis domain to build a class
hierarchy, and finally generate a relational call graph based on
the class hierarchy. In the implementation process, the pro-
gram’s relational call graph is obtained by implementing the

makeCallGraph() method in the CallGraphBuilder interface
in WALA. The call graph contains nodes and edges, where
nodes represent methods and the edges represent the calling
process between methods.

C. ALIAS ANALYSIS
Aliasing means that two access variables point to the same
memory location and if one object value changes, the other
will change accordingly.

Before performing the consistency check, all the methods
in the program are first traversed through the call graph anal-
ysis, and the related variables involved in the synchronous
method or synchronous block are collected.

When determining statement dependencies during the test,
alias analysis of the relevant variables is required to determine
whether the memory locations referred to by the two variable
access operations are the same and to avoid misjudgment of
dependencies. In the program, the aliasing statements may
lead to two types of aliasing: assignment between object
variables and combination of object type parameters during
method calls. If two variables are aliased to each other and
represented by a pair (var × var), the set of aliases is repre-
sented as [var× var]∗. For example, if x, y are aliased to each
other, they are denoted as (x × y) and are equivalent to (y ×
x).

D. SIDE-EFFECT ANALYSIS
The side-effects are defined as the modification of memory
units during program execution. The side-effect analysis in
the paper traverses and analyzes the intermediate represen-
tation IR in the method to determine whether the instruction
modifies the memory units. The analysis algorithm is shown
in Algorithm 1.

Algorithm 1 Side-Effect Analysis Algorithm
Input: C – the target critical section
Output: Fprotected_read – read field set

Fprotected_write – write field set
1. Instructions← all instructions from C;
2. Fprotected_write← ∅, Fprotected_read← ∅;
3. for each Ins in Instructions do
4. sideEffectAnalysis(Ins, limit, Fprotected_write, Fprotected_read);
5. end for
6. void sideEffectAnalysis(Ins, limit, Fprotected_write, Fprotected_read)
7. if limit<5 then
8. if Ins is a write instruction to static field f ||

Ins is a write instruction to instance field f then
9. Fprotected_write← Fprotected_write ∪ {f};
10. else if Ins is a read instruction to field f then
11. Fprotected_read← Fprotected_read ∪ {f};
12. else if Ins is a InvokeInstruction then
13. limit++;
14. M← method of Ins invoked;
15. MInstructions← all instructions from M;
16. for each MIns in MInstructions do
17. sideEffectAnalysis(MIns, limit, Fprotected_write, Fprotected_read);
18. end for
19. end if

20. end if

In the analysis of method call instructions, the number of
method call entry levels is limited to 5 in order to ensure
the execution efficiency of the tool. First, the instruction set

VOLUME 9, 2021 149293

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

corresponding to the critical section is obtained and the side-
EffectAnalysis method is called to analyze each instruction
(lines 1-5). Second, the method layer limit is judged(line 7).
After analyzing each instruction, if the instruction modifies
the field, the field is written into Fprotected_write(lines 8-9).
Finally, if it is a method call instruction, the counter of the call
level is incremented by one(line 13)and the sideEffectAnaly-
sis method is recursively called to analyze the instructions
in the called method (lines 14-17). If the currently called
method does not produce side-effects, the field is written to
Fprotected_read (lines 10-11).

E. VARIABLE OVERLAPPING VALIDATION
According to Rule 2 mentioned in the previous section,
we designed a variable overlapping validation, which mainly
refers to the judgment of the relationship between statements
based on data dependency. After fine-grained refactoring,
if the dependent statements are distributed to the different
critical sections, the execution order of the statements may be
destroyed, resulting in changes in synchronization behavior.
Algorithm 2 is the basic structure of variable overlapping
validation.

Algorithm 2 Variable Overlapping Validation
Input: M/B – synchronization method/synchronization block
Output: DataDeMap – dependency set in M/B
1. C← critical section set in M/B
2. for each Ci in C do
3. Instructions← all instructions from Ci;
4. Limit← 0; WprotectedMap← ∅; RprotectedMap← ∅;
5. for each Ins in Instructions do
6. WprotectedMap(Ins)← ∅, RprotectedMap(Ins)← ∅;
7. Fprotected_write← ∅, Fprotected_read← ∅;
8. sideEffectAnalysis(Ins, limit, Fprotected_write, Fprotected_read);
9. WprotectedMap(Ins)←WprotectedMap(Ins)∪ Fprotected_write;
10. RprotectedMap(Ins)← RprotectedMap(Ins)∪ Fprotected_read;
11. WprotectedMap←WprotectedMap ∪ (Ins, WprotectedMap(Ins));
12. RprotectedMap← RprotectedMap ∪(Ins, RprotectedMap(Ins));
13. end for
14. for each key value Insi in WprotectedMap do
15. for each key value Insj in RprotectedMap do
16. if Insi 6= Insj &&(WprotectedMap(Insi)∪ RprotectedMap(Insj))

&&(RprotectedMap(Insi)∪WprotectedMap(Insj))
&&(WprotectedMap(Insi)∪WprotectedMap(Insj))6= 8 then

17. DataDeMap← DataDeMap ∪(Insi, Insj);
18. end if
19. end for
20. end for
21. return DataDeMap;

22. end for

The algorithm 2 scans each synchronization method and
synchronization block, and analyzes the fields used in them
to determine the dependencies, and stores the read and write
mapping relationships between statements and protected
fields using two sets of key-value pairs. First, each critical
section is analyzed and the number of calling layers, Rpro-
tectedMap and WprotectedMap are initialized (lines 4-5).
Second, each instruction is traversed and the protected fields
in the critical section are divided into protected read and
protected write, which are respectively denoted as Fpro-
tected_read and Fprotected_write. The read and write oper-
ation analysis of field f is performed on each instruction

through the sideEffectAnalysis method (line 9). The pro-
tected read and protected write are mapped to the correspond-
ing statements after side-effect analysis (lines 10-11). Finally,
the statements with the same variables in the read-write map-
ping RprotectedMap and WprotectedMap are judged accord-
ing to the dependency judgment rules (lines 15-17). since
multiple critical sections may exist in a synchronous method
or synchronous block after refactoring, the dependencies of
multiple critical sections need to be merged (line 18).

F. CONDITIONAL-MISSING VALIDATION
Condition missing mainly checks the most common compet-
ing conditions, i.e. check first and execute later, by determin-
ing whether conditional statements and statement blocks are
distributed to different critical sections after fine-grained lock
refactoring, and the program does not redetermine the state.
The conditional missing validation is shown in Algorithm 3.

First, the instruction set of the method is generated
and two read lock instruction sets Rprotected, R1protected,
write lock instruction set Wprotected, condition variable set
IFprotected_read, read and write fieldset Fprotected_write,
Fprotected_read, read lock counter and layer limit are
initialized(lines1-4). If the statement is a read lock opera-
tion and the counter is zero, the statement protected by the
read lock is written to Rprotected. If the instruction is a
conditional judgment, the condition variable is written to
IFprotected_read (lines 6-11). If the statement is a write lock
operation and the counter is one, the statement protected by
the write lock is written to Wprotected (lines 17-22) and each
instruction is used to analyze the write operation of field f
(line 21) in the sideEffectAnalysis method. If the instruction
modifies the field, the field is written to Fprotected_write.
If it is a method call instruction, the counter of the call-
ing layer is incremented by one and the sideEffectAnalysis
method is recursively called to analyze the write operation
of the instruction in the called method. If the statement is
a read lock operation and the counter is 1, the statement
protected by the read lock is written to R1protected (lines
24-28). Finally, if there is a conditional judgment instruction
in the first read lock critical section but no conditional end
instruction, there is no conditional judgment instruction in
the write lock critical section and there is no conditional
judgment instruction in the second read lock critical section
but there is a conditional end instruction, at the same time the
condition variable is written (line 32), the method signature
of the method is returned, otherwise, it returns null.

G. SEQUENTIAL VIOLATION VALIDATION
Sequential violation means that the refactoring may result in
a rearrangement of the execution order of multiple critical
sections due to changes in the locking objects of synchronous
methods/synchronous blocks by fine-grained locking. when a
thread releases a lock, the Java memory model flushes the
shared variables in the local memory corresponding to the
thread to the main memory according to the memory seman-
tics of locks. If the critical sections (for example, if there

149294 VOLUME 9, 2021

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

Algorithm 3 Conditional-Missing Validation
Input: M – synchronization method
Output: Sign/null – method signature
1. Instructions← all instructions from M;
2. Rprotected← ∅, Wprotected← ∅, R1protected← ∅;
3. IFprotected_read← ∅;

Fprotected_write← ∅, Fprotected_read← ∅;
4. count← 0, limit← 0;
5. for each Ins in Instructions do
6. if(Ins is a readlock instruction) &&(count==0) then
7. for each instruction Kins after Ins do
8. if Kins is not an unlock instruction then
9. Rprotecte← dRprotected ∪ Ins;
10. if (Ins is Conditional instruction) &&

(Condition variable f!=null) then
11. IFprotected_read← IFprotected_read ∪ {f};
12. end if
13. else
14. count++;
15. end if
16. end for
17. if(Ins is a writelock instruction) &&(count==1) then
18. for each instruction Kins after Ins do
19. if Kins is not an unlock instruction then
20. Wprotected←Wprotected ∪ Ins;
21. sideEffectAnalysis(Kins, limit, Fprotected_write, Fprotected_read);
22. end if
23. end For
24. else (Ins is a readlock instruction) &&(count==1) then
25. for each instruction Kins after Ins do
26. if Kins is not an unlock instruction then
27. R1protectedR1protected∪ Ins;
28. end if
29. end for
30. end if
31. end for
32. if(conditional statement and no conditional end statement in

Rprotected)&&(no conditional statement in Wprotected)
&&(no conditional statement and conditional end statement in
R1protected)&&(Fprotected_write ∩ IFprotected_read 6= ∅)
then

33. return Sign←M_signature;
34. else
35. return null;

36. end if

are three critical sections, write-read-write) are reordered,
it may result in the same memory location being modified
consecutively. When the thread acquires the read lock, the
critical section code must read the shared variables frommain
memory, and the data that should have been read may have
been overwritten.

Algorithm 4 presents the basic structure of sequential vio-
lation validation, which scans each synchronization method
and synchronization block in the class, and analyzes the
fields and lock objects. First, the synchronization block or
synchronization method in the class is traversed (lines 1-2),
and the writing field mapping SWprotectedMap and the read
field mapping SRprotectedMap are initialized. The keywords
are the lock objects belonging to the field write and read
respectively. In the critical section, we divide the protected
fields into protected read and protected write, namely Fpro-
tected_read and Fprotected_write (lines 6-9). Each instruc-
tion performs side-effect analysis (line 10), and after the
analysis, the protected read and protected write are mapped
to the corresponding lock object (lines 11-14). If the write
mappings of different lock objectmethods have the same vari-
able, and the same variable is also read in the two methods,

Algorithm 4 Sequential Violation Validation
Input: Cla – the target class
Output: SeqVMap – sequential violation method pair set
1. B/Mset← all synchronization block and synchronization method from
Cla;
2. for each B/M in B/Mset then
3. limit← 0;
4. SWprotectedMap← ∅, SRprotectedMap← ∅;
5. Instructions← all instruction of B/M;
6. for each Ins in Instructions do
7. Ins.lock← Ins’ protected lock
8. SWprotectedMap(Ins.lock)← ∅, SRprotectedMap(Ins.lock)← ∅;
9. Fprotected_write← ∅, Fprotected_read← ∅;
10. sideEffectAnalysis(Ins, limit, Fprotected_write, Fprotected_read);
11. SWprotectedMap(Ins.lock)←SWprotectedMap(Ins.lock)∪

Fprotected_write;
12. SRprotectedMap(Ins.lock)← SRprotectedMap(Ins.lock ∪

Fprotected_read;
13. SWprotectedMap← SWprotectedMap ∪

(Ins.lock,SWprotectedMap(Ins.lock));
14. SRprotectedMap← SRprotectedMap ∪

(Ins.lock, SRprotectedMap(Ins.lock));
15. end for
16. end for
17. for each Mi/Bi in all M/Bset then
18. for each Mj/Bj after Mi/Bi then
19. Mi/BiWmap←Mi/Bi.SWprotectedMap;
20. Mi/BiRmap←Mi/Bi.SRWprotectedMap;
19. Mj/BjWmap←Mj/Bj.SWprotectedMap;
20. Mj/BjRmap←Mj/Bj.SRWprotectedMap;
21. ifMi/BiWmap and Mj/BjWmap have the same variables then
22. ifMi/BiRmap or Mj/BjRmap have the same variables then
23. SeqVMap← SeqVMap ∪ (Mi/Bi, Mj/Bj);
24. end if
25. end if
26. end for

27. end for

FIGURE 5. Consistency validation tool interface.

it is determined that a sequential violation may occur(lines
17-27).

VI. IMPLEMENTION
We implement our consistency validation tool as an Eclipse
plugin. This experiment uses the WALA tool for code analy-
sis. The interface of the validation tool is shown in Figure 5.

The user needs to select the source program of the test
and the program after fine-grained lock refactoring as input,
and then click the Detection button in the menu bar to start
the plug-in, and select the type of validation that needs to be
tested. The result will display the project path and the num-
ber of categories that caused the synchronization behavior

VOLUME 9, 2021 149295

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

TABLE 1. Benchmarks and their configuration.

TABLE 2. Experimental results of validation tools.

TABLE 3. SPECjbb’s consistency validation results.

change in the display column Information after the execu-
tion is completed, and the corresponding method names and
classes of inconsistent types are presented to the user in the
Variable-Overlap, Condition-Miss, and Sequential-Violation
columns.

VII. EVALUATION
This section conducts an experimental evaluation of the
proposed tools. First, the experimental configuration and
selected test programs are introduced, and then the experi-
mental results are analyzed.

149296 VOLUME 9, 2021

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

FIGURE 6. Discovery of variable overlap.

FIGURE 7. Thread execution path diagram.

A. EXPERIMENTAL SETUP
All experiments are done on HP Z240 workstation with
3.6GHz Intel Core i7-7700 processor and 8GB RAM. The
workstation runs Windows 10 and has Eclipse 4.12. 0, JDK
1.8.0_221, and WALA 1.5.2 installed.

B. BENMARKS
Ten actual applications were used to evaluate the effective-
ness of the proposed validation tool. First, Refactoring oper-
ations were performed on these applications by FineLock, the
programs before and after refactoring were used as the check
objects. These applications include HSQLDB [27], Cas-
sandra [28], SPECjbb2005 [29], JGroups [30], Xalan [31],
Fop [32], RxJava [33], Freedomotic [34], Antlr [35], and
MINA [35]. HSQLDB is an open-source Java database. Cas-
sandra is an open-source distributed NoSQL database sys-
tem from Apache. SPECjbb2005 is a Java application server
test program. JGroups is a toolkit for reliable messaging.
It can be used to create clusters whose nodes can send mes-
sages to each other. Xalan and Fop are XSLT transformation
processors and formatted object processors from Apache,
respectively. RxJava is Netflix’s library for composing asyn-
chronous, event-based programs using observable sequences

on the Java VM. Freedomotic is an open source, flexible
and secure Internet of Things (IoT) development framework.
Antlr is a parser generator, and MINA is Apache’s web
application framework. The version information of these pro-
grams, the number of synchronization methods (Sync_B) and
synchronization blocks (Sync_M), the number of refactoring
operations (lock downgrade, lock decomposition, read lock,
write lock) and refatoring times are presented in Table 1.

C. RESULT AND ANALYSIS
In the experiment, the tool was used to check the consistency
of the ten benchmarks, and some cases were selected for the
results to be displayed.

1) RESULT
After checking the consistency of the above-mentioned
benchmark programs, we conducted category statistics on the
causes of inconsistent synchronization behavior before and
after refactoring in terms of variable overlap due to statement
dependencies, competing relationships, and sequential thread
execution, and the results are shown in Table 2. It can be
seen from the experimental results that there are 60 incon-
sistencies in the benchmarks. The number of overlapping
variables is 15, mainly distributed in HSQLDB, SPECjbb,
Xalan and JGroups. The number of missing conditions is
7. In RxJava and MINA, there are no missing condition
inconsistencies because the source program contains fewer
built-in monitor objects and the refactoring does not perform
lock downgrading. The number of sequential violations is
38, and the number of changes in synchronization behavior
detected is 17 because the number of refactorings converted
to lock decomposition mode in the HSQLDB test program is
high; the number of lock decomposition and lock degradation
in Fop, RxJava, Antlr and MINA is low, so the number of
inconsistencies is low or even absent.

The total time consumed by the 10 test programs is 1431
seconds, and the average time consumed by each pro-
gram is 143.1 seconds, as shown in Table 2. There are

VOLUME 9, 2021 149297

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

FIGURE 8. Conditional missing test result.

more synchronization methods and synchronization blocks
in HSQLDB, there are 684 of them, and the test time
is 384 seconds. Due to the relatively large scale of Cassandra,
the time spent for traversal analysis is long, although it is
only 10 inconsistencies tested, and the test time is 371 sec-
onds. SPECjbb2005, JGroups and Xalan take 127 seconds,
134 seconds and 137 seconds; RxJava, Freedomotic, Antlr
and MINA are relatively small programs, taking about 30
to 60 seconds. For the FOP test program, no inconsistent
synchronization behavior was detected, but it also took 89
seconds. By analyzing the validation time of these programs,
we found that the validation tool time consumption was
mainly used for static analysis of the program, and the larger
the program, the longer the static analysis time, causing the
total validation time to be longer. Although our validation
time did not achieve particularly good results, but the manual
validation method will spend a lot of time in the search for
code, while the proposed validation tool can automatically
complete the inspection, greatly reducing the time consum-
ing.

2) CASE STUDY
For the presentation of the found inconsistent objects, take
SPECjbb as an example, as shown in Table 3. In the table,
the class label lists the paths of the classes where the meth-
ods with inconsistent synchronization behaviors exit, and the
method lists the method signatures that violate the consis-
tency rules. We have manually checked the reported incon-
sistent methods, and the synchronization behavior of the
listed methods has changed after refactoring. Examination
of the TimerData class in the project shows that the method

FIGURE 9. Thread execution path diagram.

updateTPMC() in the class has overlapping variables. The
dependency statement related to the variable tpmc in this class
is split into two critical areas due to fine-grained locking,
which results in an error. In this project, nomissing conditions
were detected because the refactoring lock degradation oper-
ations were relatively few and almost always refactored cor-
rectly. From the test results, the changes in synchronization
behavior due to sequential violations are mainly distributed
in the District class. This class is mainly used to store the
modified user information and zone adjustment.

Our selected program segment from SPECjbb2005 pro-
gram, Figure 6 shows the refactoring that splits a critical area
in Figure 6(a) into critical areas locked by a write lock (lines
2-9) and a read lock (lines 10-15) respectively in Figure 6(b).

149298 VOLUME 9, 2021

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

FIGURE 10. Perform sequential test result.

FIGURE 11. Thread execution path diagram.

According to the definition and rule 1 in Section 3, there
is a critical area Ci locked by synchronized in the method
updateTPMCbefore refactoring, statement 4 performs awrite
operation opwi4 on the tpmc variable and statement 5 performs
a read operation opri5 on it, and there is a data dependency
between the two statements. After refactoring,Ci1 andCi2 are
split into two critical areas locked by the read/write lock tlock
and opwi4 and op

r
i5 are distributed to different critical areas, and

this splitting operation destroys the dependency relationship.
If there are 2 threads executing this code at the same

time, the execution path of the threads is shown in Figure 7.

In the source program, since the synchronized modification
ensures that the updateTPMC() method is accessed by only
one thread at the same time, thread T1 will execute all the
statements within the method body before T2 is executed,
and this process does not affect the reading of the tpmc value.
The refactored execution sequence is shown in Figure 7(b).
After executing opwi4 on the tpmc variable, T1 releases the
write lock, and if T2 acquires the write lock at this time and
performs the write operation on the variable, it will certainly
affect T1’s access to the value of tpmc, which is inconsistent
with the original behavior of the program, and we express this
phenomenon as variable overlap.

From the analysis of Figure 6 and Figure 7, it can be
seen that such cases are consistent with variable overlap
verification. According to Algorithm 2, the analysis of the
side-effects of instructions within the critical area will result
in the read and write mapping WprotectedMap, Rprotect-
edMap about temp and tpmc, which combined with Rule 2
can determine that there is a data dependency between state-
ments 4 and 5 before refactoring and fails to maintain this
dependency after refactoring.

Figure 8 shows the case of missing conditions with
HSQLDB as an example. The method registerServer() con-
tains the synchronization block with the monitor object
serverMap before refactoring, and after fine-grained lock
refactoring, the lock downgrading operation is performed

VOLUME 9, 2021 149299

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

on this synchronization block. The Figure 8(b) shows that
the conditional statements and statement blocks related to
serverMap are split into two critical section.

If two threads T1 and T2 execute the method, after refac-
toring, there will be two threads that both read the data first
and store it in the thread’s own buffer, as shown in Figure 9.
If T1 executes the state determination of serverMap first and
modifies the state amount after it is satisfied, the judgment
of T2 may fail after the execution is finished and affect
the subsequent execution. However, before refactoring, T1
executes all the operations and updates the memory before T2
reads the state volume, so it can be seen that such refactoring
will cause the condition missing.

From the analysis of Figure 8 and Figure 9, it is clear that
such cases are consistent with conditional missing verifica-
tion, and according to Algorithm 3 and Rule 3, the refactored
conditional judgment instruction and the end instruction are
distributed to different critical areas, which are prone to com-
peting conditions when accessed by threads.

Taking the CommitLog class examined in Cassandra as
an example, Figure 10 illustrates the violation of sequential
consistency. As can be seen in Figure 10(a), the method
start() and the method shutdownBlocking() both perform
judgmental operations on the started variable (line 4-17), and
there are data modification statements related to started. After
refactoring with the FineLock fine-grained lock refactoring
tool, as shown in Figure 10(b). Both methods are refactored
to perform lock decomposition operations, and the method
start() is decomposed into read locks (lines 4-9) and write
locks (lines 11-23) with the lock object nulock, and the
method shutdownBlocking() is decomposed into read and
write locks with the lock object tlock.

The execution path is shown in Figure 11, as the locking
objects before refactoring are Object to ensure the execution
order of themethod. But after the refactoring, it may cause the
data of the start variable to be read in the start() method and
then written in the shutdownBlocking() method started, thus
causing the subsequent read of started to be wrong, which
obviously breaks the original execution order of the program.

From the analysis of Figure 10 and Figure 11, it can be
seen that such cases are consistent with sequential violation
verification. According to Algorithm 4, by collecting the
lock objects of synchronous methods or synchronous blocks,
it is judged that the monitor objects of the two methods are
consistent before refactoring, and after refactoring, they are
locked by different lock objects nulock and tlock, and the
threads are prone to inconsistent sequential consistency when
accessing with the pre-refactoring.

D. LIMITATIONS
Static analysis is primarily an analysis performed without
running the program, while dynamic analysis is a record of
function calls as the program actually runs. While dynamic
analysis provides access to more call information, such as
the order and number of calls, the presence of branching
statements in the program may result in certain statements

not being executed and not being recorded in the call graph.
Dynamic analysis can give a clearer picture of the calls
and the execution of threads, and using a combination of
dynamic and static analysis to accomplish consistency check-
ing deserves further study.

VIII. CONCLUSION
This paper proposes a refactoring consistency validation
method for fine-grained locks. It uses WALA to generate
intermediate code to analyze the three behavioral changes
caused by the existing refactoring engine: variable overlap,
conditional absence, and sequential violation. Then we sum-
marize the verification rules. According to the proposed rules,
the variable overlapping validation, condition missing val-
idation, and execution sequence validation are designed to
verify the consistency before and after refactoring through
call graph analysis, alias analysis, and side-effect analysis.

The validation tool was implemented in the form of an
Eclipse plug-in, and the effectiveness of our tool was vali-
dated using the fine-grained lock refactoring programs of ten
projects including HSQLDB, Cassandra, and Xalan. Experi-
mental results show that the consistency validation tool can
effectively check the three concurrency problems mentioned
in the paper caused by refactoring. In our future work, we will
explore more concurrency issues caused by fine-grained lock
refactoring. Moreover, we will use more practical applica-
tions to verify the validation tool.

REFERENCES
[1] Y. Zhang, S. Shao, J. Zhai, and S. Ma, ‘‘FineLock: Automatically refac-

toring coarse-grained locks into fine-grained locks,’’ in Proc. 29th ACM
SIGSOFT Int. Symp. Softw. Test. Anal., New York, NY, USA, Jul. 2020,
pp. 565–568.

[2] E. L. G. Alves, M. Song, and M. Kim, ‘‘RefDistiller: A refactoring aware
code review tool for inspecting manual refactoring edits,’’ in Proc. 22nd
ACM SIGSOFT Int. Symp. Found. Softw. Eng., Hong Kong, Nov. 2014,
pp. 751–754.

[3] J. Brant and F. Steimann, ‘‘Refactoring tools are trustworthy enough
and trust must be earned,’’ IEEE Softw., vol. 32, no. 6, pp. 80–83,
Nov./Dec. 2015, doi: 10.1109/MS.2015.145.

[4] D. Giebas and R. Wojszczyk, ‘‘Atomicity violation in multithreaded appli-
cations and its detection in static code analysis process,’’Appl. Sci., vol. 10,
no. 22, p. 8005, Nov. 2020.

[5] C. Zhang, ‘‘FlexSync: An aspect-oriented approach to Java synchroniza-
tion,’’ in Proc. IEEE 31st Int. Conf. Softw. Eng., May 2009, pp. 375–385,
doi: 10.1109/ICSE.2009.5070537.

[6] K. Maruyama, S. Hayashi, N. Yoshida, and E. Choi, ‘‘Frame-based
behavior preservation in refactoring,’’ in Proc. IEEE 24th Int. Conf.
Softw. Anal., Evol. Reeng. (SANER), Feb. 2017, pp. 573–574, doi:
10.1109/SANER.2017.7884683.

[7] G. Soares, R. Gheyi, and T. Massoni, ‘‘Automated behavioral testing of
refactoring engines,’’ IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 147–162,
Feb. 2013, doi: 10.1109/TSE.2012.19.

[8] G. Soares, R. Gheyi, D. Serey, and T. Massoni, ‘‘Making program refac-
toring safer,’’ IEEE Softw., vol. 27, no. 4, pp. 52–57, Jul./Aug. 2010, doi:
10.1109/MS.2010.63.

[9] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba, ‘‘Making
refactoring safer through impact analysis,’’ Sci. Comput. Program., vol. 93,
no. 11, pp. 39–64, Nov. 2014.

[10] I. P. S. C. Silva, E. L. G. Alves, and W. L. Andrade, ‘‘Analyzing auto-
matic test generation tools for refactoring validation,’’ in Proc. IEEE/ACM
12th Int. Workshop Autom. Softw. Test. (AST), May 2017, pp. 38–44, doi:
10.1109/AST.2017.9.

149300 VOLUME 9, 2021

http://dx.doi.org/10.1109/MS.2015.145
http://dx.doi.org/10.1109/ICSE.2009.5070537
http://dx.doi.org/10.1109/SANER.2017.7884683
http://dx.doi.org/10.1109/TSE.2012.19
http://dx.doi.org/10.1109/MS.2010.63
http://dx.doi.org/10.1109/AST.2017.9

Y. Zhang et al.: Consistency Validation Method for Java Fine-Grained Lock Refactoring

[11] T.-H. Dao, T.-B. Trinh, and N.-T. Truong, ‘‘A tool support for checking
consistency in model refactoring,’’ in Proc. 9th Int. Conf. Knowl. Syst. Eng.
(KSE), Oct. 2017, pp. 100–105, doi: 10.1109/KSE.2017.8119442.

[12] F. F. Silva, E. Borel, E. Lopes, and L. G. P. Murta, ‘‘Towards a
difference detection algorithm aware of refactoring-related changes,’’
in Proc. Brazilian Symp. Softw. Eng., Sep. 2014, pp. 111–120, doi:
10.1109/SBES.2014.21.

[13] E. A. AlOmar, M. W. Mkaouer, C. Newman, and A. Ouni, ‘‘On preserving
the behavior in software refactoring: A systematic mapping study,’’ Inf.
Softw. Technol., vol. 140, Dec. 2021, Art. no. 106675.

[14] Y. Zhang, S. X. Sun, and D. W. Zhang, ‘‘Consistency detection method
for concurrent code refactoring,’’ J. Hebei Normal Univ., vol. 44, no. 3,
pp. 22–30, 2020.

[15] M. Schäfer,M. Sridharan, J. Dolby, and F. Tip, ‘‘Refactoring Java programs
for flexible locking,’’ in Proc. 33rd Int. Conf. Softw. Eng., May 2011,
pp. 71–80, doi: 10.1145/1985793.1985804.

[16] B. Tao and J. Qian, ‘‘Refactoring Java concurrent programs based
on synchronization requirement analysis,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol., Sep./Oct. 2014, pp. 361–370, doi: 10.1109/
ICSME.2014.58.

[17] T. Yu and M. Pradel, ‘‘SyncProf: Detecting, localizing, and optimizing
synchronization bottlenecks,’’ in Proc. 25th Int. Symp. Softw. Test. Anal.,
Saarbrücken, Germany, Jul. 2016, pp. 389–400.

[18] Y. Zhang, S. Shao, M. Ji, J. Qiu, Z. Tian, X. Du, andM. Guizani, ‘‘An auto-
mated refactoring approach to improve IoT software quality,’’ Appl. Sci.,
vol. 10, no. 1, p. 413, Jan. 2020, doi: 10.3390/app10010413.

[19] N. Ubayashi, J. Piao, S. Shinotsuka, and T. Tamai, ‘‘Contract-based verifi-
cation for aspect-oriented refactoring,’’ in Proc. 1st Int. Conf. Softw. Test.,
Verification, Validation, Apr. 2008, pp. 180–189.

[20] X. Yin, J. Knight, andW.Weimer, ‘‘Exploiting refactoring in formal verifi-
cation,’’ in Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw., Jun. 2009,
pp. 53–62.

[21] A. Garrido and J. Meseguer, ‘‘Formal specification and verification of
Java refactorings,’’ in Proc. 6th IEEE Int. Workshop Source Code Anal.
Manipulation, Sep. 2006, pp. 165–174.

[22] M. Abadi, S. Keidar-Barner, D. Pidan, and T. Veksler, ‘‘Verifying parallel
code after refactoring using equivalence checking,’’ Int. J. Parallel Pro-
gram., vol. 47, no. 1, pp. 59–73, Feb. 2019.

[23] P. Hofer, D. Gnedt, A. Schörgenhumer, and H. Mössenböck, ‘‘Efficient
tracing and versatile analysis of lock contention in Java applications on the
virtual machine level,’’ in Proc. 7th ACM/SPEC Int. Conf. Perform. Eng.,
Delft, The Netherlands, Mar. 2016, pp. 263–274.

[24] M. Schäfer, J. Dolby, M. Sridharan, E. Torlak, and F. Tip, ‘‘Correct refac-
toring of concurrent Java code,’’ in Proc. 24th Eur. Conf. Object-Oriented
Program., Maribor, Slovenia, 2010, pp. 225–249.

[25] IBM. T.J. Watson Libraries for Analysis (WALA). [Online]. Available:
http://wala.sourceforge.net

[26] HSQLDB. Accessed: Dec. 5, 2020. [Online]. Available:http://hsqldb.org/
[27] Cassandra. Accessed: Dec. 5, 2020. [Online]. Available: https://cassandra.

apache.org/
[28] SPECjbb2005. Accessed: Dec. 5, 2020. [Online]. Available: https://

www.spec.org/jbb2005/
[29] JGroups. Accessed: Dec. 5, 2020. [Online]. Available: http://www.

jgroups.org/

[30] Xalan. Accessed: Dec. 5, 2020. [Online]. Available: http://xalan.
apache.org/xalan-j/

[31] Fop. Accessed: Dec. 5, 2020. [Online]. Available: https://xmlgraphics.
apache.org/fop/

[32] RxJava. Accessed: Dec. 5, 2020. [Online]. Available: http://reactivex.io/
[33] Freedomotic. Accessed: Aug. 15, 2020. [Online]. Available: https://

www.freedomotic-iot.com
[34] ANTLR. Accessed: Dec. 5, 2020. [Online]. Available: https://www.antlr.

org/
[35] MINA. Accessed: Dec. 5, 2020. [Online]. Available: http://mina.apache.

org/

YANG ZHANG received the Ph.D. degree from
the School of Computer, Beijing Institute of Tech-
nology. He was a Visiting Scholar at Purdue Uni-
versity, in 2017. He is currently an Associate
Professor with the School of Information Science
and Engineering, Hebei University of Science and
Technology. His research interests include parallel
programming model and software refactoring for
parallelism.

CHUNXIA LI is currently pursuing the master’s
degree with Hebei University of Science and Tech-
nology. Her research interests include parallel
programming and software refactoring for paral-
lelism.

YU BAI is currently a Lecturer with the School of
Information Science and Engineering, Hebei Uni-
versity of Science and Technology. His research
interests include information physical systems
(CPS), synchronous systems, deep learning,
model-based system design, and formal methods.

VOLUME 9, 2021 149301

http://dx.doi.org/10.1109/KSE.2017.8119442
http://dx.doi.org/10.1109/SBES.2014.21
http://dx.doi.org/10.1145/1985793.1985804
http://dx.doi.org/10.1109/ICSME.2014.58
http://dx.doi.org/10.1109/ICSME.2014.58
http://dx.doi.org/10.3390/app10010413

