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ABSTRACT Blade tip timing (BTT) vibrationmeasurement is a promising on-line blademonitoringmethod,
but various uncertainties bring great challenge in engineering applications. Most existing works are based on
the assumption of constant rotating speeds. However, rotating speed is hardly fixed under variable conditions.
In this case, these uncertainties always become more serious. To deal with this problem, this paper proposes
to investigate BTT measurement derivations in angular domain, instead of time domain. Firstly, this paper
systematically analyzes the effects of variable rotating speed, static angle errors and translational blade
motions on the accuracy of BTT vibration measurement. Then the corresponding calibration methods are
presented by only using times of arrival (TOAs). In the end,Matlab/Simulink simulations are done to validate
the proposed method under linear and quadratic variations of rotating speeds. The results demonstrate that
BTT measurement deviation under low rotating speeds is more than those under high rotating speeds and
BTT measurement deviation due to static angle errors is independent of rotating speeds. And the proposed
TOAs-based calibration method can reduce BTT measurement deviation greatly under variable rotating
speeds, compared with traditional methods. BTT measurement deviation due to static angle errors can be
calibrated by using low rotating speeds and those due to translational blade motions are difficult to be
calibrated under variable rotating speeds. Thus simulation results indicate great potential of the proposed
method for practical applications of the BTT method.

INDEX TERMS Blade tip-timing, variable rotating speed, measurement uncertainty, angular sampling,
vibration calibration.

I. INTRODUCTION
Blades are one class of key mechanical components in
aero-engines, including fan, compressor and turbine blades.
According to working modes, they can be divided into sta-
tionary and rotating blades. During day-to-day operation,
rotating blades often interact with the air flow continuously.
Then uneven and unstable air flow distribution and unbal-
anced centrifugal force of the rotor always make each blade
vibrate, resulting in high-cycle fatigues. In addition, during
take-off, landing or low altitude flight, small hard particles are
often inhaled by the engines, which may cause foreign object
damage (FOD) of fan/compressor blades. Fatigue and FOD
make blades become one of the most easily-worn parts in
aero-engine structures. Statistical data show that faults caused
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by vibration account for more than 60% of the total aero-
engine faults. Moreover, more than 70% of blade faults are
induced by vibrations [1], [2]. Blade damage or failure is very
dangerous to flight safety and a broken blade may damage all
blades, even breaking through the whole engine. Therefore,
on-line blade vibration monitoring is very significant for
safety, reliability, and availability [3]. But how to realize it
under high-speed rotation is always a big challenge.

Blade tip timing (BTT) vibration measurement is a promis-
ing non-contact and on-line monitoring method [4]–[8]. Its
basic principle is to install a timing reference sensor and sev-
eral BTT probes, and then measure times of arrival (TOAs)
of each blade passing each BTT probe. When blade vibration
happens, the blades will pass BTT probes earlier or later
than theoretical times. In this case, a TOA difference series
will be generated for each blade. Based on it, blade vibration
displacements can be calculated. Therefore, the BTT method
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has the advantages of easy installation, low measurement
cost, monitoring all rotating blades simultaneously. Up to
now, the BTT method has been widely studied in research
and industrial communities. Chen et al. gave a comprehensive
review on blade tip timing-based health monitoring [5].

According to basic principle, accurate TOAs of a blade
is the primary prerequisite for BTT vibration measurement.
In practice, however, theoretical and actual TOAs are defi-
nitely affected by many factors, which has been discussed
in [5]. For example, there may be installation angle errors
of BTT and timing reference probes due to manufacturing
and installation errors. In this case, theoretical TOAs are
often inaccurate. As for actual TOAs, BTT sensing positions
may change during rotation due to complex aerodynamic
excitations [9], [10], which also affect actual TOAs. There-
fore, it is much necessary to analyze negative effects of
key factors on BTT vibration measurement. In recent years,
more and more attention has being paid on BTT measure-
ment uncertainties [11], [12]. By now, several related studies
have been reported. Russhard evaluated qualitatively several
uncertainties, including probe type, probe position, waveform
quality, acquisition and data processing [11]. Zhou et al. ana-
lyzed theoretically the BTT uncertainty from rotational speed
fluctuation and carried out Simulink-based simulations [13].
Mohamed et al. pointed out the equilibrium position shift
of the blade tip resulted in vibration measurement errors.
But they only focused on determining simultaneous steady-
state movements using BTT data [9], [10]. Pickering devel-
oped innovative test methods to experimentally evaluate the
performance of the BTT method due to blade and probe
static offsets [14]. It should be noted that most existing
works were based on the assumption of constant rotating
speeds. Mohamed et al. pointed out that high-rate speed
change was more problematic in BTT measurement due to
the variation of the associated positional error with rotating
speed [15]. To deal with BTT signals under variable speeds,
Chen et al. have proposed to perform angular-domain anal-
ysis, instead of time-domain analysis [16]–[18]. Fan et al.
applied a polynomial fitting using once-per-revolution (OPR)
sensor’s data to approximate the speed change in one revo-
lution [19]. Zhang et al. used multiple reference phases for
online BTT monitoring under variable-speed operation [20].
To our best knowledge, few systematic studies were done on
the influence mechanism of variable speeds, especially the
corresponding calibration methods.

In the previous work [18], the authors have mentioned
the effects of variable rotating speeds on angular-domain
BTT vibration measurement. However, it was preliminary
and incomplete. The innovation of this paper is to advance
the above work to systematically analyze the effects of
rotating speed, static angle errors and translational blade
motions on BTT vibration measurement under variable rotat-
ing speeds. Furthermore, the corresponding calibration meth-
ods are presented, respectively. The paper is structured as
follows. Section II summarizes key influencing factors of
BTT vibration measurement and outlines research gap of

existingmethods. Section III carries out derivation analysis of
BTT vibration measurement under variable rotating speeds.
Section IV presents the corresponding calibration methods
for variable rotating speeds, static angles and translational
blade motions. Matlab/Simulink simulations are done to val-
idate the proposed method in Section V. Finally, brief conclu-
sions are presented in Section VI.

II. RESEARCH GAP
Basic structure of fiber-optic-based BTT vibration measure-
ment is shown in Figure 1 [18], which is mainly composed
of multiple fiber-optic BTT probes, a timing reference sensor
(also known as the OPR sensor), a signal receiving and con-
version module, and an analysis software. Fiber-optic BTT
probes are used to measure TOAs of each blade and the
OPR sensor is used to provide the time reference. Generally
speaking, there is at least a OPR mark on the rotating shaft.
When the OPR sensor passes the mark, a timing pulse is
generated as the time reference. Assuming that the speed is
constant, theoretical TOAs of each blade are fixed when the
blade does not vibrate. While the blade vibrates, there are
time differences between actual and theoretical TOAs. Fur-
thermore, these time differences are strongly related to vibra-
tion frequency and amplitude of the blade, so that they can be
used to calculate blade vibration displacements. It should be
noted that accurate TOAs are very important. In this paper,
measurement errors of TOAs due to noises are assumed to be
negligible.

For the sake of easy understanding, let the blisk rotate
clockwise at a constant rotating frequency (fn) in the nth
revolution. When no vibrations, theoretical TOAs of the kth
blade passing the ith BTT probe can be calculated as

t thei,k,n =


n−1∑
p=1

1
fp
+
αi − θk

2π fn
, θk ≤ αi

n∑
p=1

1
fp
+
αi − θk

2π fn
, θk > αi

(1)

where fp denotes the rotating frequency of the pth revolution.
αi and θk are angles of the ith BTT probe and the kth blade
relative to the OPR mark, respectively.

The corresponding actual TOAs are denoted as tacti,k,n, and
then vibration displacement of the kth blade measured by the
ith BTT probe can be calculated as,

di,k [n] = 2π fnR(tacti,k,n − t
the
i,k,n) (2)

where R is the rotating radius of the blade tip.
Based on Equation (1) and Equation (2), we can see BTT

measurement uncertainties mainly come from αi, θk and R
if fn is a constant. At the same time, uncertainties due to αi
and θk often come from installment errors of BTT or OPR
probe and uncertainties due to R come from blade motions.
Russhard pointed out that it was possible to reduce and con-
trol these uncertainties [11].

In practice, fn is indeed not constant due to variable con-
ditions. In this case, measurement uncertainties also come
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FIGURE 1. Basic structure of the BTT method [18].

from fn according to Equation (1) and Equation (2). As stated
by Mohamed et al. [15], variable rotating speeds greatly
complicated BTT measurement uncertainty analysis. Exist-
ing methods cannot solve this issue well. Thus this paper just
aims to deal with it.

As shown in Figure 1, BTT probes are mounted around
the circumference of the bladed disk, so BTT sampling can
be looked as a natural angular-sampling process. Thus this
paper adopts angular-domain method presented in the previ-
ous work [18]. Then similar to TOAs, theoretical angles of
arrival (AOAs) of the kth blade passing the ith BTT probe
under no vibrations can be represented as,

θ thei,k,n =

{
2π (n− 1)+ αi − θk , (n = 1, 2, . . .), θk ≤ αi
2πn+ αi − θk , (n = 1, 2, . . .), θk > αi

(3)

In order to illustrate the principle clearly, the angular speed
is denoted asω (t). Then actual AOAs of the kth blade passing
the ith BTT probe can be calculated as,

θacti,k,n = 2π (n− 1)+
∫ tn−1+1t ikn

tn−1
ω (t) dt (4)

where tn−1 is the measured ending time of the (n-1)th revo-
lution, 1t ikn is the net time of the kth blade arriving at the ith
BTT probe in the nth revolution.
By combining Equation (3) and Equation (4), vibration

displacement of the kth blade measured by the ith BTT probe
can be calculated as,

d̃i,k [n] =
(
θacti,k,n − θ

the
i,k,n

)
× R

=


(∫ tn−1+1t ikn

tn−1
ω (t) dt − (αi − θk)

)
R, θk ≤ αi(∫ tn−1+1t ikn

tn−1
ω (t) dt − (2π + αi − θk)

)
R, θk > αi

(5)

According to Equations (3)∼(5), we can see BTT vibration
measurement in angular domain are closely related to the

rotating speed, the positions of BTT probes and OPR sensor,
and the rotating tip radius. In particular, themost advantage of
angular-domainmethod is that θ thei,k,n is independent ofω (t) in
Equation (3). In this case, the difficulty due to variable rotat-
ing speeds can be decreased. Next, we will study these influ-
ence factors and calibrate the corresponding deviations in
order to improve the accuracy of BTT vibrationmeasurement.
Compared with existing works, unique features of this study
mainly include: i) investigating BTTmeasurement uncertain-
ties in angular domain as for variable rotating speeds, instead
of time domain; ii) revealing the effects of two classes of
variable rotating speeds on BTT measurement; iii) proposing
calibration methods for rotating speeds and static angle errors
under variable rotating speeds, respectively.

III. DERIVATION ANALYSIS OF BTT VIBRATION
MEASUREMENT
A. EFFECTS OF VARIABLE ROTATING SPEED
According to Equation (3), theoretical AOAs are only related
to static position angles of BTT probes and OPR sensor.
Actual AOAs can be calculated as Equation (4) by using mea-
sured TOAs. In practice, angular speed of the nth revolution is
often calculated as ω̄n = 2π/(tn − tn−1) when using a single
OPR sensor. Then actual AOAs are approximated as follows
based on Equation (4).

θacti,k,n = 2π (n− 1)+ ω̄n1t ikn (6)

Comparing Equation (6) with Equation (4), we can see that
there are approximation derivations due to calculated actual
AOAs, which is defined as,

1d̃i,k [n] =

(∫ tn−1+1t ikn

tn−1
ω (t) dt − ω̄n1t ikn

)
R (7)

Moreover, the approximation derivations depend on the
variation degree of the rotating speed. Furthermore, two
classes of variable rotating speeds are considered, namely
linear variation and quadratic variation as shown in Figure 2.
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FIGURE 2. Two classes of variable rotating speeds: (a) linear variation and; (b) quadratic variation.

Here ωn−1, ω0, ωn are instantaneous angular speeds at the
times of tn−1, t1n , tn, respectively. ω̄ is the average angular
speed and ω̄ = (ωn−1 + ω0)/2. A1 ∼ A4 and B1 ∼ B5 denote
the marking flags. It can be seen from Figure 2 that: 1) The
real angle calculated by

∫ t1n
tn−1

ω (t) dt is equal to the enclosed
area by

{
A1, tn−1, t1n ,B3

}
, while the angle calculated by

ω̄n1t ikn is equal to the enclosed area by
{
A4, tn−1, t1n ,B4

}
.

Obviously, the latter is more than the former, so measure-
ment derivation is definitely introduced into angular-domain
vibration displacements. 2) The derivation under quadratic
variation is more than that under linear variation. In summary,
the faster the rotating speed changes, the more the measure-
ment derivation are. In this case, the effects of variable rotat-
ing speed on BTT vibration measurement cannot be ignored.

B. EFFECTS OF STATIC POSITION ANGLES
According to Equation (5), static position angles leading to
measurement deviation include the angle (αi) of the ith BTT
probe relative to the OPR sensor and the angle (θk ) of the kth
blade relative to the OPR mark.

Firstly, angular derivation of the ith BTT probe is denoted
as 1αi. Under variable rotating speeds, theoretical AOAs of
the kth blade passing the ith BTT probe in the nth revolution
can be written as,

θ̄ thei,k,n

=

{
2π (n− 1)+ αi +1αi − θk , (n = 1, 2, . . .), βk ≤ αi
2πn+ αi +1αi − θk , (n = 1, 2, . . .), βk > αi

(8)

Then vibration displacement of the kth blade measured by
the ith BTT probe can be calculated as,

d̄i,k [n] =
(
θacti,k,n − θ̄

the
i,k,n

)
× R

=


(∫ tn−1+1t ikn

tn−1
ωn (t) dt − (αi +1αi − θk)

)
R, βk ≤ αi(∫ tn−1+1t ikn

tn−1
ωn (t) dt − (2π + αi +1αi − θk)

)
R,

(n = 1, 2, . . .), βk > αi

(9)

Based on Equation (5) and Equation (9), BTT vibration
measurement deviation can be calculated as,∣∣d̄i,k [n]− di,k [n]∣∣ = 1αiR (10)

It can be seen from Equation (10) that measurement devi-
ation due to 1αi is independent of variable rotating speed.
When the tip radius (R) is fixed, the measurement deviation
should be a constant.

Next, angular derivation of the kth blade is denoted as1θk .
Under variable rotating speeds, theoretical AOAs of the kth
blade passing the ith BTT probe in the nth revolution can be
written as,

θ̃ thei,k,n

=

2π (n− 1)+ αi − θk −1θk , (n = 1, 2, . . .), βk ≤ αi
2π (n− 1)+ 2π + αi − θk −1θk , (n = 1, 2, . . .),

βk > αi

(11)

Similarly, vibration measurement deviation can be calcu-
lated as, ∣∣∣d̃i,k [n]− di,k [n]∣∣∣ = 1θkR (12)

We can see that vibration measurement deviation due to
1θk is also independent of variable rotating speeds.

C. EFFECTS OF TRANSLATIONAL BLADE MOTIONS
As for fiber-optic BTT probes, laser light is emitted from the
central fiber. The light beam will fall on the blade tip and
the corresponding reflected light travels back to a photodiode
through the outer fibers. Then a signal preprocessing circuit
is utilized to analyze these reflected light signals and generate
pulses. TOAs of each blade are obtained by these timing
pulses. Theoretically, the light spot position on each blade tip
should remain unchanged during rotation, namely the BTT
sensing position. In practical applications, however, the blade
may produce translational movements due to complex loads.
In this case, the BTT sensing position will change, leading
to deviations of actual TOAs which significantly affect the
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FIGURE 3. Schematic diagram under axial motion: (a) the tip profile; (b) axial displacement; (c) measurement deviation.

accuracy of blade vibration measurement. Mohamed et al.
first discussed the change of BTT sensing positions caused
by steady-state blade motions [9], [10]. But the blade was
assumed to be straight. Actual engine blade always has a
complex profile and the blade tip is composed of leading
edge, trailing edge, blade basin and blade back, as shown
in Figure 3(a). Generally speaking, the blade basin and back
are two free curves, and the leading and trailing edge are two
arcs. Therefore, it needs to reconsider the issue of measure-
ment deviation. This paper will refer to themethod in [9], [10]
to investigate the influence mechanism of translational blade
motions on vibration measurement under variable speeds.
Here translational blade motions include axial motion, bend-
ing motion and radial motion.

1) AXIAL MOTION
refers to the axial motion along the axis of the rotor caused
by installation error or/and aerodynamic loads, which will
cause the blisk to have an overall displacement as shown
in Figure 3(b). The blade tip has a certain thickness, so the
laser light begins to enter the tip from the point (A1) on
the blade back and leaves the tip from the point (A2) on
the blade basin during rotation. Because the light spot has a
certain radius, electric signal generated by the reflected light
is not an ideal pulse. After rectification, the electric signal is
converted into a square-wave signal for tip timing. Therefore,
the midpoint (A) between A1 and A2 is looked as the BTT
sensing position in this paper.

When the blisk has an overall axial displacement, the blade
tip will also shift from the original position. As shown in
Figure 3(c), the dotted line denotes the original tip position
and the solid line denotes the new tip position after transla-
tion. It can be seen that the BTT sensing position changes
from B′ to A. In this case, the blade passes the BTT probe
earlier than the case under no translation, which will generate
the measurement deviation (1d) of blade vibration displace-
ment. Furthermore, 1d is defined as,

1d = AA′ × tanθ1 (13)

where AA′ denotes the translational displacement and θ1 is
the included angle.

If the blade is simplified to be straight, θ1 is just equal to
the inclination angle of the chord line relative to the rotation
axis [9]. As for a blade with complex profile, however, θ1 is
not a constant but depends on the blade tip profile. In this
case, Equation (13) cannot be utilized again. Furthermore,
by taking the circle center of the trailing edge as the origin
and the inverse translational direction as x axis, a coordinate
system is built as shown in Figure 3(b). Then the curve
equations of the blade back and basin can be approximated
by the following polynomials, respectively.

yback (x) =
M∑
i=0

ηix i

ybasin (x) =
N∑
i=0

γix i (14)

where the coefficients (ηi, γi) and the orders (M , N ) can be
estimated by measuring the blade tip’s profile.

The x coordinate of B′ is denoted as xB′ which can be
obtained in advance according to the position of the BTT
probe. Then the x coordinate of A′ is equal to xB′+AA′. In this
case, the y coordinates of B′ and A are represented as

yA =
yback

(
xB′ + AA′

)
+ ybasin

(
xB′ + AA′

)
2

yB′ =
yback (xB′)+ ybasin (xB′)

2
(15)

Then the measurement deviation (1d) is calculated as
Equation (16) according to Figure 3(c).

1d =
yback

(
xB′ + AA′

)
+ ybasin

(
xB′ + AA′

)
2

−
yback (xB′)+ ybasin (xB′)

2
(16)

2) BENDING MOTION
refers to the first-order bending vibration of the blade due to
aerodynamic loads, as shown in Figure 4(a). In this case, the
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FIGURE 4. Schematic diagram under bending motion: (a) bending displacement; (b) measurement deviation.

blade tip will shift perpendicularly to the chord line of the
blade. As shown in Figure 4(b), the dotted line denotes the
original tip position and the solid line denotes the new tip
position after bending. It can be seen that the BTT sensing
position changes from B to A′. In this case, the blade passes
the BTT probe later than the case under no bending, which
will also generate measurement deviation (1d). Furthermore,
1d is defined as follows according to Figure 4(b).

1d = BB′
√
1+ (tanθ2)2 (17)

where BB′ is the bending displacement and θ2 is the included
angle which is also related to the blade tip’s profile.

Moreover, the curve equation of the midline of the blade
tip in Figure 4(c) can be represented as

ycenter (x) =
yback (x)+ ybasin (x)

2

=

M∑
i=0
ηix i +

N∑
i=0
γix i

2
(18)

Then tanθ2 in Equation (17) can be calculated as Equa-
tion (19) by substituting Equation (18).

tanθ2 =
∂ycenter (x)

∂x

∣∣∣∣
x=xB

=

M−1∑
i=1

iηix
i−1
B +

N−1∑
i=1

iγix
i−1
B

2
(19)

And the measurement deviation (1d) is calculated as,

1d = BB′

√√√√√4+

(
M−1∑
i=1

iηix
i−1
B +

N−1∑
i=1

iγix
i−1
B

)2/
2 (20)

3) RADIAL MOTION
refers to blade translation in radial direction caused by the
deformation of the rotating axis. In this case, the BTT sensing
position does not change, while the tip radius will change.
Therefore measurement deviation is also introduced. Radial
displacement of the blade is assumed to be 1R, then the
measurement deviation (1d) can be calculated as,

1d = 2π fn1R(tacti,k,n − t
the
i,k,n) (21)

IV. DERIVATION CALIBRATION OF BTT VIBRATION
MEASUREMENT
A. VIBRATION CALIBRATION UNDER VARIABLE ROTATING
SPEEDS
According to Equation (7), we can see that the measurement
deviation under variable rotating speed mainly comes from
estimation of the rotating angle in the nth revolution using
the sampled TOAs. Therefore, it needs to approximate the
area surrounded by

{
A1, tn−1, t1n ,B3

}
in Figure 2 in order

to reduce the measurement deviation. Based on this idea,
this paper presents the corresponding vibration calibration
method, which is suitable for each blade passing each BTT
probe. Without loss of generality, the subscripts of ‘i’ and ‘k’
will be ignored in next sections for the sake of simplicity.

1) UNDER LINEAR VARIATION
The rotating angular speed is denoted as ωn (t) = λt , where
λ is the unknown slope. Based on the following formula,∫ tn

tn−1
ωn (t)dt =

∫ tn

tn−1
λtdt = 2π (22)

λ can be calculated as 4π/
[
(tn)2 − (tn−1)2

]
. Then we will

have

ωn−1 = 4π tn−1/
[
(tn)2 − (tn−1)2

]
,

ω0 = 4π t1n /
[
(tn)2 − (tn−1)2

]
.

Furthermore, we choose ω̄ = (ωn−1 + ω0)/2. Then
it is not hard to prove that the area surrounded by{
A2, tn−1, t1n ,B2

}
is equal to that surrounded by

{
A1, tn−1, t1n ,

B3
}
in Figure 2 (a). In this case, actual AOAs in Equation (6)

can be revised as,

_

θ
act

n =2π (n−1)+2π
[(
t1n
)2
−(tn−1)2

]/[
(tn)2−(tn−1)2

]
(23)

Obviously, the above actual AOAs are exactly accurate,
so the measurement deviation can be completely calibrated
under linearly varying speed.
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FIGURE 5. Schematic diagram of vibration calibration under quadratic variation of rotating speed.

2) UNDER QUADRATIC VARIATION
Rotating angular speed always changes fast. In this case,
the area surrounded by

{
A1, tn−1, t1n ,B3

}
can be estimated

by using piecewise approximation in order to reduce the
derivation. For this purpose, the idea of using M uniform
OPR marks on the rotating shaft can be borrowed [21].
In this case, M OPR signals will be generated during each
revolution. In this paper, the M uniform OPR marks and
the corresponding signals are assumed to be ideal, so that
their uncertainties are ignored. As shown in Figure 5,
the (M + 1) OPR times in the nth revolution are denoted as{
t0n−1, t

1
n−1, . . . , t

M−1
n−1 , t

M
n−1

}
with t1n ∈

(
tp−1n−1 , t

p
n−1

)
, 1 ≤

1 ≤ M , where t0n−1 = tn−1 and tMn−1 = tn. Then we will have,

S{A1,tn−1,t1n ,B3} = S{
A1,tn−1,t

p−1
n ,A3

} + S{
A3,t

p−1
n−1 ,t

1
n ,B3

}
S{
A1,tn−1,t

p−1
n ,A3

} = 2π (p− 1)/M (24)

where S denotes the area. Next, in order to estimate
S{
A3,t

p−1
n−1 ,t

1
n ,B3

}, three instantaneous angular speeds at

tp−1n−1 , t
p
n−1, t

p+1
n−1 are assumed to be in a straight line, as shown

in Figure 5. This line can be represented as,

ωn (t) = ψnt + bn (25)

where ψn, bn are two unknown parameters to be identified.
Furthermore, we will have,

∫ tpn−1
tp−1n−1

(ψnt + bn)dt = 2π/M

∫ tp+1n−1

tpn−1
(ψnt + bn)dt = 2π/M

(26)

Thusψn, bn can be identified as (27a) and (27b), as shown
at the bottom of the next page,

Then ωp−1n−1 and ω0 can be calculated as,

ω
p−1
n−1 = ψnt

p−1
n−1 + bn, ω0 = ψnt1n + bn (28)

Similar to Equation (23), actual AOAs under quadratic
variation of rotating speed can be approximated as,

_

θ
act

n = 2π (n− 1)+ 2π (p− 1)/M +
(
ω
p−1
n−1 + ω0

)/
2

×

(
t1n − t

p−1
n−1

)
(29)

It can be understood that the measurement deviation will
decrease with the increase of M . In particular, a large M
should be used to reduce the deviation within the allowable
range when the rotating speed changes rapidly.

B. VIBRATION CALIBRATION UNDER THE DERIVATION OF
STATIC POSITION ANGLES
Based on Equation (10) and Equation (12), we can see that the
measurement deviation due to static position angle (αi or θk )
tends to be a constant. In this case, vibration calibration can
be realized by removing the mean of vibration displacements.
However, such calibration method is ideally performed for
just one static angle. Furthermore, it’s not hard to find out
that BTT vibration measurement is directly related to the
relative angle between the blade and each BTT probe, i.e.,
αi − θk . Therefore, this paper proposes a novel method to
calibrate the relative angle (i.e., φik = αi − θk ), instead
of a single static angle (αi or θk ). The most advantage is
that the measurements deviation due to both αi and θk can
be calibrated simultaneously. The details of the method are
illustrated as follows.

Angle derivation of φik is denoted as 1φik . Firstly,
the rotating speed is set to be low and slowly variable, so
that the rotating period of each revolution can be considered
as a constant. In the case, the period of the nth revolution is
calculated as Tn = tn − tn−1. Theoretical TOAs of the kth
blade passing the ith BTT probe can be calculated as

t thei,k,n =


n−1∑
j=1

Tj +
φikTn
2π

, θk ≤ αi

n∑
j=1

Tj +
φikTn
2π

, θk > αi

(30)
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FIGURE 6. Schematic diagram of calibration process of BTT vibration measurement.

At the same time, actual TOAs can be calculated as,

tacti,k,n =

n−1∑
j=1

Tj +1t ikn (31)

Furthermore, the excitation frequency is much less than
resonant frequencies of a blade under low rotating speeds,
so it can be assumed that there are no blade vibrations.
In theory, tacti,k,n should be equal to t thei,k,n. In practice, how-
ever, it is not the case due to 1φik . The derivation cal-
culated in the nth revolution is denoted as 1φnik , which
can be calculated as follows based on Equation (30) and
Equation (31).

1φnik =

{
2π1t ikn /Tn − φik , θk ≤ αi
2π
(
1t ikn − Tn

)
/Tn − φik ,θk > αi

(32)

Then 1φik can be represented as the following average
value during N revolutions.

1̄φik =

N∑
n=1

1φnik

/
N (33)

Finally, the calibrated relative angle is written as φ̃ik =
φik + 1̄φik , which can be applied to calculate blade vibration
displacement. By this way, the measurement deviation due to
static angles can be reduced greatly.

C. VIBRATION CALIBRATION UNDER TRANSLATIONAL
BLADE MOTIONS
As for axial and bending motions, it can be seen that the
measurement deviation is strongly related to translational
displacement of a blade. In practice, however, it is very
difficult to obtain the instantaneous BTT sensing position
under variable rotating speeds. Zhang et al. proposed to track

actual measuring point position relative to the blade tip during
blade rotation [21]. But it assumed that the rotating speed of
each revolution was constant. Therefore, vibration calibra-
tion under axial and bending blade motions is still an open
problem deserved to be further explored. While under radial
motion, the BTT sensing position doesn’t change and the
measurement deviation just depends on1R. Generally speak-
ing, 1R is much smaller than R, so the impact is relatively
small. In addition, the measurement deviation can be further
reduced by signal preprocessing, such as normalization.

To sum up, in practice the calibration process of BTT
vibration measurement under variable speeds can be sketched
in Figure 6. Firstly, it needs to choose the optimal BTT sens-
ing position which changes little during rotation. This task
may be accomplished by finite element simulation or digital
twin. That is to say, vibration displacements of the blade tip
can be estimated by these two methods, so that the position
with the smallest torsional motion is first chosen as the BTT
sensing position. Secondly, TOAs under a preset low speed
are sampled to calculate 1φik , so that the static angles can
be calibrated. Next, if the rotating speed changes very fast,
multiple OPR marks should be made to reduce measurement
deviation. In the end, measured BTT vibration signals can
be preprocessed by normalization to further calibrate these
derivations due to radial motion or static angles.

V. SIMULATIONS AND DISCUSSIONS
A. MATLAB/SIMULINK-BASED BTT MODEL
In order to validate the proposed method, numerical sim-
ulations are done to generate BTT samples. Here a rota-
tional blade is assumed to be a cantilever beam and only the
first-order bending mode is considered. Under this assump-
tion, dynamic behavior of the blade can be represented by a
single-degree-of-freedom (SDOF) lumped-parameter model

ψn =
4π
(
2tpn−1 − t

p−1
n−1 − t

p+1
n−1

)
M
{[(

tp+1n−1

)2
−
(
tpn−1

)2] (tpn−1 − tp−1n−1

)
−

[(
tpn−1

)2
−

(
tp−1n−1

)2] (
tp+1n−1 − t

p
n−1

)} (27a)

bn =
2π
{[(

tp+1n−1

)2
−
(
tpn−1

)2]
−

[(
tpn−1

)2
−

(
tp−1n−1

)2]}
M
{[(

tp+1n−1

)2
−
(
tpn−1

)2] (tpn−1 − tp−1n−1

)
−

[(
tpn−1

)2
−

(
tp−1n−1

)2] (
tp+1n−1 − t

p
n−1

)} (27b)

141474 VOLUME 9, 2021



Z. Chen et al.: Analysis and Calibration of Blade Tip-Timing Vibration Measurement

FIGURE 7. Simulink model of BTT sampling process under linear variation of rotating speeds.

FIGURE 8. The derivation of actual AOA under Test 1.

and its vibration equation is written as follows [13].

meqÿ(t)+ ceqẏ(t)+ keqy(t) = F(t) (34)

where meq, ceq, keq are the equivalent mass, damp and stiff-
ness, respectively. y(t) denotes blade vibration displacement.
F(t) denotes the vibration excitation.

Next the BTT sampling process in angular domain is sim-
ulated in Matlab/Simulink environment. Firstly, the SDOF
model in Equation (34) is built. Then the sampling times
of OPR and BTT probes are obtained by using the ‘Hit
Crossing’ Block and the ‘Switch’ Block in the Simulink.
Basic procedure is demonstrated as follows: The angle of the
OPR probe relative to the OPR mark is denoted as θ0 and
the time-dependent rotating frequency is denoted as fr (t). For
the OPR probe, the sampling time in the nth revolution can

FIGURE 9. The derivation of actual AOA under Test2.

be solved by

2π
∫ t

0
fr (t) t = 2πn+ θ0 (35)

For the kth rotational blade, the angular sampling time of
the ith BTT probe in the nth revolution can be solved by

2π
∫ t

0
fr (t) t = θ0 + 2πn+ (αi − θk ) (36)

In the SDOF model, parameters are chosen as meq =
0.1 kg, ceq = 10 N · s/m, keq = 4 × 105 N/m and the
vibration excitation is selected as F(t) = sin (200π t).

As stated before, few existing techniques have been studied
for BTT measurement uncertainties under variable rotating
speeds, so the proposed angular-domain method will be com-
pared with tradition fixed-speed method in the following
simulations.
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FIGURE 10. Simulink model of BTT sampling process under quadratic variation of rotating speeds.

B. CALIBRATION VALIDATION UNDER LINEARLY
VARIABLE ROTATING SPEEDS
In order to simulate linearly variable rotating speeds,
the rotating frequency is denoted as fr (t) which is defined as

fr (t) = f0 + (fe − f ) t/Ts (37)

where f0, fe are the rotating frequencies at the starting time
and the ending time, respectively. Ts is the total simulation
time.

The Matlab/Simulink model is built as shown in Figure 7,
where only an OPR mark is applied. The position angles are
set as θ0 = π/8 and αi − θk = π/4, respectively. Simulation
parameters of two tests are listed in Table 1. Based on these
parameters and the Simulink model in Figure 7, the OPR
times and the TOAs can be obtained under each variable
rotating speed. At each time step of the simulation, the output
of the BTT probe is equal to sampled vibration displacement
only when the blade passes the BTT probe. Otherwise, its
output is equal to ‘5’, which is not true vibration displace-
ment. Thus the constant ‘5’ is just used to distinguish sampled
vibration displacement from other simulated outputs of the
BTT probe. In this sense, the constant is not unique.

1) UNDER TEST 1
In this case, the initial rotating frequency is equal to 0. In order
to simulate different degrees of linear variations, three groups

TABLE 1. Simulation parameters under linearly variable rotating speeds.

of (fe,Ts) are used as: (50, 100), (100, 50) and (200, 25).
Then actual AOAs are estimated by the traditional fixed-
speed method as Equation (6), and the proposed method as
Equation (23), respectively. The derivation between actual
and theoretical AOAs is calculated and plotted in Figure 8.
We can see that: i) For each group, the derivation by the
proposed method is equal to 0, much smaller than that by
the traditional fixed-speed method; ii) the derivation by the
traditional fixed-speed method decreases with the revolution,
which means the derivation also becomes small during high-
speed rotations; iii) During low-speed rotation, the deriva-
tion by the traditional fixed-speed method is obvious and
non-negligible. That is to say, the traditional method cannot
be used at the startup stage; iv) For different degrees of
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FIGURE 11. The derivation of actual AOAs under quadratic variation of
rotating speeds.

linear variations, the derivations by the traditional fixed-
speed method are the same, which is due to f0 = 0. In order
to validate it, Test 2 is carried out next.

2) UNDER TEST 2
In this case, the initial rotating frequency is equal to 10Hz.
Similarly, three groups of (fe,Ts) are used. Then actual AOAs
are estimated by traditional method as Equation (6) and the
proposed method as Equation (23), respectively. The deriva-
tion between actual and theoretical AOAs is calculated and
plotted in Figure 9. Besides similar results in Figure 8, we
can also see that: i) For different degrees of linear variations,
the corresponding derivations by the traditional fixed-speed
method are different during low-speed rotation when f0 6= 0,
which is different from Figure 8; ii) Moreover, the faster the
speed increases, the smaller the derivation is.

C. CALIBRATION VALIDATION UNDER QUADRATIC
VARIATION OF ROTATING SPEED
In order to simulate quadratic variation of rotating speeds, the
rotating frequency is defined as

fr (t) = kr t2 + br (38)

where kr , br are two coefficients.
The Matlab/Simulink model is built as shown in Figure 10,

where five (M = 5) OPR marks are applied. The parameters
are set as br = 0 and Ts = 20s. Then the OPR times and the
TOAs are sampled under each variable rotating speed.

Similarly, kr is selected as 0.5, 1, 2 and 5 to simulate
different quadratic variations, respectively. Then actual AOAs
are estimated by the traditional fixed-speed method as Equa-
tion (6) and the proposed method as Equation (29), respec-
tively. The derivation between actual and theoretical AOAs is
calculated and plotted in Figure 11. We can see that: i) For
each kr , the derivation by the proposed method is not equal
to zero, but much smaller than that by the traditional fixed-
speed method at low-speed stage; For example, the derivation
by the traditional method increases by 45.19% when n = 10;

TABLE 2. Calibration result of static angles.

ii) The derivation by the traditional fixed-speed method also
decreases with the rotating speed.

According to Figure 8, 9 and 11, we also can see that
the proposed method is much superior to the traditional
fixed-speed method in the low-speed range, while the supe-
riority is not obvious in the high-speed range. The reason is
that the average speed is much close to instantaneous speed
during high-speed rotation.

D. CALIBRATION VALIDATION OF STATIC ANGLES
The same Simulink model as Figure 7 is used, where the
parameters are set as f0 = 10Hz, fe = 12Hz and Ts = 50s.
The angle of φik is set as π/4, but there is a small error
(π/180). Then actual TOAs are sampled and Equation (33)
is used to estimate the angle error. The result is shown
in Table 2 and we can see that φik is correctly calibrated by
the proposed method.

VI. CONCLUSION
Measurement uncertainties always bring serious consequence
to the BTT method in practical applications. In particular,
these uncertainties always become more serious under vari-
able rotating speeds. To deal with them, this paper systemat-
ically analyzes the effects of variable rotating speed, static
angle errors and translational blade motions on the accu-
racy of BTT vibration measurement and presents the cor-
responding calibration methods. The main contributions of
this paper may include: i) it proposed to analyze BTT vibra-
tion measurement deviations under variable rotating speeds
from the viewpoint of angular domain and the corresponding
calibration process was outlined; ii) Measurement deviation
due to linearly varying speed was completely calibrated by
using TOAs. And measurement deviation due to nonlin-
early varying speed was greatly reduced by using multiple
OPR marks, such as quadratic variation of rotating speed;
iii) Measurement deviation due to static angles was proved
to be independent of the rotating speed and the relative angle
error was calibrated under low rotating speeds. iv) Measure-
ment deviation due to blade motions was shown to be very
complex due to stochastic change of the BTT sensing point.
In future work, the authors will build an experimental setup
with precisely controlling blade rotating speed and carry out
experimental validations. In addition, as discussed in [5],
BTTmeasurement errors are generated by many factors, such
as TOA signals, measurement noises, and so on. Thus it is
worth doing deep studies on this issue. In particular, it needs
to obtain accurate TOAs andmore attention should be paid on
translational and torsional motions of rotating blades under
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variable rotating speeds in future. Also uncertainties due to
multiple OPR marks also should be explored.
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