
Received September 6, 2021, accepted October 13, 2021, date of publication October 15, 2021, date of current version October 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3120597

Employee Scheduling With SAT-Based
Pseudo-Boolean Constraint Solving
ROBERT NIEUWENHUIS, ALBERT OLIVERAS , ENRIC RODRÍGUEZ-CARBONELL ,
AND EMMA ROLLON
Department of Computer Science, Technical University of Catalonia (UPC), 08034 Barcelona, Spain

Corresponding author: Enric Rodríguez-Carbonell (erodri@cs.upc.edu)

Project RTI2018-094403-B-C33 funded by MCIN (Ministerio de Ciencia e Innovación)/AEI/10.13039/501100011033/FEDER
‘‘Una manera de hacer Europa.’’

ABSTRACT The aim of this paper is practical: to show that, for at least one important real-world problem,
modern SAT-based technology can beat the extremely mature branch-and-cut solving methods implemented
in well-known state-of-the-art commercial solvers such as CPLEX or Gurobi. The problem of employee
scheduling consists in assigning a work schedule to each of the employees of an organization, in such a way
that demands are met, legal and contractual constraints are respected, and staff preferences are taken into
account. This problem is typically handled by first modeling it as a 0-1 integer linear program (ILP). Our
experimental setup considers as a case study the 0-1 ILPs obtained from the staff scheduling of a real-world
car rental company, and carefully compares the performance of CPLEX and Gurobi with our own simple
conflict-driven constraint-learning pseudo-Boolean solver.

INDEX TERMS Employee scheduling, 0-1 integer linear program, propositional satisfiability.

I. INTRODUCTION
In essence, the problem of employee scheduling (also known
as staff, workforce, personnel scheduling or rostering) con-
sists in assigning a work schedule to each of the employees
of an organization, in such a way that predicted demands are
met. Typically valid schedules also have to satisfy several
legal and contractual constraints regarding, e.g., the daily
worked hours. Other restrictions are often taken into account
as well for the sake of the well-being of the employees, such
as staff preferences or limitations on work on evenings and
weekends.

The interest in the problem stems from the fact that the
quality of the schedules of a company has a major impact
on its efficiency, which is key in today’s highly competitive
environment. By adapting better to the customer demands and
improving workforce capacity utilization, production can be
increased and/or labor costs can be reduced. For instance,
a company may gain an edge over the competition by short-
ening overtime, which can be expensive for the business and
disturbing for employees [33]. Moreover, when carried out
by hand, scheduling also involves tedious administration and
significant indirect costs, as human resources managers may
have to spend valuable countless hours on trying to find

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

schedules that satisfy all of the requirements. Last but not
least, rosters heavily influence the health and personal life
of the staff [21]. For example, the sleep/wake cycle may be
disrupted by exposure to light and activity at night, a time
when the human body is biologically programmed to be in
darkness and sleep. This leads to a desynchronization of
the rhythmic body functions (hormones, body temperature,
digestion, . . . ) with the circadian rhythm, which eventually
can cause health problems such as fatigue during work and
sleep problems after night shifts [3]. Additionally, working at
times that interfere with the social personal development, par-
ticularly evenings and weekends, is likely to impair work-life
balance [40]. Even setting aside ethical considerations, since
employee’s satisfaction in their work place is directly linked
to their engagement and the ultimate success of their activity,
from the perspective of the business the design of appropri-
ate schedules is beneficial for service quality. Furthermore,
obviously employee’s contentment also plays an important
role in employee retention, which from the economic point of
view is also worth considering: failing to retain the staff can
be an expensive problem for an organization since, as some
studies have shown, the total cost of turnover can reach up to
90-200 % of the employee’s annual salary [8].

For all these reasons, automated employee scheduling has
been investigated since as early as the 1950’s. Starting with
the seminal work by Edie [16] and Dantzig [10], the problem

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 142095

https://orcid.org/0000-0002-5893-1911
https://orcid.org/0000-0003-1061-3954
https://orcid.org/0000-0001-7070-6699


R. Nieuwenhuis et al.: Employee Scheduling With SAT-Based Pseudo-Boolean Constraint Solving

has received a great deal of attention and has been applied
to numerous contexts such as airlines, health care systems,
police, call centres and retail stores [20], [38]. As a result of
this research work, a vast bibliography has been produced in
the area; e.g., a comprehensive review of about 700 references
can be found in [19].

One of the reasons for this extensive literature is that
each real-world application has its own particularities and
legal conditions that make it necessary to design a tailored
model. Just to give a glimpse of the intricacies of employee
scheduling, for instance in Spain as of 2019 there were about
2600 different collective labor agreements. Also, in each
application the availability of computational resources may
be different, which in turn determines the appropriateness of
the techniques for generating the schedules. While in some
contexts it is permissible that this process takes hours, in other
situations any execution that goes beyond few minutes is
unacceptable, because for example the scheduler needs to
take care of last-minute changes such as sudden leaves of
absence or updates on the predicted demands.

Another factor that explains the wide range of techniques
that are available in the literature is the computational com-
plexity of the problem (e.g., nurse rostering, a particular case
of employee scheduling, is well-known to be NP-hard [27]).
Due to this high complexity, heuristic methods are commonly
used (simulated annealing, tabu search, genetic algorithms,
etc.). Here we focus on complete methods, those that with
sufficient time (and memory) ensure that:

• If the instance is feasible (i.e., some solution satisfying
all constraints exists), they always eventually find the
optimal solution.

• If the instance is infeasible (no solution exists), they
always eventually prove it, and moreover they are able
to give a simplified ‘‘reason’’ for that infeasibility
(i.e., a –frequently small– subset of the input constraints
that is already infeasible by itself). This may be use-
ful, e.g., in order to identify when and why a problem
specification does not allow any valid schedule, which
has recently been raised as an important issue by the
community [21].

Moreover, the complete methods that will be considered
in this work have the property that, while running, they can
report about the progress they are making, indicating:

• the cost of the best solutions found so far;
• a lower bound for the optimal cost (the minimal cost that
any solution must have);

• the ‘‘gap’’ between both, that is, the remaining room
for improvement, which gets smaller while solutions
improve (their cost gets lower) and the lower bound rises
as it gets more precise.

All these guarantees of the completemethods are obviously
crucial inmany real-world employee scheduling applications.
On the other hand, incomplete heuristic approaches are some-
times able to find good solutions quickly, but they typically
offer no such guarantees: if the instance is infeasible, they

cannot prove it, nor pinpoint any reason for it, they cannot
ensure that the generated solution is optimal, and they usually
give no lower bounds either.

In the (complete) methods considered in this paper,
the employee scheduling problem instance is first (automat-
ically) translated into an integer linear program (ILP), and
more specifically as a 0-1 ILP, i.e., one in which all vari-
ables are Boolean. Traditionally, 0-1 ILPs are handled with
a solver based on the simplex algorithm and branch-and-
cut [37]. It has to be highlighted that the technology behind
this kind of solvers is extremely mature, after decades of
improvements: according to [7], between 1991 and 2017 they
have experienced a 1.3 million times speedup from machine-
independent algorithmic improvements only (that is, a factor
of 1.8 per year)!

In parallel, in the last two decades solvers for the propo-
sitional satisfiability (SAT) problem [6] have also made a
breathtaking progress, so tremendous that it is already being
referred to as the SAT revolution [39]. Just to illustrate the
capabilities of state-of-the-art SAT solvers, nowadays they
routinely deal with huge formulas coming from real-world
applications with millions of variables and clauses (and
leading developers foresee that, in the short term, handling
formulas with thousands of millions of variables will be
possible [5]). It is therefore of no surprise that SAT solvers
and their extensions [32] have emerged as a serious alter-
native to simplex-based integer linear programming tools
when solving NP-complete problems, in particular those of
a combinatorial and logical (rather than numerical) nature.

Following this idea, in this paper we focus on the staff
scheduling of a car rental company as a case study. We model
the problem as a 0-1 ILP, and then we consider two complete
methods for solving the resulting 0-1 ILPs:

• branch-and-cut-based solving, as in the commercial
solvers CPLEX1 and Gurobi2;

• conflict-driven, constraint learning pseudo-Boolean
solving, inspired by modern SAT solving techniques.

To the best of our knowledge, for this problem no other
complete approach (SMT, direct encodings into SAT) is com-
petitive with these two (see Section II-D below why). The
main contribution in this work is the experimental observa-
tion that, for this particular application, a pseudo-Boolean
solver can outperform state-of-the-art commercial Operations
Research software. This is a remarkable result, since up to
now, it was strongly believed in the community that commer-
cial MIP solvers such as Gurobi and CPLEX are much more
powerful than the current pseudo-Boolean technology [14].

The paper is structured as follows. After reviewing the
background on 0-1 ILPs and solving techniques in Section II,
in Section III we describe in detail the employee scheduling
problem we aim at solving. A 0-1 ILP model for this prob-
lem is given in Section IV. The results of the experimental

1www.ibm.com/products/ilog-cplex-optimization-
studio

2www.gurobi.com

142096 VOLUME 9, 2021

www.ibm.com/products/ilog-cplex-optimization-
studio
www.gurobi.com


R. Nieuwenhuis et al.: Employee Scheduling With SAT-Based Pseudo-Boolean Constraint Solving

comparison between the different algorithmic alternatives
are shown and discussed in Section V. Finally, Section VI
presents the conclusions and sketches some ideas for future
work.

II. PRELIMINARIES
A. 0-1 INTEGER LINEAR PROGRAMS
Let X be a finite set of integer variables {x1 . . . xn}. An (inte-
ger linear) constraint over X is an expression of the form
a1 x1 + · · · + anxn ≥ a0 where, for all i in 0 . . . n, the coeffi-
cients ai are integers.

An integer linear program (ILP) over X is a set S of integer
linear constraints over X , called the constraints of the ILP,
together with a linear expression of the form c(x1, · · · , xn) =
c1 x1 + · · · + cnxn, called the cost function. A solution to
a set of constraints S over X (and, by extension, to an ILP
whose set of constraints is S) is a function σ : X → Z that
satisfies every constraint a1 x1 + · · · + anxn ≥ a0 in S, that
is, a1 σ (x1)+· · ·+an σ (xn) ≥Z a0. A minimal solution to an
ILP with constraints S and cost function c is a solution σ to S
such that c(σ ) ≤ c(σ ′) for any solution σ ′ to S. The problem
of Integer Linear Programming consists in finding a minimal
solution to a given integer linear program.

A variable x is 0-1 (also called binary orBoolean) in an ILP
if its set of constraints S contains the constraints 0 ≤ x and
x ≤ 1, so that effectively x can only take values either 0 or 1.
An ILP such that all variables are 0-1 is a 0-1 linear program,
and the problem of finding a minimal solution in this case
is referred to as 0-1 Linear Programming. Constraints are
then called 0 − 1 constraints or (linear) pseudo-Boolean
constraints.

Traditionally 0-1 linear programs have been handled with
generic Operations Research ILP software packages using
branch-and-cut. The idea of this procedure is to drop the
integrality constraints (thus obtaining the so-called linear
programming relaxation of the problem) and apply the sim-
plex algorithm on it. If the optimal solution to the relaxation
is integral, then the search is over. Otherwise a cut inequality
that discards the spurious solution may be added to tighten
the relaxation, and the simplex algorithm is applied again.
If it is considered that adding cuts is no longer useful, even-
tually branching is performed: a variable which is assigned
a non-integer value is chosen and the problem is split in two
by adding a new bound on this variable. A more thorough
description of the algorithm of branch-and-cut can be found,
e.g., in [37].

B. SAT SOLVING
The problem of SAT consists in finding solutions to sets of
clauses of the form

x1 ∨ . . . ∨ xm ∨ ¬y1 ∨ . . . ∨ ¬yn,

that is, finding 0-1 values for the variables such that for each
such a clause some xi is 1 or some yj is 0. Note that such a

clause is equivalent to a 0− 1 constraint

x1 + . . .+ xm + (1− y1)+ . . .+ (1− yn) ≥ 1.

The underlying algorithm of modern SAT solvers is
the Davis-Putnam-Logemann-Loveland (DPLL) procedure
[11], [12]. In short, DPLL is a backtracking algorithm that
searches for a solution by smartly exploring the search space.
At each step a decision is made: a variable is chosen for
branching and is assigned a truth value. Then the conse-
quences of that decision are propagated, and variables that
are forced to a value are detected. Each time a conflict is
identified, the decision is backtracked : all assignments up
to the last decision are undone and the branching variable
is forced to take the negated value. When all truth values
have been tried without success, then the previous decision
is backtracked. If the decision is the first one, and so there is
no previous decision, then it can be asserted that the formula
is unsatisfiable.

This simplified description is anyhow far from state-of-
the-art implementations of SAT solvers. What explains their
astonishing success is the so-called Conflict-Driven Clause-
Learning (CDCL) scheme, which enhances DPLL with a
number of techniques:
• conflict analysis and backjumping (i.e., non-
chronological backtracking) [28];

• learning (that is, addition) of new clauses generated
from conflicts [13];

• variable decision heuristics that select the most active
variables in recent conflicts, like VSIDS [30];

• value decision heuristics that select promising values
for the decision variable, such as the last phase strat-
egy [34];

• data structures such as the 2-watched literal scheme [30]
for efficiently identifying propagations and conflicts;

• restarts [23];
• in-processing and simplification of learnt clauses [26];
• clause cleanups that periodically delete counterproduc-
tive learnt clauses, e.g. based on their activity in conflicts
[22] or their literal block distance [4].

C. PSEUDO-BOOLEAN SOLVING
Given a 0-1 ILP, its minimal solution can be found by itera-
tively solving a sequence of satisfiability problems, typically
successively strengthened by enforcing that a better solution
should exist. However, there is a complication if these satis-
fiability problems are to be solved with a SAT solver: in the
language of SAT the only primitive constraints are clauses,
and the pseudo-Boolean constraints in these problems cannot
be directly handled.

A possibility to circumvent this situation is to extend the
SAT techniques so that linear constraints become first-class
citizens in the language of the solver and can be dealt with
natively. Among other things, this requires to adapt the
propagation mechanism, as well as the algorithms and data
structures for quickly detecting when a propagation can be
triggered or a conflict has arisen. This is not trivial, because

VOLUME 9, 2021 142097



R. Nieuwenhuis et al.: Employee Scheduling With SAT-Based Pseudo-Boolean Constraint Solving

although it is possible to extend the watched literal scheme
from CDCL SAT, unlike clauses a pseudo-Boolean constraint
may need to watch more than 2 literals, which complicates an
efficient implementation.

Most importantly, conflict analysis has to be generalized in
such a way that the backjumping and learning of the CDCL
scheme are possible. Conflict analysis in SAT is based on
resolution [35], which can be extended to pseudo-Boolean
constraints with the generalized resolution rule [15], [25].
Unfortunately, a direct replacement of resolution by general-
ized resolution in conflict analysis breaks the invariants of the
algorithms [6]. In order to overcome this problem, constraints
arising in conflict analysis have to be processed, for example
with weakening and saturation [9] or rounding [18].
From now on we will refer to solvers of 0-1 ILPs under this

framework, which is the one that we will follow in this work,
as (CDCL) pseudo-Boolean solvers.

D. OTHER COMPLETE SAT-BASED METHODS
FOR 0-1 ILP SOLVING
There exist alternative approaches for handling 0-1 ILPs with
SAT-related techniques. A possibility is to eagerly encode lin-
ear constraints into SAT by adding new clauses and possibly
new variables in such a way that the set of solutions is pre-
served, for instance using sorting networks, adder networks
or binary decision diagrams [1], [17], [29], [36]. However,
the number of clauses that are needed for expressing the
pseudo-Boolean constraints may be so large that the resulting
formula becomes impractical.

Another technique for dealing with pseudo-Boolean con-
straints is to apply a lazy approach using SMT [2], [32].
Under this paradigm, first of all each pseudo-Boolean con-
straint is translated into an equivalent clause if possible.
After this preprocessing step, a SAT solver, called the engine,
produces assignments that satisfy the clauses. For each of
the remaining constraints a theory solver is defined, which
certifies given an assignment whether or not the associated
constraint holds for that assignment. While this method turns
out to be very efficient when the number of non-clausal
pseudo-Boolean constraints is small, when this is not the case
the overhead of handling each constraint individually with a
theory solver becomes prohibitive.

III. PROBLEM DESCRIPTION
The work presented in this article was developed in the con-
text of a proof of concept of Barcelogic (https://barcelogic.
com), a spin-off of the Technical University of Catalonia, for
a car rental company.

The car rental company operates in the main airports and
train stations in Spain. For every day of the year and for the
time slots:

• from 7 to 9, • from 15 to 17,
• from 9 to 11, • from 17 to 19,
• from 11 to 13, • from 19 to 21, and
• from 13 to 15, • from 21 to 24,

the company has an estimation of the number of services
(collection or delivery) that should be handled based on his-
torical data and statistical models. The months from April to
September are of particular interest to the company, since in
spring and summer tourism and therefore car rental is at its
highest; as an illustration, see Figure 1 for a representative
sample of the estimations on a day in February, July and
November. In order to provide the services the company has
a permanent staff, and if needed it can also hire temporary
workers on a monthly basis. If a temporary worker is ever
hired, there is a once-and-forall cost to be paid (recruiting
and training expenses, etc.). To approximate the minimum
number of workers that should be available at each slot, the
company has computed a productivity measure that counts
the number of services that an employee can process per hour.

FIGURE 1. Estimation of the number of services on a day of February,
July and November.

Apart from ensuring that the demand is met, schedules
have to satisfy several legal constraints. For example, accord-
ing to the collective labor agreement and to the contract, there
is a minimum and a maximum number of minutes that an
employee can work the same day, and a maximum number of
minutes of daily presence, that is, the time an employee can
be at the work place daily (including breaks). There is also
a minimum and a maximum for the number of minutes of
consecutive work, i.e., in which the employee works without
interruption. Finally, each contract has a different monthly
cost.

Daily time slots are divided intomorning shift (slots ending
not later than 13) and afternoon shift (slots starting not sooner
than 13). On a particular day, an employee can only work in
the morning shift or in the afternoon shift. Moreover, for the
sake of fairness, for eachwindow of a certain prefixed number
of consecutive days, the (absolute) difference between days

142098 VOLUME 9, 2021



R. Nieuwenhuis et al.: Employee Scheduling With SAT-Based Pseudo-Boolean Constraint Solving

with a morning shift and days with an afternoon shift should
be limited.

There are other restrictions that constrain the schedule of
consecutive days. In particular, there is a maximum on the
number of days that an employee can work consecutively,
that is, without a rest day in between. Similarly, there is a
maximum on the number of days that an employee can rest
consecutively, i.e., without a work day in between.

Finally, workers can ask for a leave of daily absence. The
company foresees that there may be a non-negligible number
of these leaves and that they may be communicated on a very
short notice. Also, the estimation of the number of services
for each daily time slot is regularly being updated. The need
for these updates has become palpable in 2020 and 2021,
with the outbreak of the COVID-19 pandemic and the ever-
changing restrictions on mobility that still exist as of the date
of this writing (June 2021). Altogether, it is necessary that
schedules can be recomputed efficiently in few minutes.

IV. 0-1 ILP MODEL
In this section we will describe a 0-1 ILP model for our
problem. To that end, let us introduce the sets:

E : set of employees
S: set of slots (possibly of different length)
MS: set of morning slots
AS: set of afternoon slots
D: set of (consecutive) days
M: set of (consecutive) months

Slots and days will sometimes be viewed as chronologically
ordered integer identifiers, so that s+ 1 and d + 1 are the slot
and the day that follow slot s and day d , respectively. Note
also that the morning and afternoon slots form a partition of
the set of slots, i.e., MS ∪ AS = S and MS ∩ AS = ∅.
Moreover, when it is convenient we will consider a month
m ∈M as the sets of days it consists of, so that e.g. ∀d ∈ m
ranges over all days of month m.

In order to formulate our model, let us also consider the
following input parameters, all of which are natural numbers
except for the last item, which are Boolean values.

Reqsd : number of employees that are requested
(N) at slot s on day d for each s ∈ S and d ∈ D
MinW e: minimum of minutes of daily work
(N) of employee e for each e ∈ E
MaxW e: maximum of minutes of daily work
(N) of employee e for each e ∈ E
MaxPe: maximum of minutes of daily presence
(N) of employee e for each e ∈ E
MinCe: minimum of minutes of consecutive work
(N) of employee e for each e ∈ E
MaxCe: maximum of minutes of consecutive work
(N) of employee e for each e ∈ E
Per : length of period of consecutive days used

when
(N) comparing morning and afternoon shifts

MaxD: every window of Per days, the difference of
(N) morning and afternoon shifts is at mostMaxD
MaxCW e: maximum number of days that employee e
(N) can work consecutively for each e ∈ E
MaxCRe: maximum number of days that employee e
(N) can rest consecutively for each e ∈ E
Wmem: cost to be paid if employee e works in month

m
(N) for each e ∈ E and m ∈M
We: cost to be paid if employee e ever works
(N) for each e ∈ E
Absed : employee e is absent on day d
(B) for each e ∈ E and d ∈ D

Note that the demand of workforce is expressed with the input
parameters Reqsd , which are assumed to be precomputed
from the estimation of requested services per slot and the
number of services an employee can handle per hour.

We now introduce the following 0-1 decision variables:

wsdesd : employee e works at slot s on day d
for each e ∈ E, s ∈ S and d ∈ D

wded : employee e works on day d
for each e ∈ E and d ∈ D

msed : employee e works on day d with morning shift
for each e ∈ E and d ∈ D

ased : employee e works on day d with afternoon shift
for each e ∈ E and d ∈ D

wmem: employee e works in month m
for each e ∈ E and m ∈M

we: employee e works for each e ∈ E

Observe that while input parameter names start with an upper-
case letter, variable names start with lower-case.

Now we are ready to show our model for the problem of
finding a feasible schedule for employees E spanning the
monthsM and minimizing labor costs:

min
∑
e∈E

We we +
∑
e∈E
m∈M

Wmem wmem

subject to
∑
e∈E

wsdesd ≥ Reqsd ∀s ∈ S, d ∈ D (1)

¬wsdesd ∨ wded ∀e ∈ E, s ∈ S, d ∈ D (2)

¬wded ∨ wmem ∀e ∈ E,m ∈M, d ∈ m (3)

¬wmem ∨ we ∀e ∈ E,m ∈M (4)

¬wded ∀e ∈ E, d ∈ D.Absed = 1 (5)

¬wsdesd ∨ msed ∀e ∈ E, s ∈MS, d ∈ D (6)

¬wsdesd ∨ ased ∀e ∈ E, s ∈ AS, d ∈ D (7)

¬msed ∨ ¬ased ∀e ∈ E, d ∈ D (8)
Per−1∑
k=0

mse d+k − ase d+k ≤ MaxD

VOLUME 9, 2021 142099



R. Nieuwenhuis et al.: Employee Scheduling With SAT-Based Pseudo-Boolean Constraint Solving

∀e ∈ E, {d, d + 1, . . . , d + Per − 1} ⊆ D (9)
Per−1∑
k=0

mse d+k − ase d+k ≥ −MaxD

∀e ∈ E, {d, d + 1, . . . , d + Per − 1} ⊆ D (10)

¬wsdesd ∨ ¬wsdes′d
∀e ∈ E, s, s′ ∈MS, d ∈ D. e(s′)
− s(s) > MaxPe (11)

¬wsdesd ∨ ¬wsdes′d
∀e ∈ E, s, s′ ∈ AS, d ∈ D. e(s′)
− s(s) > MaxPe (12)∑

s∈MS
mins(s) wsdesd ≤ MaxW e

∀e ∈ E, d ∈ D (13)∑
s∈AS

mins(s) wsdesd ≤ MaxW e

∀e ∈ E, d ∈ D (14)∑
s∈S

mins(s) wsdesd ≥ MinWewded

∀e∈E, d ∈D (15)

wsdes1d ∨ ¬wsdes2d ∨ wsdes3d
∀e ∈ E, d ∈ D
∀s1, s2, s3 ∈ S.

e(s1)=s(s2), e(s2) ≤ s(s3), s(s3)

−s(s2)<MinCe (16)
K∨
k=0

¬wsde s+k d

∀e ∈ E, d ∈ D, {s, s+ 1, . . . , s+ K } ⊆ S.
e(s+ K − 1)−s(s)≤MaxCe < e(s+ K )−s(s)

(17)
MaxCW e∨
k=0

¬wde d+k

∀e ∈ E, {d, d + 1, . . . , d +MaxCW e} ⊆ D
(18)

MaxCRe∨
k=0

wde d+k

∀e ∈ E, {d, d + 1, . . . , d +MaxCRe} ⊆ D
(19)

Some remarks about the notation used in the model above
are in order. Some constraints are written as clauses both for
highlighting the logical part of the problem as well as for the
sake of clarity. Other notational conventions are that, given a
time slot s ∈ S, the values s(s) and e(s) represent the start time
and the end time of s, expressed as minutes since midnight.
Therefore, in Constraints 11 and 12 the expression e(s′)−s(s)
represents the minutes that lapse between the start of s and the
end of s′. In particular, e(s)−s(s) is the length of s in minutes,

which we also denote bymins(s) in Constraints 13, 14, and 15
for readability.
Let us review the parts of the model and explain their

intuitive meaning. The cost function is aimed at minimizing
the aggregated labor costs over all employees, decomposed
in a setup cost (Wewe) and a monthly cost (Wmemwmem).
In practice the costs of the fixed staff have already been
discounted, so it can be assumed that We = Wmem = 0 for
any e ∈ E who is permanent.
Constraints 1 ensure that the demand of employees is met

at any time. Clauses 2, 3 and 4 activate the variables wded ,
wmem and we respectively in order to indicate that there has
been daily, monthly or overall work. Leaves are encoded with
Clauses 5 by forbidding employee e to work on day d if they
must be absent on that day. Constraints 6 activate the variables
msed of themorning shift when employee eworks on day d on
a morning slot s; and symmetrically Constraints 7 activate the
variables ased of the afternoon shift when employee e works
on day d on an afternoon slot s. Variables msed and ased also
appear in Clauses 8, which exclude that an employee could
work on the same day with a morning and an afternoon shift.
Constraints 9 and 10 impose that, every Per consecutive days,
the absolute difference of the number of days an employee
works with a morning shift and with an afternoon shift is at
most MaxD.
The next constraints restrain the daily schedule. Clauses 11

and 12 guarantee that the presence of an employee e is at most
MaxPe. Note that here it is used that morning and afternoon
shifts are mutually exclusive. This property is also used in
Constraints 13 and 14, which enforce that employee e works
at most MaxW e minutes. As regards the minimum work per
day, Constraints 15 encode the implication

wded →
∑
s∈S

mins(s) wsdesd ≥ MinWe

which expresses that, if employee e works on day d , then at
least MinWe minutes should be worked.
The following constraints take care of consecutive work on

a day. In Clauses 16, where s1, s2 and s3 are slots in increasing
order of time such that s1 and s2 are consecutive and s(s3)−
s(s2) < MinCe, the constraint can be equivalently viewed as
an implication

(¬wsdes1d ∧ wsdes2d )→ wsdes3d .

I.e., if e starts working at slot s2 after having had a rest at the
previous slot s1, since s2 and s3 are too close in time, e should
work at slot s3 too. On the other hand, Clauses 17 express that
employee e cannot work more than MaxCe minutes without
a break: for any sequence of consecutive slots spanning more
thanMaxCe minutes, we enforce that e should rest in at least
one of the slots. The condition e(s+K−1)−s(s) ≤ MaxCe <

e(s+K )− s(s) ensures that the sequence of consecutive slots
{s, s + 1, . . . , s + K } is the shortest one starting at s which
covers more thanMaxCe minutes.
Finally, Clauses 18 and 19 limit work and rest consecutive

days. Namely, Clauses 18 express that employee e can work

142100 VOLUME 9, 2021



R. Nieuwenhuis et al.: Employee Scheduling With SAT-Based Pseudo-Boolean Constraint Solving

at most MaxCW e consecutive days by imposing that in any
interval ofMaxCW e+ 1 days, at least one must be a rest day.
Similarly, Clauses 19 ensure that employee e can rest at most
MaxCRe consecutive days by imposing that in any interval of
MaxCRe + 1 days, at least one must be a work day.

V. EXPERIMENTS
This section is devoted to the experimental comparison of
different tools for solving our employee scheduling problem
with the 0-1 ILP model proposed in Section IV.

To that end, we have built a benchmark suite of 25 instances
obtained from real data provided by the car rental company
involved in this project. Each instance corresponds to a period
of two months in spring-summer, from April to September.
The reason for this is that, as pointed out in Section I, this
season is the busiest time for tourism. As a consequence,
the demand is at its highest point, the labor capacity of the
permanent staff get close to its limit (or even overpassed),
and scheduling becomes critical. Moreover, planning two
months ahead gives the car rental company a timemarginwith
which to react in case bottlenecks are detected and temporary
workers have to be hired. To give an idea of the complexity
of the instances, they all have about 21k (Boolean) variables
and 65k constraints.

In this experimental evaluation we compare the following
solvers:

1) Gurobi (v.9.1.2, latest version)
2) CPLEX (v.20.1.0, latest version)
3) PB

Gurobi and CPLEX are well-known 0-1 ILP solvers, and
are widely considered to be representative of the state of
the art in branch-and-cut solving. On the other hand, PB is
our basic implementation of the CDCL-based integer linear
programming solver described in [31] but specialized for
0-1 variables. It is worth noting that, while Gurobi and
CPLEX are long-standing mature commercial tools (the first
version of CPLEX dates back to 1988!), PB is a prototype
for research purposes only. In fact, there are possibly other
better pseudo-Boolean solvers that PB. The reason for not
including other pseudo-Boolean solvers in these experiments
is that our aim is not to compare PB with other solvers of
the same kind, but rather to make a point on the competitive-
ness of conflict-driven constraint-learning pseudo-Boolean
technology against state-of-the-art commercial branch-and-
cut solvers.

All experiments reported next were carried out on a stan-
dard 3.00 GHz 8-core Intel i7-9700 desktop with 16 Gb of
RAM. The time limit of all executions was set to 300 sec-
onds of wall-clock time. Given that the car rental company
has several centers to schedule at the same time, this was
considered a reasonable choice. It is important to highlight
that our implementation PB is sequential and only uses one
core, while on the other hand Gurobi and CPLEX are run in
parallel mode. Therefore, they use all of the eight cores that
are available in the computer used for the experiments.

TABLE 1. Cost of the best solution and time required for finding it for
each solver and for each instance.

The results of the experiments are shown in Table 1. The
first column identifies the instance, while the other three
correspond to each of the solvers. There are two rows for

VOLUME 9, 2021 142101



R. Nieuwenhuis et al.: Employee Scheduling With SAT-Based Pseudo-Boolean Constraint Solving

FIGURE 2. For a sample of instances, evolution of the cost of the best solution along time for each of the solvers. Lines not reaching the time limit
of 300 s. indicate that optimality was proved.

each instance. In the top one we indicate the cost of the best
solution found with each solver, and in the bottom one the
time in seconds required for finding that solution (between
parentheses). A dash means that the time limit was reached
without any solution. The timing TO stands for time out. Over
all solvers, the one with the best cost is highlighted in bold
face (or in case of a tie, the one that found the solution with
that cost the earliest).

The performance of PB is very good compared to the com-
petition. As can be seen in Table 1, PB finds good solutions
very efficiently, even in instances for which the other solvers
do not report a solution within the timeout. Except for one
instance, PB is the solver that gives the best results. One
of the reasons for this success is that, as highlighted in the
representation of the constraints in Section IV, the problem
has an important logical component, which makes SAT-based
techniques particularly appropriate.

In order to make a more precise analysis, in Figure 2 we
show the graphs with the evolution of the cost of the best
solution along time for two representative instances. These
graphs reveal that PB finds many solutions before reaching
the time limit, whileGurobi andCPLEXfind far fewer. On the
other hand, in both cases Gurobi is able to prove that its best
solution is in fact optimal, which is indicated in the plot by
the line not reaching the time limit. As regards proving opti-
mality, PB does not appear to be as powerful as Gurobi, and
once the optimal solution has been found, it gets stagnant and
the time limit is reached before the search can be completed.
This suggests that PB and Gurobi could be combined in a
two-phase process, in which PB is run first for a little time
and then Gurobi uses the best solution found with PB as a

starting point. This idea requires further experimentation and
is left as future work.

VI. CONCLUSION AND FUTURE WORK
We have shown that SAT-based tools for solving 0-1 ILPs can
be competitive with commercial Operations Research soft-
ware. We have illustrated it with the case study of a car rental
company, for which we have provided a 0-1 ILP model that
we have used as the basis for our experimental comparison.
Since the problem that is addressed here does not show any
significant differences from the typical employee scheduling
problem, we foresee that the positive results that have been
obtained can be also reproduced with other more general
employee scheduling variants. For this reason, as future work
we plan to enlarge the language for specifying schedules in
order to incorporate new constraints, e.g., limiting theweekly,
monthly and yearly worked time, as well as enforcing the
fairness and balance of the schedules between employees.
More broadly, wewould also like to investigate other schedul-
ing problems with a core combinatorial structure, for which
SAT-based techniques may also outperform state-of-the-art
Operations Research tools.

Last but not least, we also plan to improve our pseudo-
Boolean solver and study how to complete the search and
produce an optimality proof more efficiently, possibly by
combining it with simplex relaxations as outlined above.
Another idea for speeding up the performance is to take
advantage of the nowadays widespreadmulticore architecture
of computers and to implement a parallel solver, as commer-
cial Operations Research tools do. As a first step, a portfo-
lio solver where the workers share some of the constraints

142102 VOLUME 9, 2021



R. Nieuwenhuis et al.: Employee Scheduling With SAT-Based Pseudo-Boolean Constraint Solving

(e.g., unit or binary clausal constraints) could be developed,
following the current practice in pure SAT solving [24].

REFERENCES
[1] I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and

V. Mayer-Eichberger, ‘‘A new look at BDDs for pseudo-Boolean con-
straints,’’ J. Artif. Intell. Res., vol. 45, pp. 443–480, Nov. 2012.

[2] I. Abio, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and
P. J. Stuckey, ‘‘To encode or to propagate? The best choice for each con-
straint in SAT,’’ in Proc. 19th Int. Conf. Princ. Pract. Constraint Program.,
Berlin, Germany: Springer, 2013, pp. 97–106.

[3] J. Arendt, ‘‘Shift work: Coping with the biological clock,’’ Occupational
Med., vol. 60, no. 1, pp. 10–20, Jan. 2010.

[4] G. Audemard and L. Simon, ‘‘Predicting learnt clauses quality in mod-
ern SAT solvers,’’ in Proc. 21st Int. Joint Conf. Artif. Intell. (IJCAI),
C. Boutilier, Ed. Pasadena, CA, USA, Jul. 2009, pp. 399–404.

[5] A. Biere. (2021). A Personal History of Practical SAT Solving. 50 Years of
Satisfiability: The Centrality of SAT in the Theory of Computing. [Online].
Available: https://simons.berkeley.edu/talks/tbd-308

[6] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds., ‘‘Handbook
of satisfiability,’’ in Frontiers in Artificial Intelligence and Applications.
Amsterdam, The Netherlands: IOS Press, 2009, vol. 185.

[7] B. Bixby, ‘‘Presentation: Progress in linear and mixed-integer program-
ming,’’ in Proc. Joint EURO/ORSC/ECCO Conf. Combinat. Optim.,
May 2017, p. 14.

[8] W. F. Cascio, Managing Human Resources: Productivity, Quality of Work
Life, Profits. New York, NY, USA: McGraw-Hill, 1995.

[9] D. Chai and A. Kuehlmann, ‘‘A fast pseudo-Boolean constraint solver,’’
IEEE Trans. Comput.-Aided Design Integr., vol. 24, no. 3, pp. 305–317,
Mar. 2005.

[10] B. G. Dantzig, ‘‘A comment on Edie’s ‘traffic delays at toll booths’’’
J. Oper. Res. Soc. Amer., vol. 2, no. 3, pp. 339–341, 1954.

[11] M. Davis, G. Logemann, and D. Loveland, ‘‘A machine program for
theorem-proving,’’ Commun. ACM, vol. 5, no. 7, pp. 394–397, Jul. 1962.

[12] M. Davis and H. Putnam, ‘‘A computing procedure for quantification
theory,’’ J. ACM, vol. 7, no. 3, pp. 201–215, Jul. 1960.

[13] R. Dechter, ‘‘Enhancement schemes for constraint processing: Backjump-
ing, learning, and cutset decomposition,’’ Artif. Intell., vol. 41, no. 3,
pp. 273–312, Jan. 1990.

[14] J. Devriendt, A. Gleixner, and J. Nordström, ‘‘Learn to relax:
Integrating 0-1 integer linear programming with pseudo-Boolean
conflict-driven search,’’ Constraints, pp. 1–30, Jan. 2021, doi: 10.1007/
s10601-020-09318-x.

[15] H. E. Dixon, M. L. Ginsberg, and A. J. Parkes, ‘‘Generalizing Boolean
satisfiability I: Background and survey of existing work,’’ J. Artif. Intell.
Res., vol. 21, pp. 193–243, Feb. 2004.

[16] L. C. Edie, ‘‘Traffic delays at toll booths,’’ J. Oper. Res. Soc. Amer., vol. 2,
no. 2, pp. 107–138, May 1954.

[17] N. Eén and N. Sörensson, ‘‘Translating pseudo-Boolean constraints into
SAT,’’ J. Satisfiability, BooleanModel. Comput., vol. 2, nos. 1–4, pp. 1–26,
2006.

[18] J. Elffers and J. Nordström, ‘‘Divide and conquer: Towards faster pseudo-
Boolean solving,’’ in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,
pp. 1291–1299.

[19] A. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier, ‘‘An anno-
tated bibliography of personnel scheduling and rostering,’’Ann. Oper. Res.,
vol. 127, no. 1, pp. 21–144, 2004.

[20] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, ‘‘Staff scheduling
and rostering: A review of applications, methods andmodels,’’Eur. J. Oper.
Res., vol. 153, no. 1, pp. 3–27, Feb. 2004.

[21] J. Gärtner, P. Bohle, A. Arlinghaus, W. Schafhauser, T. Krennwallner, and
M. Widl, ‘‘Scheduling matters—Some potential requirements for future
rostering competitions from a practitioner’s view,’’ in Proc. 12th Int.
Conf. Pract. Theory Automated Timetabling (PATAT), Vienna, Austria,
Aug. 2018, pp. 33–42. [Online]. Available: http://www.patatconference.
org/patat2018/files/proceedings/paper61.pdf

[22] E. Goldberg and Y. Novikov, ‘‘BerkMin: A fast and robust SAT-solver,’’ in
Proc. Design, Autom. Test Eur. Conf. Exhib., 2002, pp. 142–149.

[23] C. P. Gomes, B. Selman, and N. Crato, ‘‘Heavy-tailed distributions in com-
binatorial search,’’ in Principles and Practice of Constraint Programming-
CP97, G. Smolka, Ed. Berlin, Germany: Springer, 1997, pp. 121–135.

[24] Y. Hamadi, S. Jabbour, and L. Sais, ‘‘ManySAT: A parallel SAT solver,’’
J. Satisfiability, Boolean Model. Comput., vol. 6, no. 4, pp. 245–262,
Jun. 2009.

[25] J. N. Hooker, ‘‘Generalized resolution for 0?1 linear inequalities,’’ Ann.
Math. Artif. Intell., vol. 6, nos. 1–3, pp. 271–286, Mar. 1992.

[26] M. Järvisalo, M. J. H. Heule, and A. Biere, ‘‘Inprocessing rules,’’ in
Automated Reasoning, B. Gramlich, D. Miller, and U. Sattler, Eds. Berlin,
Germany: Springer, 2012, pp. 355–370.

[27] H. C. Lau, ‘‘Manpower scheduling with shift change constraints,’’ in
Algorithms and Computation, D.-Z. Du and X.-S. Zhang, Eds. Berlin,
Germany: Springer, 1994, pp. 616–624.

[28] J. P. Marques-Silva and K. A. Sakallah, ‘‘GRASP: A search algorithm
for propositional satisfiability,’’ IEEE Trans. Comput., vol. 48, no. 5,
pp. 506–521, May 1999.

[29] R. Martins, V. M. Manquinho, and I. Lynce, ‘‘Open-WBO: A modular
MaxSAT solver,’’ in Proc. Int. Conf. Theory Appl. Satisfiability Test. in
Lecture Notes in Computer Science, vol. 8561, C. Sinz and U. Egly, Eds.
Vienna, Austria: Springer, Jul. 2014, pp. 438–445.

[30] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
‘‘Chaff: Engineering an efficient SAT solver,’’ in Proc. 38th Conf. Design
Autom. (DAC), 2001, pp. 530–535.

[31] R. Nieuwenhuis, ‘‘The intsat method for integer linear programming,’’ in
Proc. 20th Int. Conf. Princ. Pract. Constraint Program. (CP) in Lecture
Notes in Computer Science, vol. 8656, B. O’Sullivan, Ed. Lyon, France:
Springer, Sep. 2014, pp. 574–589.

[32] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, ‘‘Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T),’’ J. ACM, vol. 53, no. 6, pp. 937–977, Nov. 2006.

[33] F. Pega, B. Náfrádi, N. C. Momen, Y. Ujita, K. N. Streicher,
A. M. Prüss-Üstün, A. Descatha, T. Driscoll, F. M. Fischer, L. Godderis,
H. M. Kiiver, J. Li, L. L. M. Hanson, R. Rugulies, K. Sørensen, and
T. J. Woodruff, ‘‘Global, regional, and national burdens of ischemic heart
disease and stroke attributable to exposure to long working hours for 194
countries, 2000–2016: A systematic analysis from the WHO/ILO joint
estimates of the work-related burden of disease and injury,’’ Environ. Int.,
vol. 154, Sep. 2021, Art. no. 106595.

[34] K. Pipatsrisawat and A. Darwiche, ‘‘Rsat 2.0: Sat solver description,’’
Comput. Sci. Dept., Automated Reasoning Group, UCLA, Los Angeles,
CA, USA, Tech. Rep. D–153, 2007.

[35] J. A. Robinson, ‘‘A machine-oriented logic based on the resolution princi-
ple,’’ J. ACM, vol. 12, no. 1, pp. 23–41, Jan. 1965.

[36] M. Sakai and H. Nabeshima, ‘‘Construction of an ROBDD for a PB-
constraint in band form and related techniques for PB-solvers,’’ IEICE
Trans. Inf. Syst., vol. E98.D, no. 6, pp. 1121–1127, 2015.

[37] A. Schrijver, Theory of Linear and Integer Programming. Hoboken, NJ,
USA: Wiley, 1986.

[38] J. Van den Bergh, J. Beliën, P. D. Bruecker, E. Demeulemeester, and
L. D. Boeck, ‘‘Personnel scheduling: A literature review,’’ Eur. J. Oper.
Res., vol. 226, no. 3, pp. 367–385, 2013.

[39] M. Vardi. (2015). The SAT Revolution: Solving, Sampling, and Count-
ing. Mathematical Colloquium. [Online]. Available: https://slideslive.
com/38894537/the-sat-revolution-solving-sampling-and-counting

[40] A. Wirtz, O. Giebel, C. Schomann, and F. Nachreiner, ‘‘The interference
of flexible working times with the utility of time: A predictor of social
impairment?’’ Chronobiol. Int., vol. 25, nos. 2–3, pp. 249–261, Jan. 2008.

ROBERT NIEUWENHUIS received the B.S. and
Ph.D. degrees in computer science from the Tech-
nical University of Catalonia (UPC), Barcelona,
Spain, in 1987 and 1990, respectively. He has been
a Professor of computer science with UPC, since
2003. He is well known for his research at UPC
and abroad, namely at the Max-Planck Institute,
on automated reasoning, constraints, SAT, SMT,
or ILP, with highly cited publications and recogni-
tion as an invited speaker, the program committee

chair, and an editorial board membership in main conferences and journals.
He is also known from the creation of the Barcelogic software tools for
SAT and SMT, as well the company of the same name specialized in hard
combinatorial optimization problems for scheduling and timetabling.

VOLUME 9, 2021 142103

http://dx.doi.org/10.1007/s10601-020-09318-x
http://dx.doi.org/10.1007/s10601-020-09318-x


R. Nieuwenhuis et al.: Employee Scheduling With SAT-Based Pseudo-Boolean Constraint Solving

ALBERT OLIVERAS received the B.S. degree in
mathematics and the Ph.D. degree in computer sci-
ence from the Technical University of Catalonia,
Barcelona, Spain, in 2002 and 2006, respectively.
From 2006 to 2012, he was an Assistant Professor
with the Department of Computer Science, Tech-
nical University of Catalonia, where he has been an
Associate Professor, since 2012. He has authored
more than 40 research papers, and the developer of
several tools for SAT, SMT, and ILP. His research

interests include logics in computer, with special interest in SAT, SMT, and
variants of those problems.

ENRIC RODRíGUEZ-CARBONELL received the
B.S. degree in mathematics and the Ph.D. degree
in computer science from the Technical University
of Catalonia (UPC), Barcelona, Spain, in 2002 and
2006, respectively. Since 2012, he has been an
Associate Professor with the Department of Com-
puter Science, Technical University of Catalonia.
His main research interests include the applica-
tions of logics to computer science, in particu-
lar to program verification and analysis and to

combinatorial problem solving.

EMMA ROLLON received the B.S. and Ph.D.
degrees in computer science from the Technical
University of Catalonia (UPC), in 2001 and 2008,
respectively. She was a Research Assistant with
the Ecole Polytechnique Federale de Lausanne
(EPFL), in 2001, and the Universitat de Girona,
in 2002. From 2003 to 2010, she was an Assistant
Professor at UPC, where she has been an Asso-
ciate Professor, since 2011. Her research interests
include discrete optimization, constraint program-

ming, and Boolean satisfiability.

142104 VOLUME 9, 2021


