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ABSTRACT Credit scoring models are the cornerstone of the modern financial industry. After years of
development, artificial intelligence and machine learning have led to the transformation of traditional credit
scoring models based on statistics. In this study, a novel multi-stage ensemble model with a hybrid genetic
algorithm is proposed to achieve accurate and stable credit prediction. To alleviate the adverse effects of
imbalanced data in credit scoring models, the Instance Hardness Threshold method is extended using a
majority voting strategy to deal with data imbalance. To eliminate redundant and irrelevant features in the
dataset and select well-performing base classifiers, a new hybrid genetic algorithm is proposed to obtain the
optimal feature subset and base classifier subset. To aggregate the predictive power of the base classifiers,
a stacking approach is adopted to integrate the optimal base classifiers into the ensemble model. The proposed
model is tested on three standard imbalanced credit scoring datasets, compared with similar state-of-the-art
approaches, and evaluated using four well-known evaluation indicators. The experimental results prove the
effectiveness of the proposed model and demonstrate its superiority.

INDEX TERMS Credit scoring, imbalanced data, genetic algorithm, ensemble model.

NOMENCLATURE BACC Balance accuracy.
ABBREVIATION TP True positive.

RF Random forest. FP False positive.

XGBoost  Extreme gradient boosting. TN True negative.

GBDT Gradient boost tree. FN False negative.

LDA Linear discriminant analysis. TPR True positive rate.

HGA Hybrid genetic algorithm. TNR True negative rate.

GA Genetic algorithm. CD Critical distance.

IHT Instance Hardness Threshold.

SMOTE  Synthetic minority oversampling technique.

IHP Instance Hardness Points. ”YDICES L

SMAC Sequential model-based algorithm ! Classnﬁ?r 1n.dex.

configuration. g Generation index.

VIHT Voting Instance Hardness Threshold.

LR Logistic regression_ VARIABLES AND PARAMETERS

DT Decision tree. Cif; The ith classifier.

ET Extra trees. IHP-CIf; The IHP identified by CIf ;.

LGBM Light gradient boosting machine. n The number of classifiers.

G The maximum number of generations.
The associate editor coordinating the review of this manuscript and 0 The number of individuals.

approving it for publication was Jolanta Mizera-Pietraszko . Mr, The mutation rate in the gth generation.
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I. INTRODUCTION

The ability to accurately assess the creditworthiness of cus-
tomers who apply for loans and perform corresponding risk
management is the key to the development of the mod-
ern financial industry. With economic development, tra-
ditional statistics-based credit scoring models have been
gradually overwhelmed by the exponentially growing credit
big data, and have lost their effectiveness. An intuitive
example is that traditional statistics-based credit scoring
models require assumptions regarding the statistical distri-
bution of data, which are often not applicable to big data
with a complex distribution [54]. Recently, the advance-
ments in artificial intelligence, such as ensemble learning-
based methods [32], evolution algorithm-based methods [49],
and clustering technique-based methods [28] have been
used in credit scoring fields. In our previous study, artifi-
cial intelligence and machine learning technologies outper-
formed statistical approaches in constructing a credit scoring
model [60].

Credit scoring data are usually imbalanced data, which
means that the numbers of positive and negative samples
in the data are inconsistent. In the imbalanced credit scor-
ing data, positive samples refer to the number of default-
ing customers, and negative samples refer to the number of
non-defaulting customers. Generally, the number of negative
samples is much larger than the number of positive samples.
The rationale behind this phenomenon is that, in most real-
world cases, the number of customers who pay their bills
on time is much larger than the number of customers who
default. However, both statistics-based and machine learning-
based credit scoring models find making accurate predictions
challenging when imbalanced data are directly input. There-
fore, enhancing the predictive ability of credit scoring models
using imbalanced data is the first motivation of this study.

Credit scoring data are also high-dimensional [47]. The
feature relations of high-dimensional data are often complex,
which makes it difficult to predict the probability of default.
Furthermore, redundant or irrelevant features often lead to
model overfitting, which affects model performance. Hence,
developing an effective feature selection approach is a prereq-
uisite to lower data processing costs, a better understanding
of data, and better-performing credit scoring models.

In addition, an appropriate ensemble strategy that inte-
grates multiple base classifiers into an ensemble model,
has proven to be an effective approach for solving several
data mining tasks [26]. Therefore, various ensemble models
based on random forest (RF) [7], extreme gradient boosting
(XGBoost) [13], gradient boost tree (GBDT) [19], linear
discriminant analysis (LDA) [18], etc., have been utilized for
credit scoring. However, it is not taken for granted that an
ensemble model composed of random multiple weak classi-
fiers will be a well-performing strong classifier. In particular,
multiple poorly-performing or correlated base classifiers
in an ensemble model may result in adverse ensemble
effects. To overcome these limitations, well-performing and
uncorrelated base classifiers must be selected to construct
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ensemble models. Unfortunately, classifier selection is as
complex as feature selection. Therefore, developing an effec-
tive classifier selection approach for selecting and composing
well-performing base classifiers is another problem worth
exploring.

The main contributions of this study can be summarized as
follows:

1) A novel multi-stage ensemble model with a hybrid
genetic algorithm (HGA) is proposed in this study.

2) The Instance Hardness Threshold (IHT) [53] method
is extended via a majority voting strategy to alleviate the
adverse effects of imbalanced data in credit scoring.

3) The basic genetic algorithm [25] is extended through
a promising initial population and self-adaptive mutation to
optimize feature selection and classifier selection.

4) The proposed model is validated on three standard
imbalanced credit scoring datasets, indicating its superior
performance.

The remainder of the paper is organized as follows:
Section 2 reviews related work. Section 3 elaborates on the
details of the proposed model. Section 4 presents the exper-
imental design. Section 5 describes the experimental results
and provides a comparative analysis. Section 6 presents the
conclusions and future work.

Il. RELATED WORK

In this study, the proposed model mainly includes three parts:
learning from imbalanced data, feature selection and classi-
fier selection, and classifier ensemble. As important subfields
of machine learning and credit scoring, these three aspects
have drawn much attention from various scholars. In this
section, prior studies on the aforementioned subfields are
reviewed. The related works all make significant contribu-
tions in each subfield, but their limitations are identified to
differentiate the proposed study.

A. LEARNING FROM IMBALANCED DATA

A dataset can be considered imbalanced when the number
of positive samples is inconsistent with that of the nega-
tive samples. In credit scoring data, the number of positive
samples is usually much lower than the number of negative
samples. In such a situation, the classifiers tend to make
false predictions regarding positive samples with fewer num-
bers [55]. Hence, credit scoring models have difficulty in
making accurate predictions when imbalanced data are input
directly. Given the importance of this issue, numerous sam-
pling approaches have been proposed to address imbalanced
data before training the models.

There are three categories of sampling approaches: over-
sampling, undersampling, and hybrid-sampling. The over-
sampling approach can be used to sample imbalanced data
by generating new positive samples or replicating some
positive samples, such as random oversampling and the
synthetic minority oversampling technique (SMOTE) [11].
Almhaithawi et al. [3] applied four common classifiers with
SMOTE for fraud detection and concluded that SMOTE
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could improve the performance of most classifiers. The
undersampling approach can be used to sample imbalanced
data by eliminating some negative samples or generating
new negative samples to replace the original negative sam-
ples, such as BalanceCascade [39] and cluster centroids [38].
He et al. [23] extended the BalanceCascade approach to
generate adjustable balanced subsets based on the imbal-
ance ratios of training data and obtained a better predic-
tive performance than using the original BalanceCascade
approach. The hybrid-sampling approach can be used to sam-
ple imbalanced data by combining oversampling and under-
sampling approaches, such as SMOTE-Tomek links [59].
Sun et al. [54] proposed a hybrid-sampling approach named
DTE-SBD, and proved its effectiveness for imbalanced enter-
prise credit evaluation.

However, the aforementioned approaches only handle the
problem of inconsistent sample sizes in imbalanced data.
Moreover, traditional oversampling methods tend to inject
irrelevant data, which leads to model overfitting. Traditional
undersampling methods tend to eliminate too much use-
ful data, leading to information loss. Meanwhile, none of
these studies analyzed why imbalanced data affect classifiers.
He and Garcia [24] reviewed the advancements of research
in imbalanced data and concluded that the class overlap was
one of the main reasons that degraded the classifier perfor-
mance in imbalanced learning. Smith et al. [53] identified
and analyzed samples that were frequently misclassified by
learning algorithms and found that class overlap was a prin-
cipal contributor to misclassification. To resolve class over-
lap, Smith et al. [53] proposed an undersampling approach
named Instance Hardness Threshold (IHT), which identified
the sample points that were hard to classify, i.e., Instance
Hardness Points (IHP), using classifiers, and eliminated these
samples from the training data to alleviate the adverse effect
of class overlap. Garcia et al. [21] also studied the IHT and
proved its effectiveness.

Although the THT method helps resolve class overlap,
it heavily depends on the performance of a single classifier for
identifying IHP [34]. Employing a poorly-performing base
classifier for identifying IHP tends to eliminate a significant
number of negative samples, leading to information loss.
Even if a well-performing classifier is employed to identify
IHP, some useless negative samples cannot be eliminated,
and the sampled data obtained are not widely applicable to
all classifiers in the model. Therefore, to further develop the
IHT into an effective approach for credit scoring, in this study,
it is extended by the majority voting strategy, which not only
improves the data quality after sampling but also improves
the applicability of the sampled data.

B. FEATURE SELECTION AND CLASSIFIER SELECTION

In credit scoring, redundant or irrelevant features in training
data often lead to model overfitting, which affects model
performance. Furthermore, poorly-performing or correlated
base classifiers in an ensemble model may affect ensemble
performance. These problems highlight the importance of
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effectively selecting optimal features and base classifiers.
Feature selection and classifier selection in credit scoring
can be considered as a NP-hard problem [47]. Thus, several
optimization approaches have been proposed to resolve these
problems, such as grid search and random search [5]. How-
ever, with the increase of data and model complexity in credit
scoring, the search space of feature selection and classifier
selection increases sharply, considerably increasing the cost
of the aforementioned approaches.

To address the data and model complexity, Hutter et al. [30]
proposed a sequential model-based algorithm configuration
(SMAC) procedure for solving general optimization prob-
lems by training an RF in the search space. This allows the
optimization of both numerical and categorical parameters
on a set of instances with less overhead. However, despite
its success, the SMAC method is restricted to problems with
moderate dimensions [57]. Hence, finding the optimal feature
subset and classifier subset in a high-dimensional search
space becomes challenging.

To overcome the aforementioned limitations, many schol-
ars have adopted the genetic algorithm (GA) [25] that is
motivated by the Darwinian biological evolution theory and
has been widely employed in the optimization field to reduce
the overhead of the optimization process and find the opti-
mal solution. Similar to the biological evolution process,
GA mainly solves the problem through four strategies, popu-
lation, selection, crossover, and mutation. It has been proven
that, with the same time cost, GA generally outperforms grid
search and random search [37]. Ali et al. [2] proposed an
LDA-GA-SVM, which used GA to optimize the parameters
of the support vector machine (SVM). Chen et al. [12] used
the GA to improve the complexity and weights of a learn-
ing vector quantization model for optimal or near-optimal
cost-sensitive bankruptcy prediction. Oreski and Oreski [44]
proposed a hybrid GA with neural networks and used it
to select the optimal feature subset in credit risk assess-
ment. Zhang et al. [61] proposed a multi-population GA
that enhanced the selection, crossover, and mutation steps
through multi-population interaction, and applied this method
to feature selection and classifier selection for credit scoring.
The aforementioned studies have demonstrated the applica-
tion and superiority of the GA in machine learning models.
However, the population is randomly initialized in the above
applications of GA, which requires more iterations to deter-
mine the direction of evolution for populations, and hence,
increases the time cost. Therefore, in this study, a new HGA
is proposed that generates a promising initial population for
GA and enhances the mutation step through self-adaptation,
to achieve better performance in terms of feature selection
and classifier selection.

C. CLASSIFIER ENSEMBLE

The ensemble model has been proven to be an effective
approach for improving the performance of the credit scoring
model [56]. It is designed to enhance model performance
by training multiple single base classifiers and integrating
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their decisions using an ensemble strategy. Currently, vot-
ing, bagging [6], boosting [51], and stacking [58] are the
mainstream ensemble strategies for credit scoring. In par-
ticular, owing to its high robustness and excellent perfor-
mance, the stacking approach has been extensively employed
in credit scoring models [61]. Fedorova et al. [17] applied
different stacking-based combinations of machine learning
algorithms to construct a well-performing ensemble model
for the bankruptcy prediction of Russian manufacturing com-
panies. Wang et al. [56] compared three ensemble strategies
in credit scoring and concluded that stacking could signifi-
cantly improve model performance. Ali ef al. [1] proposed a
stacked support vector machine and demonstrated its superior
performance over the other state-of-the-art machine learning
ensemble models. The aforementioned works have demon-
strated the superiority of the stacking strategy in constructing
ensemble models. However, the effect of the stacking strategy
also depends on the performance of the base classifiers [61].
Hence, this study uses a stacking strategy to construct a
multi-stage ensemble model by integrating the decisions of
the selected base classifiers from the candidate classifiers,
which are trained by sampled data with selected features.

Ill. PROPOSED MODEL

In this study, a novel multi-stage ensemble model with an
HGA is proposed. As shown in Figure 1, the proposed model
consists of four stages: data sampling, feature selection, clas-
sifier selection, and classifier ensemble. In the data sam-
pling stage, the traditional IHT method is extended through
a majority voting strategy so that it can handle imbalanced
training data. In the feature selection stage, the proposed
HGA is used to select optimal feature subsets for each base
classifier, and then, majority voting is employed to integrate
all subsets into the aggregated optimal feature subset. In the
classifier selection stage, the proposed HGA is used to select
the optimal base classifier subset and further develop it into
an ensemble model with a stacking strategy in the classi-
fier ensemble stage. The details of the above stages and
approaches are presented in the following subsections.

A. VOTING-BASED IHT (VIHT) METHOD

To handle imbalanced training data, the IHT method [53]
is employed in this study to identify the sample points
that are hard to classify, i.e., IHPs, using a classifier. For
example, the four scatter plots at the bottom right corner of
Figure 2 illustrate the IHPs that are identified by different
base classifiers. The axes of the scatter plots demonstrate
the values of the two dimension-reduced features through
principal component analysis [41]. The pink, blue, and red
points represent the IHP, negative, and positive samples,
respectively. It can be seen that the IHPs identified using
different base classifiers differ significantly in terms of quan-
tity and distribution. Thus, the credit scoring data sampled
through THT using a certain classifier are not applicable to
all base classifiers. Therefore, the IHT method is extended by
combining multiple classifiers with a majority voting strategy
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FIGURE 1. Framework of the proposed model.

to alleviate the aforementioned limitations in this study. The
different IHPs, obtained through IHT using multiple base
classifiers are integrated using the majority voting strategy
into the aggregated IHP, which will be eliminated eventually,
thus enhancing the applicability of sampled data to diverse
base classifiers.

The framework of the proposed voting-based IHT (VIHT)
method is illustrated in Figure 2. The scatter plot at the
top-left corner illustrates the raw training data that will be
identified using the VIHT method. In the grids, —1, 1,
and O represent the negative sample points, positive sam-
ple points, and aggregated IHP, respectively. First, multiple
base classifiers CIf; (i = 1,2...n) are used to identify the
different IHPs, i.e., IHP-CIf; (i = 1,2...n) through IHT.
Then, record the number of times for each sample point
to be identified as an IHP. Next, these different IHPs are
integrated into aggregated IHPs using the majority voting
strategy. For example, if a sample point is identified as an
IHP by more than half of the base classifiers, it will be
considered as an aggregated IHP. Finally, the sampled data are
obtained by eliminating aggregated IHPs. Hence the output
of the VIHT is a sampled data that are applicable to most
classifiers.
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FIGURE 2. Framework of VIHT method.

B. HYBRID GENETIC ALGORITHM (HGA) METHOD

To optimize feature selection and classifier selection for
ensemble modeling, a new HGA with a promising initial
population and self-adaptive mutation is proposed in this
study (Figure 3).

Step 1: Parameter initialization: The number of individuals
in the initial population, crossover rate, initial mutation rate,
maximum number of generations, and gene number of each
individual are initialized.

Step 2: Encoding: A binary encoding scheme is employed
to encode a candidate feature subset or candidate base clas-
sifier subset, where O indicates that the feature or classifier
corresponding to the current gene is not selected and 1 repre-
sents that it is selected.

Step 3: Population initialization: The initial population
plays an important role in the evolution of the GA toward
a promising direction. Inspired by the SMAC procedure [30]
for solving general optimization problems by training an RF
in the search space, this study incorporates the procedure into
the GA to generate a promising initial population in the HGA,
as shown in Figure 4.

a) Generate Q individuals randomly, representing the can-
didate feature subset or candidate base classifier subset, and
employ balance accuracy [8] to evaluate the practical classi-
fication performance (i.e., fitness) of each individual through
5-fold cross validation.

b) Train an RF using the individuals of the candidate
feature or candidate base classifier subset as predictors and
the practical classification performance of individuals as the
target label.
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¢) Generate Q1 (Q1 > Q) new individuals randomly, and
use the trained RF to predict the classification performance
of QI generated individuals.

d) Select the Q individuals with top-ranked predicted clas-
sification performance through RF as the initial population
of GA. Use the predicted classification performance, instead
of practical classification performance, to select the initial
population of GA will reduce the algorithmic overhead of GA
greatly.

Step 4: Crossover: A two-point crossover approach is
used to evolve the individuals in the parent population
according to a certain crossover rate to obtain the offspring
population.

Step 5: Mutation: A fixed mutation rate tends to lead GA
to fall into the local optimum or makes it difficult for the
GA to converge. Hence, a self-adaptive mutation is proposed
to overcome the above problems in HGA. The single point
mutation approach is used to randomly mutate a gene of
individuals in the offspring population according to a cer-
tain mutation rate and then update the mutation rate using
Equation (1):

1-M G
Mrg+( Gro)(l_e—g) 8=~

Mrg-i-l = (1 — Mro) e G (1)
rg—T(l—e ) §> 5.

where Mro and Mr, represent the initial mutation rate and
the mutation rate in the gth generation, respectively, g € {1,
2..., G}, and G indicates the maximum number of genera-
tions. It can be seen from the equation, in the early stage of
evolution, the mutation rate is increasing with the iteration to
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enhance the diversity of the population. In the late stage of
evolution, the mutation rate is decreasing with the iterations
to speed up the convergence.
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Step 6: Evaluation: Calculate the practical classification
performance (i.e., fitness) of each individual in both the par-
ent and offspring populations through 5-fold cross validation.

Step 7: Selection: Select Q individuals with top-ranked
practical classification performance in both the parent and
offspring populations, and used as the new population for
further evolution.

Step 8: Let g = g+ 1. Repeat steps 4-7 until the termination
condition is satisfied, and the optimal individual is decoded
to obtain the optimal feature/classifier subset.

C. FEATURE SELECTION

The proposed HGA is used to select the optimal feature subset
for each base classifier to eliminate redundant or irrelevant
features and increase the applicability of the selected features
to various base classifiers. Because the different classifiers
have different optimal feature subsets, to enhance the appli-
cability of the selected feature subset, the majority voting
method in VIHT is also employed for feature selection to
output the aggregated optimal feature subset. For example,
if a feature is selected into the optimal feature subsets by
more than half of the classifiers, this feature will be added
to the aggregated optimal feature subset, otherwise it will not
be added. In the feature selection procedure, an individual in
the HGA represents a candidate feature subset, a population
in the generation consists of multiple individuals, and the
optimal individual represents the optimal feature subset that is
obtained through genetic evolution. Furthermore, the practi-
cal classification performance (i.e., fitness) of each candidate
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feature subset for each base classifier is evaluated using the
balance accuracy through 5-fold cross validation.

D. CLASSIFIER SELECTION

Considering that the poorly-performing or correlated base
classifiers in an ensemble model may affect the ensemble
performance, the proposed HGA is used to select the opti-
mal base classifier subset, which is further integrated into
an effective ensemble model through a stacking strategy.
In the classifier selection procedure, an individual in the HGA
represents a candidate base classifier subset, a population
in the generation consists of multiple individuals, and the
optimal individual represents the optimal base classifier sub-
set that is obtained through genetic evolution. The practical
classification performance (i.e., fitness) of each candidate
base classifier subset corresponding to a candidate ensemble
model is evaluated using balance accuracy through 5-fold
cross validation.

E. CLASSIFIER ENSEMBLE

Although the optimal base classifier subset is obtained,
the stacking strategy is employed to integrate the trained
selected base classifier subset. The stacking strategy consists
of two stages. First, the base classifiers are trained using
training data through cross validation, and the predictions of
the base classifiers are combined into a new feature matrix.
Second, the obtained new feature matrix is used to train
a meta-classifier to output the final decision. Due to the
superiority of kernel ridge classifier [46], it is employed as
a meta-classifier to integrate the decisions of multiple base
classifiers in this study.

IV. EXPERIMENTAL DESIGN

In this study, 10 types of popular classifiers were used as
candidate base classifiers for the proposed model, namely
logistic regression (LR) [16], XGBoost, GBDT, RF, decision
tree (DT) [50], LDA, bagging [6], extra trees (ET) [22], light
gradient boosting machine (LightGBM) [33], and support
vector machine (SVM) [48].

A. DATASET PREPROCESSING AND PARAMETER SETTING
In this study, three standard credit scoring datasets from
the UC Irvine (UCI) machine learning repository, i.e., the
German [4], Polish 1, and Polish 2 [62] datasets, were used
to test the effectiveness of the proposed model. The details of
these datasets are presented in Table 1.

As shown in Table 1, the German dataset contains
1000 samples, 300 of which are positive and 700 are negative.
The dimension of the features, including the target label,

TABLE 1. Description of datasets.

Dataset  Total Positive Negative  Dimension of features
samples  samples samples  (numerical/nominal)

German 1000 300 700 21(7/14)

Polishl 7027 271 6756 65(64/1)

Polish2 10173 400 9733 65(64/1)

VOLUME 9, 2021

is 21, with seven numerical features and 14 nominal features.
The target label is a binary class, consisting of 0 and 1.
The Polishl dataset contains 7027 samples, 271 of which
are positive and 6756 are negative. The dimension of the
features, including the class label, is 65, with 64 numerical
features and one nominal feature. The target label is a binary
class, consisting of 0 and 1. The Polish2 dataset contains
10173 samples, 400 of which are positive and 9733 are nega-
tive. The dimension of the features, including the class label,
is 65, with 64 numerical features and one nominal feature.
The target label is a binary class, consisting of 0 and 1.

Three basic data preprocessing approaches, namely stan-
dardization, normalization, and one-hot encoding [43], were
used to pre-process the datasets before training the models.
The numerical features were standardized and normalized by
removing the mean and scaling to unit variance, to handle
different orders of magnitude on different numerical features.
The nominal features were handled via one-hot encoding
to leverage the meaningful distance relationships between
different nominal feature values. After data preprocessing,
the dimension of features including the target label in the
German dataset, is 58, with five numerical features and
53 nominal features, the range of numerical feature is [—1,1],
and the value of the nominal feature belongs to {0,1}. After
data preprocessing, the dimension of features including the
target label in Polish1 and Polish2 data set, are both 65, with
64 numerical features and one nominal feature, and the range
of numerical feature is [—1,1], and the value of the nominal
feature belong to {0,1}.

To ensure effectiveness and comparability of the experi-
ment, the optimal parameters were preset through a trial-run
for HGA. In the HGA, the maximum number of generations
G was set to 100, the number of individual Q in each popu-
lation was set to 50, and the randomly generated individual
Q1 was set to 200. A greater number of generations G will
lead to more computation time but will also result in better
performance. The crossover rate and initial mutation rate
were set to 0.8 and 0.2, respectively. A higher crossover and
mutation rate will lead to algorithmic convergence difficulty,
but also produce a larger search space.

B. EVALUATION INDICATORS
In this study, four comprehensive evaluation indicators were
employed to evaluate the performance of the proposed
model, namely, balance accuracy (BACC) [8], F-score [36],
G-mean [35], and Recall [9]. These comprehensive evalua-
tion indicators are all determined by true positive (TP), false
positive (FP), true negative (TN), and false negative (FN),
and the higher comprehensive indicator value represents the
better performance of evaluated models. These comprehen-
sive evaluation indicators are widely employed in imbalanced
learning [24], and their superiorities are detailed as follows.
BACC can better reflect the performance of classifica-
tion models than accuracy during imbalanced learning [55].
Hence, in this study, BACC was adopted to evaluate model
performance. Its calculation rule is shown in Equation (2),
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and the true positive rate (TPR) and true negative rate (TNR)
are defined in Equations (3) and (4), respectively.

TPR 4+ TNR
BACC = — 2)
TN
T™NR = —— 3)
TN + FP
e TP
Sensitivity = Recall = TPR = ——— %)
TP + FN

Recall evaluates the ability of models to identify positive
samples, which is critical for the credit scoring model. Its
calculation rule is shown in Equation (4).

G-mean is another comprehensive evaluation indicator for
the imbalanced learning model. The G-Mean shows whether
the balance between classes is reasonable. The calculation
rule of G-mean is shown in Equation (5), where Sensitiv-
ity and Specificity are defined in Equations (4) and (6),
respectively.

G-mean = \/ Sensitivity * Specificity 5)
Specificit ™ (6)

ecificity = ———

Peeey = IN + PP

F-score is the harmonic average of Precision and Recall,
and reflects the tradeoffs between precision and recall. The
calculation rule of F-score is shown in Equation (7), where
Precision is defined in Equation (8).

2 x Precision x Recall

F-score = — @)
Precision 4 Recall
L TP
Precision = ———— (®)
TP + FP

C. EXPERIMENTAL SETTING

The raw dataset was divided as follows: Twenty percent of
the total data were used as the test data, and the remain-
ing 80% were further divided into 80% for training and
20% for validation. The data preprocessing approaches
(e.g., standardization, normalization, and one-hot encoding)
were imported from the Python module ‘““sklearn”. In the
proposed VIHT method, the basic IHT method was imported
from the Python module ““imblearn”. In the ensemble stage,
the stacking approach was imported from the Python mod-
ule “mlxtend”. The classifiers LDA, RF, GBDT, SVC, DT,
LR, ET, Bagging, and ridge regression were imported from
Python module ““sklearn”. The classifiers Xgboost and Light-
GBM were imported from the Python modules *“xgboost”
and “ligtgbm”, respectively. For a fair comparison, default
parameters were adopted in all imported modules.

V. EXPERIMENTAL ANALYSIS

To enhance the diversity of the base classifiers, three base
classifiers were reproduced from each type of base classifier
with different appropriate parameters through trial and run.
Four comprehensive evaluation indicators were used to evalu-
ate the model performance, namely BACC, F-score, G-mean,
and Recall. To enhance the robustness of the experiments
and avoid single-results bias, each experiment was performed
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10 times, and the average values were used as evaluation
results. All the experiments were performed using Python
version 3.7.5 on a PC with a 3.8-GHz Intel Core 17-10700 K,
32 GB RAM, and a Windows 10 operating system.

A. BASELINE RESULTS

To verify the performance of the proposed model, all base
classifiers were tested on three datasets, and the results
were indicated as the baseline results. As shown in Table 2,
10 types of base classifiers were tested on the German, Pol-
ish 1, and Polish 2 datasets.

B. PERFORMANCE EVALUATION OF THE VIHT METHOD
To prove the effectiveness of the proposed VIHT method on
real datasets, its performance was evaluated on three datasets
as shown in Table 3. The bolded values of evaluation indi-
cators represent better performance of base classifiers after
VIHT was applied than the baseline results. It can be seen
from the Table 3, by comparing with the baseline results, all
the base classifiers are significantly enhanced by the VIHT
method in all or most evaluation indicators on all datasets.

To further verify the effectiveness of the VIHT method, two
traditional sampling approaches, namely, IHT and SMOTE,
were tested under the same conditions for comparison, with
the results outlined in Table 4. The bolded values indicate
better performance after IHT or SMOTE were applied than
after VIHT was applied. It can be seen from the Table 4,
most base classifiers perform worse after IHT or SMOTE
are applied than after VIHT is applied in most evaluation
indicators on all datasets. The outperformance of VIHT is
owing to the following reasons:

1) VIHT eliminates the IHPs effectively to alleviate the
class overlap problem.

2) VIHT extends the traditional sampling approaches by
integrating the decisions of various classifiers to improve the
applicability of sampled data to diverse base classifiers.

3) VIHT only eliminates samples considered hard to learn
by multiple classifiers, instead of adding additional data in
sampled data or eliminating too much information of data.
Hence it can alleviate the model overfitting.

C. PERFORMANCE EVALUATION OF HGA-BASED FEATURE
SELECTION METHOD

To prove the effectiveness of the proposed HGA-based fea-
ture selection method, its performance was evaluated on three
sampled datasets.

The feature correlations before and after the HGA-based
feature selection method were performed on three sampled
datasets were shown through heatmaps in Figure 5 respec-
tively. The axis represents the index of the features; the bluer
region in the heatmap represents higher correlations between
the corresponding feature pairs, and the redder region repre-
sents the contrary.

It can be seen from the figures, the feature correla-
tions between different features on any sampled datasets are
significantly reduced after HGA-based feature selection is
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TABLE 2. Baseline results.

Dataset Base classifier BACC F-score G-mean Recall
German SVM 0.6357 0.4587 0.5714 0.3600
LDA 0.6706 0.5341 0.6462 0.4933
LightGBM 0.6526 0.5020 0.6188 0.4517
DT 0.6113 0.4578 0.5930 0.4683
RF 0.6526 0.5032 0.6207 0.4567
LR 0.6631 0.5217 0.6361 0.4783
XGBoost 0.6443 0.4917 0.6131 0.4500
ET 0.6412 0.4762 0.5914 0.3967
Bagging 0.6165 0.4349 0.5607 0.3617
GBDT 0.6446 0.4888 0.6067 0.4300
Polish 1 SVM 0.5000 0.0000 0.0000 0.0000
LDA 0.5086 0.0391 0.1374 0.0222
LightGBM 0.5077 0.0349 0.1333 0.0192
DT 0.5305 0.1041 0.3229 0.1131
RF 0.5083 0.0379 0.1416 0.0212
LR 0.5000 0.0000 0.0000 0.0000
XGBoost 0.5086 0.0384 0.1407 0.0212
ET 0.5010 0.0110 0.0602 0.0061
Bagging 0.5039 0.0217 0.0959 0.0121
GBDT 0.5092 0.0401 0.1416 0.0222
Polish 2 SVM 0.5000 0.0000 0.0000 0.0000
LDA 0.5319 0.1179 0.2622 0.0709
LightGBM 0.5546 0.1872 0.3371 0.1155
DT 0.5753 0.1896 0.4366 0.2029
RF 0.5584 0.1974 0.3466 0.1233
LR 0.5028 0.0115 0.0533 0.0058
XGBoost 0.5500 0.1728 0.3241 0.1068
ET 0.5023 0.0174 0.0752 0.0097
Bagging 0.5398 0.1430 0.2898 0.0864
GBDT 0.5419 0.1510 0.2956 0.0883
TABLE 3. Performance evaluation of the VIHT method.
Dataset Base classifier BACC F-score G-mean Recall
German SVM 0.6761 0.5600 0.6697 0.7550
LDA 0.6808 0.5665 0.6729 0.7817
LightGBM 0.6614 0.5467 0.6519 0.7650
DT 0.6244 0.5093 0.6178 0.7067
RF 0.6705 0.5564 0.6592 0.7867
LR 0.6883 0.5745 0.6774 0.8067
XGBoost 0.6606 0.5462 0.6501 0.7683
ET 0.6758 0.5610 0.6666 0.7767
Bagging 0.6626 0.5448 0.6583 0.7217
GBDT 0.6714 0.5570 0.6615 0.7800
Polish 1 SVM 0.6488 0.1284 0.6015 0.8909
LDA 0.6581 0.1330 0.6213 0.8737
LightGBM 0.6453 0.1263 0.5897 0.9071
DT 0.6388 0.1259 0.5965 0.8667
RF 0.6461 0.1263 0.5892 0.9111
LR 0.6644 0.1355 0.6299 0.8747
XGBoost 0.6461 0.1266 0.5917 0.9051
ET 0.6456 0.1285 0.6067 0.8657
Bagging 0.6545 0.1312 0.6147 0.8788
GBDT 0.6481 0.1280 0.6000 0.8929
Polish 2 SVM 0.6805 0.1541 0.6397 0.9117
LDA 0.6855 0.1609 0.6620 0.8631
LightGBM 0.6754 0.1506 0.6261 0.9282
DT 0.6542 0.1453 0.6174 0.8699
RF 0.6709 0.1491 0.6220 0.9223
LR 0.6781 0.1580 0.6550 0.8534
XGBoost 0.6740 0.1507 0.6276 0.9194
ET 0.6691 0.1508 0.6326 0.8864
Bagging 0.6704 0.1527 0.6396 0.8709
GBDT 0.6719 0.1505 0.6286 0.9087

performed. It indicates that the HGA-based feature selection
method effectively reduces the relevant or redundant features.
Its evaluation performance on three sampled datasets is
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shown in Table 5, where the bolded values of evaluation indi-
cators represent that the base classifiers performed better after
HGA-based feature selection was applied. It can be seen from
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TABLE 4. Performance evaluation of IHT and SMOTE methods.

Dataset Base classifier IHT SMOTE
BACC F-score G-mean Recall BACC F-score G-mean Recall
German SVM 0.6664 0.5329 0.6518 0.5300 0.6876 0.5649 0.6810 0.5967
LDA 0.6907 0.5718 0.6901 0.6700 0.6911 0.5710 0.6878 0.6300
LightGBM 0.6619 0.5202 0.6346 0.4767 0.6565 0.5258 0.6507 0.5817
DT 0.6051 0.4509 0.5877 0.4717 0.5875 0.4449 0.5809 0.5150
RF 0.6585 0.5173 0.6352 0.4883 0.6673 0.5399 0.6625 0.5967
LR 0.6951 0.5768 0.6941 0.6617 0.6876 0.5659 0.6839 0.6217
XGBoost 0.6562 0.5133 0.6314 0.4817 0.6486 0.5164 0.6426 0.5700
ET 0.6551 0.5040 0.6166 0.4367 0.6723 0.5456 0.6648 0.5767
Bagging 0.6270 0.4676 0.5951 0.4333 0.6424 0.5004 0.6274 0.5133
GBDT 0.6711 0.5393 0.6563 0.5350 0.6774 0.5529 0.6732 0.6083
Polish 1 SVM 0.5903 0.1094 0.4972 0.9071 0.5570 0.1648 0.3719 0.1434
LDA 0.6141 0.1167 0.5475 0.8909 0.5671 0.1613 0.4258 0.1939
LightGBM 0.6161 0.1171 0.5488 0.8949 0.5619 0.1733 0.3871 0.1556
DT 0.5926 0.1124 0.5506 0.8081 0.5493 0.1232 04217 0.2000
RF 0.6200 0.1186 0.5576 0.8889 0.5666 0.1792 0.4016 0.1687
LR 0.6343 0.1235 0.5816 0.8848 0.5622 0.1578 0.4080 0.1768
XGBoost 0.6219 0.1192 0.5611 0.8889 0.5600 0.1730 0.3786 0.1485
ET 0.6079 0.1155 0.5516 0.8616 0.5142 0.0614 0.1836 0.0394
Bagging 0.6111 0.1179 0.5724 0.8232 0.5291 0.1034 0.2907 0.0899
GBDT 0.6182 0.1178 0.5533 0.8929 0.5635 0.1670 0.4018 0.1697
Polish 2 SVM 0.5955 0.1224 0.5023 0.9136 0.6154 0.2689 0.5101 0.2728
LDA 0.5983 0.1239 0.5195 0.8932 0.6545 0.2896 0.5922 0.3777
LightGBM 0.6013 0.1247 0.5242 0.8951 0.6283 0.3121 0.5272 0.2874
DT 0.5830 0.1204 0.5231 0.8388 0.6006 0.1949 0.5173 0.2990
RF 0.6080 0.1268 0.5317 0.9019 0.6310 0.3100 0.5344 0.2961
LR 0.6215 0.1313 0.5536 0.9019 0.6322 0.2761 0.5491 0.3204
XGBoost 0.6082 0.1269 0.5352 0.8961 0.6172 0.2935 0.5055 0.2641
ET 0.5985 0.1247 0.5355 0.8641 0.5333 0.1204 0.2841 0.0835
Bagging 0.5921 0.1230 0.5316 0.8515 0.5914 0.2397 0.4536 0.2146
GBDT 0.5926 0.1223 0.5153 0.8845 0.6338 0.3037 0.5429 0.3078

08
0.6
> 04
> & e g
33 ==Y
o) 0.2
A% 3
- 0 E.L AT &0 UTY
15 30 45 60 0 15 30 45 60
(a) Feature correlations before (b) Feature correlations before (¢) Feature correlations before
HGA-based feature selection was HGA-based feature selection was HGA-based feature selection was
performed on German dataset performed on Polish] dataset performed on Polish2 dataset
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 8 16 24 32 40 0 3 6 9 12 0 6 12 18 24 30
(d) Feature correlations after (¢) Feature correlations after (f) Feature correlations after
HGA-based feature selection was HGA-based feature selection was HGA-based feature selection was
performed on German dataset performed on Polishl dataset performed on Polish2 dataset

FIGURE 5. Heatmaps of the feature correlations before and after the HGA-based feature selection method
was performed on three sampled datasets.

the Table 5, all base classifiers are significantly enhanced D. PERFORMANCE EVALUATION OF THE CLASSIFIER

by the HGA-based feature selection method in all or most SELECTION AND ENSEMBLE

evaluation indicators on all sampled datasets, because the To prove the effectiveness of the proposed HGA-based classi-
HGA-based feature selection method effectively eliminates fier selection method, its performance was evaluated on three
the irrelevant and redundant features. sampled datasets after feature selection.
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FIGURE 6. Heatmaps of correlations of classifier predictions before and after the HGA-based classifier
selection method was performed on three sampled datasets after feature selection.

TABLE 5. Performance evaluation of the feature selection by HGA
approach.

Dataset Base classifier BACC F-score G-mean Recall
German SVM 0.6761 0.5600 0.6697 0.7550
LDA 0.6808 0.5665 0.6729 0.7817
LightGBM 0.6614 0.5467 0.6519 0.7650
DT 0.6244 0.5093 0.6178 0.7067
RF 0.6705 0.5564 0.6592 0.7867
LR 0.6883 0.5745 0.6774 0.8067
XGBoost 0.6606 0.5462 0.6501 0.7683
ET 0.6758 0.5610 0.6666 0.7767
Bagging 0.6626 0.5448 0.6583 0.7217
GBDT 0.6714 0.5570 0.6615 0.7800
Polish 1 SVM 0.6488 0.1284 0.6015 0.8909
LDA 0.6581 0.1330 0.6213 0.8737
LightGBM 0.6453 0.1263 0.5897 0.9071
DT 0.6388 0.1259 0.5965 0.8667
RF 0.6461 0.1263 0.5892 0.9111
LR 0.6644 0.1355 0.6299 0.8747
XGBoost 0.6461 0.1266 0.5917 0.9051
ET 0.6456 0.1285 0.6067 0.8657
Bagging 0.6545 0.1312 0.6147 0.8788
GBDT 0.6481 0.1280 0.6000 0.8929
Polish 2 SVM 0.6805 0.1541 0.6397 0.9117
LDA 0.6855 0.1609 0.6620 0.8631
LightGBM 0.6754 0.1506 0.6261 0.9282
DT 0.6542 0.1453 0.6174 0.8699
RF 0.6709 0.1491 0.6220 0.9223
LR 0.6781 0.1580 0.6550 0.8534
XGBoost 0.6740 0.1507 0.6276 0.9194
ET 0.6691 0.1508 0.6326 0.8864
Bagging 0.6704 0.1527 0.6396 0.8709
GBDT 0.6719 0.1505 0.6286 0.9087

The correlations between the classifier predictions before
and after the HGA-based classifier selection method was
performed on three sampled datasets after feature selection
were shown through heatmaps in Figure 6 respectively. The
axis represents the classifier index; and the bluer region
in the heatmap represents higher prediction correlations
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between the corresponding classifier pairs, and the redder
region represents the contrary. It can be seen form the
figures, the prediction correlations between different clas-
sifiers on any sampled datasets are significantly reduced
after HGA-based classifier selection is performed. It indi-
cates that the HGA-based classifier selection method effec-
tively reduces the correlated classifiers with high prediction
correlations. Further, the selected optimal base classifiers
were incorporated into the proposed ensemble model through
stacking strategy. The proposed ensemble model was then
compared to the general ensemble model that was com-
bined from all base classifiers without classifier selection
(abbreviated as “The general ensemble model”). Its eval-
uation performance on three sampled datasets after feature
selection is shown in Table 6, where the bolded values of
evaluation indicators represent that the proposed ensemble
model performed better than the general ensemble model
without classifier selection. It can be seen from the Table 6,
all ensemble models are significantly enhanced by the HGA-
based classifier selection method in all evaluation indicators
on all sampled datasets, because the HGA-based classifier
selection method effectively eliminates the poor-performed
and correlated classifiers.

E. STATISTIC RESULTS

To demonstrate the reliability of the experimental results, a
statistical test should be performed. The well-known analysis
of variance (ANOVA) and its non-parametric counterpart,
the Friedman test can be used to test the effectiveness of all
models under different methods. Friedman [20] experimen-
tally compared ANOVA with his proposed Friedman test on
56 independent problems and showed that the two methods
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TABLE 6. Performance evaluation of the classifier selection and
ensemble.

Dataset  Base classifier BACC F-score G-mean Recall

German The general ensemble 0.6770 0.5620  0.6691 0.7733
model
The proposed ensemble 0.7137 0.5999  0.7031 0.8267
model

Polish 1 The general ensemble 0.6479 0.1294  0.6077  0.8677
model
The proposed ensemble 0.6671 0.1366  0.6311 0.8798
model

Polish2 The general ensemble 0.6770 0.1514  0.6289  0.9272
model
The proposed ensemble 0.6924 0.1576  0.6471 0.9379
model

mostly agree. In recent years, Demsar [15] presented that
due to the possible violations of the tests’ assumptions by
a typical machine learning data, non-parametric tests (Fried-
man test) should be preferred over parametric tests (ANOVA).
Hence, the Friedman test was adopted in this study. When
the null-hypothesis was rejected, the Nemenyi test [42] was
applied. In the Friedman test, 52 classification models were
ranked based on different evaluation indicators. These mod-
els included 10 types of base classifiers before the VIHT
method was applied, 10 types of base classifiers after the
IHT method was applied, 10 types of base classifiers after the
SMOTE method was applied, 10 types of base classifiers after
the VIHT method was applied, 10 types of base classifiers
after the HGA-based feature selection method was applied,
the general ensemble model without classifier selection, and
the proposed ensemble model. Then the score of each method
was calculated by averaging the ranking of the models that
employ this method. Finally, the statistical significance of
the Friedman test can be obtained from the scores of all the
methods. Table 7 shows the scores of each method on differ-
ent datasets and evaluation indicators, and the results of the
Friedman test. It can be seen from the table, all of proposed
methods obtain higher scores than the comparison methods in
all or most evaluation indicators on all datasets. It can be seen
from Table 7 that the statistics value of the Friedman test on
most evaluation indicators is larger than the critical value (i.e.,
2.996). The null-hypothesis, i.e., all of the methods having
the same performance, is rejected, according to Demsar [15].
Subsequently, the Nemenyi test was used to perform the post
hoc test, the results of which are shown in Figure 7, where
the critical distance (CD) indicates the mean ranking score
difference. The higher the position of the classifier on the
coordinate axis to the left, the better is the performance of the
classifier, and vice versa. It can be seen from the figure that
the proposed methods perform better than the corresponding
comparison methods on most evaluation indicators, and the
proposed ensemble model always has the best performance.

F. PERFORMANCE COMPARISON BETWEEN THE
PROPOSED ENSEMBLE MODEL AND THE BENCHMARK
ENSEMBLE MODELS

The performance comparison between the proposed ensem-
ble model and benchmark ensemble models proposed by
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TABLE 7. Performance evaluation of the classifier selection and
ensemble.

Dataset Method BACC F-score  G-mean  Recall

German Baseline 7 7 7 7
IHT 5 5 4 6
SMOTE 6 6 6 5
VIHT 4 4 5 3
Feature selection 3 3 3 4
The general 2 2 2 2
ensemble model
The proposed 1 1 1 1
ensemble model

Polish 1 Baseline 7 7 7 7
HT 6 2 6 3
SMOTE 5 6 5 6
VIHT 3 4 3 1
Feature selection 3 4 3 1
The general 3 3 2 5
ensemble model
The proposed 1 1 1 4
ensemble model

Polish 2 Baseline 7 6 7 7
IHT 5 1 6 5
SMOTE 6 7 5 6
VIHT 3 4 2 3
Feature selection 3 4 2 3
The general 2 3 4 2
ensemble model
The proposed 1 2 1 1

ensemble model

Seiffert et al. [52], Sun et al. [54], and Liu et al. [40] is
presented in Table 8, where the bolded values represent the
best performance in the comparison. The source codes for
the ensemble models by Seiffert et al. [52] and Liu et al. [40]
are public; thus, for fair comparison, they were tested with
the same experimental settings as the proposed ensemble
model, including the datasets, running times, and preprocess-
ing approaches. The source codes for the ensemble model
proposed by Sun et al. [54] are not public; hence, this
model was rigorously reproduced using the provided model-
ing scheme and methodology, and then, tested under the same
experimental settings as the proposed ensemble model in this
study.

To observe the performance of each ensemble model more
intuitively, all the results are presented in the form of his-
tograms in Figure 8, where the indices represent the dataset
and evaluation indicators, respectively. For example, the his-
togram corresponding to the indices German and BACC
represents the performance of the four comparison models
using the BACC indicator on the German dataset. It can be
seen from both Table 8 and Figure 8, the proposed ensemble
model achieves the best performance in all or most evaluation
indicators on all datasets.

G. COMPLEXITY AND APPLICATION ANALYSIS

To verify the practicality of the proposed model, a German
dataset was used to assess the computational complexity
of the various methods employed in the proposed model.
Furthermore, the time of model prediction was tested. All
methods were implemented in Python version 3.7.5 on a PC
with a 3.8-GHz Intel Core 17-10700 K, 32 GB RAM, and
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FIGURE 8. Histograms of performance comparison between the proposed ensemble model and benchmark

ensemble models.

TABLE 8. Results of performance comparison between the proposed
ensemble model and the benchmark ensemble models.

TABLE 9. Running times of different methods and model prediction on
German datasets.

Dataset Method BACC F-score G-mean Recall Method Time (s)
German  Seiffert et al. (2010)  0.6619  0.5387 0.6607  0.6417 Imbalanced data processing  VIHT 1.639
Sun et al. (2018) 0.6323  0.5213 0.6150  0.7717 Feature selection HGA-based feature selection 161.046
Liu et al. (2020) 0.6587  0.5331 0.6568  0.6217 Classifier selection HGA-based classifier selection ~ 846.887
The proposed model  0.7137  0.5999 0.7031  0.8267 Model prediction The proposed model 0.324
Polish 1 Seiffert et al. (2010)  0.6224 0.1470 0.6112 0.5192
Sun etal. (2018) 0.6434  0.1360  0.6259  0.7434 Furthermore, the running time of the proposed model in
Liu et al. (2020) 0.6507  0.1548 0.6491  0.6141 ..
The proposed model  0.6671  0.1366  0.6311  0.8798 predicting 1000 test samples was only 0.324 s. Notably,
Polish2 Seciffertetal. (2010)  0.6562  0.1879 0.6469  0.5534 the training process of the proposed model can be performed
Sun et al. (2018) 0.6405 01583 0.6298 = 0.6612 offline. In addition, the trained model occupies less than 1M
Liu et al. (2020) 0.6909 0.2043 0.6885 0.6368 . . .
The proposed model  0.6924  0.1576  0.6471  0.9379 of memory, which means that the trained models can be easily

Windows 10 operating system. The running times of each
model and method are listed in Table 9.

As observed in Table 9, during imbalanced data process-
ing, VIHT only requires 1.639 s, whereas the HGA-based
feature selection and classifier selection requires 161.046 s to
select optimal feature subsets and 846.887 s to select optimal
classifier subsets respectively with 1000 training samples.
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installed. Hence, the proposed model is feasible for practical
applications.

VI. CONCLUSION AND FUTURE WORK

Credit scoring is currently a promising research field in data
mining. Herein, to address imbalanced data on credit scoring,
a novel multi-stage ensemble model with a hybrid genetic
algorithm was proposed. First, VIHT approach was proposed
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to address imbalanced data. Next, a novel HGA approach was
proposed and subsequently applied to select optimal feature
and classifier subset. Finally, a stacking method was applied
to reach the final prediction. Four performance indicators,
i.e., BACC, F-score, G-mean, and Recall were used to eval-
uate the performance of the proposed model. The results
demonstrated that the superior performance of the proposed
model compared to other benchmark credit scoring models.

In future studies, the demands from the financial industry
to reduce the complexity of classification models that are
used to obtain prediction results rapidly, will be given seri-
ous consideration. The proposed ensemble model requires
fair-sized memory and resources in the classifier selection
and ensemble stages of the base classifiers. Therefore, more
effective strategies for classifier selection and ensemble will
be explored to further reduce the complexity and enhance the
scalability of the model. In addition, the proposed ensemble
model only involves the classic machine learning classifiers
instead of deep learning classifiers, which affects the diversity
of the base classifiers. In recent years, some scholars have
demonstrated the effectiveness of clustering techniques for
feature learning in the ensemble model [10], [31]. The cluster-
ing techniques proposed by Hu et al. [27] and Hu et al. [29]
have superior clustering performance, which can be inte-
grated into the ensemble model to enhance the model per-
formance in our future work.
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