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ABSTRACT Hand, Foot and Mouth Disease (HFMD) is a highly contagious paediatric disease showing
up symptoms like fever, diarrhoea, oral ulcers and rashes on the hands and foot, and even in the mouth.
This disease has become an epidemic with several outbreaks in many Asian-Pacific countries with the basic
reproduction number Ry > 1. HFMD’s diagnosis is very challenging as its lesion pattern may appear quite
similar to other skin diseases such as herpangina, aseptic meningitis, and poliomyelitis. Therefore, clinical
symptoms are essential besides skin lesion’s pattern and position for precise diagnose of this disease. A deep
learning-based HFMD detection system can play a significant role in the digital diagnosis of this disease.
Various machine learning and deep learning architectures have been proposed for skin disease diagnosis
and classification. However, these models are limited to the image classification problem. The diagnosis
of similar appearing skin diseases using the image classification approach may result in misclassification
or misdiagnosis of the disease. Parallel integration of clinical symptoms and images can improve disease
diagnosis and classification performance. However, no deep learning architecture has been developed to
diagnose HFMD disease from images and clinical data. This paper has proposed a novel Hybrid Deep
Neural Networks integrating Multi-Layer Perceptron (MLP) network and Convolutional Neural Network
into a single framework for the diagnosis of HFMD using the integrated features from clinical and image
data. The proposed Hybrid Deep Neural Networks is particularly a multi branched model comprising of
Multi-Layer Perceptron (MLP) network in the first branch to extract the clinical features and the modified
pre-trained CNN architecture: MobileNet or NasNetMobile in the second branch to extract the features from
skin disease lesion images. The features learnt from both the branches are merged to form an integrated
feature from clinical data and images, which is fed to the subsequent classification network. We conducted
several experiments employing image data only, clinical data only and both sources of data. The analyses
compared and evaluated the performance of a typical MLP model and CNN model with our proposed
Hybrid Deep Neural Networks. The novel approach promotes the existing image classification model and
clinical symptoms based disease classification model, particularly the MLP model. From the cross-validated
experiments, the results reveal that the proposed Hybrid Deep Neural Networks can diagnose the
disease 99%-100% accurately.

INDEX TERMS CNN, convolution neural network, hand foot mouth and disease, HFMD, image classifi-
cation, mobilenet, NasNetMobile, hybrid deep neural network, Thailand.
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ABBREVIATIONS
HFMD Hand, Foot, and Mouth Disease.
CNN Convolutional Neural Network.
MLP Multi-Layer Perceptron.
CT Computed Tomography.
MRI Magnetic Resonance Imaging.
DL Deep Learning.

I. INTRODUCTION

Hand, Foot and Mouth Disease (HFMD) is a highly conta-
gious paediatric disease caused by Enterovirus-71 (EC-71)
and Coxsackievirus A16 (CA 16). The typical symptoms of
this disease include fever, diarrhoea, vomiting, oral ulcers and
rashes in hand, mouth, and foot [1]. Small red spots and tiny
water blisters appear on the palms, soles, face, hand and feet
and in buttocks in some cases. Most HFMD infected children
may have small painful ulcers in the tongue and sides of the
mouth. Children with this disease usually have a fever with
temperature > 38° C, which subsides within 48 hours [2].
Symptomatic patients are usually below five years; how-
ever, adults in contact with infected children can also suf-
fer from this disease [3]. Severe cases of this disease may
cause nervous or cardiopulmonary system complications.
Such cases may also lead to long term cognitive and motor
disorders or even death [4]. Therefore, the diagnosis of this
disease at an early stage can mitigate severe cases and their
impacts.

This disease has become an epidemic in many Asian-Pacific
countries, with several outbreaks affecting millions of chil-
dren [4]. During such epidemic outbreaks, patients’ flow in
hospitals increases rapidly, making it difficult for patients
to get proper treatment in time. Also, the unequal distri-
bution of qualified health service providers in urban and
rural areas of developing countries is a significant con-
cern [5]. Health facilities are not easily accessible for peo-
ple in remote areas, especially during the epidemic period.
Smartphone-based digital health [6]—[8], including digital
and self-diagnosis of diseases (e.g., HFMD, skin disease),
can provide access to health and medical services to remote
areas and empower millions of rural people across the globe.
Artificial intelligence algorithms, such as machine and deep
learning techniques [9], play a vital role in smartphone-based
disease diagnoses and management. Similarly, deep
learning-enabled smartphone-based HFMD detection will
play a significant role in diagnosing and managing the
disease.

Existing smartphone-based solutions [10]-[13] use
lesions’ images to detect or diagnose skin diseases, including
HFMD. However, lesion’s image-processing based HFMD
detection or diagnosis is challenging as its lesion pattern
may appear quite similar to other skin diseases, including
herpangina, aseptic meningitis and poliomyelitis [14]. Hence,
image-processing based solutions’ diagnosis accuracies are
lower than 90%, which may not be acceptable in medical
care. HFMD’s lesion’s (rash) images integrated with clinical
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symptoms, like fever, diarrhoea, vomiting, and sore throat,
the position of rash and patient’s age can improve diagnostic
accuracy and robustness. Symptoms play a significant role in
the diagnosis and prediction of this disease [15]. Smartphone-
based skin disease prediction or detection from integrated
clinical symptoms and images is challenging due to the
smartphone’s resource limitation and lack of lightweight ML
or DL architecture that can handle integrated or mixed data.
For example, researchers from Google developed a DL archi-
tecture for integrated data-based skin diseases diagnosis [16].
However, their solution is not for resource-constrained
mobile devices and also did not consider HFMD. We propose
a lightweight and smartphone-friendly novel Hybrid Deep
Neural Networks that can digitally diagnose HFMD using
integrated clinical data and images. The proposed Hybrid
Deep Neural Networks integrates Multi-Layer Perceptron
(MLP) [17] and modified pre-trained CNN model into a
single framework to classify HFMD with other skin diseases
using clinical data and images simultaneously. The Hybrid
Deep Neural Networks is particularly a multi-branched
model which is composed of a Multi-Layer Perceptron as
a clinical branch, and a modified pre-trained CNN model
as an image processing branch. The MLP is responsible
to extract the features from clinical data while the CNN
extracts the features from the diseases’ images. In particular,
we modified the pre-trained models, MobileNet [18] and
NasNetMobile [19] and used transfer learning to extract
the features from images. The learnt features are finally
concatenated to form integrated features from clinical data
and images, which is then fed to the subsequent classifi-
cation network [20]. Most previous studies relied on one
source of data. An image classification-based approach, for
instance, diagnosed skin diseases from images only. We ran
a set of experiments on the proposed Hybrid Deep Neu-
ral Networks, image classification models and MLP. The
image classification architectures implicated MobileNet and
NasNetMobile. We used clinical data and images for our
proposed architecture, while we satisfy only the images
for the image classification architectures and the clinical
symptoms dataset for MLP architecture. The cross-validated
evaluation results demonstrate that the proposed Hybrid
Deep Neural Networks architecture can diagnose HFMD
with accuracy in the range of 99%-100% with very high
precision.

The rest of the paper is organised as follows. Section II
presents the related works on ML or DL based skin diseases
diagnosis. Section III presents the proposed Hybrid Deep
Neural Networks-based digital diagnosis of HFMD. The
section discussed the proposed solution in terms of (i) the data
collection and preparation steps, (ii) the proposed model and
selection of a pre-trained model for feature extraction from
images, (iv) the model tuning process and (v) the evaluation
of the proposed Hybrid Deep Neural Networks architecture.
Evaluation results of the proposed architecture are presented
and discussed in section IV. Finally, section V concludes the
work.
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Il. RELATED WORKS
Skin diseases detection or diagnosis is a challenging task
in image processing and computer vision. Many research
works have been carried out to detect or diagnose differ-
ent skin diseases using Al-based image processing, includ-
ing DL-based image processing. Alamdari et al. [10]
have implemented k-means cluster and HSV model seg-
mentation technique, Support Vector Machine(SVM) and
Fuzzy-c-means clustering algorithms for acne classifica-
tion with an accuracy of 70%, 66% and 80% respectively.
Abdul-Rahman et al. [11] elaborated a prototype with
Back Propagation Neural Network to assist dermatolo-
gists. They used Correlation Feature Selection and Fast
Correlation-based Filter feature selection methods with
higher accuracy of 91.2%. Another research was performed
by Sae-Lim et al. [21] to classify skin lesions using Convo-
lutional Neural Network (CNN) and Mobilenet. The exper-
iment was performed on HAM 10000 skin cancer dataset
with customisation of Mobilenet with an accuracy of 83.93%.
Rimi et al. [12] have proposed a CNN architecture to detect
six types of skin diseases: dermatitis hand, eczema subacute,
eczema hand, ulcers, lichen simplex and stasis dermatitis
with a precision of 70.8%. Aryan et al. [13] have performed
several experiments with the combination of several image
processing and recognition techniques for the detection of
HFMD lesions. Their research finds that the pre-processing
using colour-space conversion followed by segmentation
using KMeans-Morphological process with SVM clas-
sifier classified the lesion with higher accuracy. Some
researchers [22], [23] have classified skin lesions images
using traditional machine learning and deep learning to
diagnose multiple skin diseases. Hameed et al. [22] pro-
posed an intelligent multi-class multi-level (MCML) classi-
fication algorithm to classify multiple skin diseases. Their
study has implemented two approaches, traditional machine
learning and deep learning, to classify skin lesions with
an accuracy of 96.47%. Hameed et al. [23] have used
image processing techniques and Quadratic Support Vector
Machine to classify skin lesions with an accuracy of 94.74%.
Vakili et al. [24] explored a classification in HFMD with other
skin diseases using several pre-trained models such as Incep-
tion v3, ResNet-34 and ResNet-50. ResNet-50 model outper-
formed the classification with an accuracy of 95.4%. As their
experiment was limited to image data only, some simi-
lar appearing skin diseases were misdiagnosed. Researchers
from Google [16] have developed an integrated model to
detect six skin diseases from skin images and metadata. They
have used the Inception-v4 pre-trained model to classify
images and the feature transformation technique to extract
features from metadata. This model categorises the six skin
diseases with an accuracy ranging between 69%-94%. How-
ever, this model is not lightweight and mobile-friendly. Also,
this model does not consider the diagnosis of HFMD.

In most previous researches, image processing techniques,
Convolutional Neural Network or other classification algo-
rithms have been used to detect and classify skin diseases
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from images. Still, no DL architecture has been designed and
developed to learn mixed/integrated clinical symptoms and
associated lesion images simultaneously to diagnose HFMD.

Ill. HYBRID DEEP NEURAL NETWORKS BASED DIGITAL
DIAGNOSIS OF HFMD
Figure 1 presents an overview of the proposed smartphone
and Hybrid Deep Neural Networks based digital diagnosis
of HFMD. The architecture proposed for the diagnosis of this
disease is lightweight that can be used on smartphones. The
model has been trained and validated on a high-performance
workstation with HFMD/Non-HFMD skin images and clin-
ical symptoms. This pre-trained model is transformed into
a lightweight TensorFlow lite [25] that can be deployed in
mobile devices to diagnose this disease. The images of skin
lesions and the clinical symptoms taken by smartphones will
work as input for the deep learning model deployed in an
app to diagnose the disease.

In the following subsections, we briefly discuss the
datasets used, data pre-processing, proposed model, model
tuning and evaluation process of the model.

A. DATA COLLECTION AND PRE-PROCESSING

1) DATASET

The most crucial step for deep learning is collecting an
appropriate dataset to train and validate the model. Unfortu-
nately, though HFMD is one of the most common diseases
in Asian-Pacific countries, the dataset for clinical symp-
toms of HFMD and associated images are not readily avail-
able. Therefore, we collected 1455 HFMD lesion images
and 1800 typical skin images in various diseases other than
HEFMD from the Internet [26], [27] for this experiment. Fur-
thermore, we collected clinical data from paediatric doctors
for 410 HFMD infected patients and 645 other skin disease
infected patients. The clinical dataset has 13 features such as
Age, Fever, Sore throat, Diarrhoea, Vomiting, Mouth ulcer,
Blister rash, Distressed, Trembling limbs, Staggering, Eyes
rolled, Sweating and Gender.

2) DATA PRE-PROCESSING

Deep Learning requires a larger dataset to achieve high accu-
racy and avoid overfitting. One of the significant challenges
for our experiment was sufficient HFMD lesion images and
clinical datasets. We handled this problem by generating
data in two steps. First, we oversampled the clinical dataset
equal to the number of available images. The clinical dataset
provided by the doctors was significantly less compared to
the number of images. Therefore, we had to generate some
synthetic data from the existing dataset. We used Synthetic
Minority Oversampling Technique (SMOTE) [28] to over-
sample the data for both HFMD and Non-HFMD cases. The
clinical data contains numerical, Boolean and categorical
data types. The numerical Age and Fever features from the
clinical dataset were normalised using the MinMax Normal-
isation technique [29]. The categorical gender and ’position
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Illustration of the training, testing, validation, and deployment of the proposed model in the mobile app for the diagnosis of HFMD.

High-performance computers are used to train and test the hybrid deep neural networks model, which takes images and clinical data as input. The

trained model can be deployed in the mobile app to diagnose HFMD.

SN Age Fever Sorethroat Diarrhoea Vomiting Mouth ulcer Blister rash Distressed Trembling limbs poor appetite Headache Sweating Gender Position Image Label
1 4 39 1 1 1 1 1 1 1 1 1 Female Face ?ﬁ S 1
2 13 38 1 1 1 1 1 1 1 1 1 Female Palm/Sole "‘ 1
3 2 39 1 1 1 1 1 1 1 1 1 Male  Palm/Sole m 1
4 13 37 0 0 0 1 1 0 1 1 1 Female Palm/Sole m 1
5 11 386 1 0 0 1 1 1 1 0 1 Male  Hand ﬂ 1

FIGURE 2. Illustration of clinical features and associated images for HFMD and non HFMD.

of rash’ features were encoded using the one-hot encoding
technique [30].

After generating a sufficient number of clinical data,
the next step was to map each clinical symptom with an
image so that both the images and features will have the same
classification label. HFMD images were mapped with HFMD
related clinical symptoms. Similarly, images for normal skin
or non-HFMD disease were mapped with clinical symptoms
that do not appear in HFMD infected patients. The rash
position plays a significant role in diagnosing this disease
and distinguishes it from similar appearing diseases. Hence,
we manually identified the position of rashes for each image
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and labelled the position. Figure 2 illustrates the final dataset
prepared for our model. Here, each image is associated with
a set of clinical symptoms.

After oversampling and pre-processing clinical data,
the next step was to pre-process images and generate inte-
grated input batches and the corresponding labelled output.
ImageDataGenerator API [31] by Keras provides a feature
to augment and pre-process images in batches. However,
the limitation of this ImageDataGenerator is that this API can
generate batches of input from images only. The proposed
model was designed to feed integrated data of clinical symp-
toms and images. Hence, we built a custom data generator
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using Keras’s Sequence API to combine the features from
clinical symptoms and associated images and generate inte-
grated input data batches. We implemented Keras’s Image-
DataGenerator API’s image augmentation technique within
the custom data generator to generate and pre-process images
in batches. The image augmentation methods like rotation
by 40°, flipping the images horizontally and vertically, shear-
ing and zooming were implemented to increase the number
of training and validation images as shown in Figure 3. The
images were then scaled down between 0 and 1 to improve
the performance of the model. The generator then combines
the augmented image with its associated clinical symptoms
and class labels with providing a batch of integrated input for
the model.

784 Nl o) 1
", IV 4N 8
NN TRE N1

FIGURE 3. Augmented images.

B. PROPOSED MODEL

In this paper, we propose a hybrid deep neural net-
works architecture to diagnose HFMD from clinical and
image data. The proposed architecture is particularly a
multi-branched model architecture comprising two input
branches: (1) clinical branch (MLP) and (2) image-processing
branch (see Figure 4). The clinical data is input separately
into the MLP network (clinical branch: see section III-C),
while the images are fed into the image processing branch
(see section III-D), developed using Convolutional Neu-
ral Network (CNN). We employed customised pre-trained
CNN models, MobileNet [18] and NasNetMobile [19]
in the image-processing branch. Both the clinical and
image-processing branches are responsible to extract the
features from clinical and image data respectively. To com-
bine the features learned from these branches, the last layers
of both branches are concatenated to form a concatenation
layer using Keras functional API. A classification network
having two dense layers with 4 and 2 neurons respectively are
added on the top of the concatenation layer. Thus, the final
output layer of the hybrid deep neural networks model has
two neurons to classify HFMD and non-HFMD datasets.
The proposed architecture’s novelty lies in designing a
multi-branched lightweight and mobile-friendly Hybrid Deep
Neural Networks to diagnose HFMD from clinical and image
data.

VOLUME 9, 2021

Let us considering C as clinical input for MLP network
and D as image input for pre-trained CNN, the mapping
equation from inputs to learned features by MLP and CNN
branches are expressed as in equations 1 and 2 respectively.

T = £(C) (1)
7. = gy(D) 2)

where, 7,, and 7, are the learnt feature from MLP and CNN
networks respectively, f” and g’ represent MLP network and
CNN network, and 6 represents model weights.

The integrated feature Z obtained by concatenating all the
learnt features is represented as in equation 3.

Z. = Conc(Ty, Te) 3)

where, “Conc” represents feature-wise concatenation.

After concatenation, the integrated features are considered
as input for the subsequent classification network (layer), h:P
where, ¢ represents the weights of classification networks.
The classification label Y is achieved by equation 4.

Y = hy(Z) “

To summarise, the Hybrid Deep Neural Networks architec-
ture is composed of the combination of MLP function (f'6),
CNN function (g’0), concatenation layer and classification
network (#'¢) which can be represented by the function F.
Thus, the output of the proposed model with clinical
input C and image input D can be represented by equation 5.
The model weights 6 and ¢ are optimised while training the
model using Adam optimiser and categorical cross entropy
loss function.

Y = F(C,D) 5)

C. CLINICAL BRANCH

Clinical data are introduced to the model separately from
images in the clinical branch. Clinical data typically have a
smaller dimension than images, so they tend to be overlooked
when introduced to the input layer with images. Further,
varying dimension of images and clinical data add challenges
in integrating the features from these two datatypes. Thus,
we have designed a Multi-Layer Perceptron (MLP) network
for the clinical branch of the Hybrid Deep Neural Networks to
embrace features from clinical data separately from images.
The MLP network is composed of an input layer and two
hidden/dense layers of 14 neurons, eight neurons, and four
neurons, respectively. In addition, a dropout of 0.25 and
L2 weighted regularisation were implemented to regularise
the branch and avoid overfitting. We used the Relu activation
function [32] for input and hidden layers. The last hidden
layer of this branch returns the N x 4 dimensional features
extracted from the clinical dataset, where N is the number of
samples.

D. IMAGE PROCESSING BRANCH
An Independent image processing branch was designed
to embrace the features from images separately from
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FIGURE 5. CNN architecture for MobileNet.

clinical data. We particularly selected MobileNet and Nas-
NetMobile pre-trained models to extract features from
images in our proposed model as these pre-trained
models are lightweight and more efficient for mobile
applications [33], [34].

1) MobileNet

We used a modified Mobilenet [35] architecture in the sec-
ond branch of the proposed architecture to extract features
from images. Mobilenet is built upon two layers: depth-wise
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convolution and point-wise convolutions. The depth-wise
convolution applies a single filter to each input channel, and
then the point-wise convolution applies a 1 x 1 convolu-
tion to combine the outputs of depth-wise convolution. After
each convolution, batch normalisation and Rectified Linear
Unit (ReLU) are applied. Figure 5 illustrates the architec-
ture of Mobilenet consisting of depth-wise and point-wise
convolutions. In order to extract the features from images,
we modified the pre-trained CNN model by setting the
parameter include-top = false to chop the dense layers, which
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particularly act as classifier [36]. Then we added a dense
layer with 50 neurons and relu activation function to trans-
form the image features learnt from the pre-trained model to
N x 50 dimensional features, where N is the number of
samples.

2) NasNetMobile

Secondly, we modified the NasNetMobile [37] architecture
for our experiment. The NAS (Neural Architecture Search),
developed by Google Brain, is a scalable CNN architecture
consisting of basic building blocks configured by reinforce-
ment learning. The cell consists of only a few operations
(several convolutions and pooling) and is replicated sev-
eral times according to the necessary network capacity. The
lighter version of this architecture, NasNetMobile, consists
of 12 cells with 5.3 million parameters and 564 multiple-
accumulators. Figure 6 illustrates the reduced architecture
of NAS derived with NAS and CIFAR10. We relied on
transfer learning for both models. We used these pre-trained
models, which are trained over standard datasets such as
CYPARI10 and ImageNet. Similar to MobileNet, we modified
NasNetMobile architecture excluding classification layers
and adding a dense layer of 50 neurons.

E. MULTI-LAYER PERCEPTRON MODEL FOR CLINICAL
SYMPTOM-BASED HFMD CLASSIFICATION

To classify the disease solely based on clinical symptoms,
we also created a separate Multi-layer Perceptron (MLP)
network [17]. The basic architecture of MLP consists of
three layers, as shown in Figure 7: an input layer, a hid-
den layer, and an output layer. However, modern MLP can
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FIGURE 7. Basic architecture for multi-layer perceptron.

have multiple hidden layers and dropout layers. Therefore,
we developed three layers: input layers, hidden layer and
output layer of 14 neurons, eight neurons, and two neurons,
respectively. In addition, a dropout of 0.25 and L2 weighted
regularisation were implemented to regularise the model and
avoid overfitting. We used the Relu activation function for
input and hidden layer and softmax activation function [38]
for output layer to perform the classification.

F. MODEL TUNING

We developed the model using TensorFlow and Keras based
on modern deep learning architectures. We used Adam opti-
miser to optimise the hybrid multi-branch model. The hyper-
parameters of the integrated models are the learning rate,
decay rate and initial weights. At the same time, the clinical
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TABLE 1. Validation performance of the models.

Method Dataset K- Folds validations | Accuracy Specificity Sensitivity F1 score
MobileNet Image only 5 Folds 0.88 +0.02 0.83+0.03 | 0.91+0.01 | 0.89+£0.01
NasNetMobile 0.85 £ 0.02 0.79+£0.01 | 0.81£0.01 | 0.83+£0.02
MLP Clinical only 5-Folds 0.9994 +0.001 | 1.0 1.0 0.99

MLP + MobileNet Image + Clinical | 5-Folds 1.0 1.0 1.0 1.0

MLP + NasNetMobile 1.0 1.0 1.0 1.0

MLP + MobileNet .. 1.0 1.0 1.0 1.0

MLP + NasNetMobile | | mage + Clinical | 6-Folds T.0 T0 T.0 T.0

MLP + MobileNet Image + Clinical | 7-Folds 0.98 £+ 0.02 0.97+£0.03 | 0.99+0.01 | 0.98+0.02
MLP + NasNetMobile ) 0.97 £0.03 0.95+0.05 | 0.93+£0.07 | 0.976 £0.03
RestNet50 Images only 5-Folds 0.912 £+ 0.01 0.89 £0.01 | 0.88+0.02 | 0.9+ 0.01

branch of the integrated model had two hyperparameters: the
number of layers and the number of nodes in each hidden
layer. Systematic experimentation is the most reliable way to
configure these hyperparameters [39]. We used a hyperpa-
rameters tuning technique to tune and optimise the parame-
ters and train the model with the highest accuracy. We applied
a grid search approach to estimate the hyperparameters of our
model. Alongside the number of dense layers and the number
of nodes in each layer of the clinical branch, we used a grid
search approach to optimise the operation related (e.g., train-
ing) hyperparameters such as learning rate and decay rate. For
each experiment, the optimal hyperparameters were chosen
to minimise the error or loss function. Finally, we finalised
the clinical branch with three layers with 16, eight, and four
neurons by tuning the model. The hyperparameters, learn-
ing rate and decay rate of the hybrid deep neural networks
model, were determined to be le-3 and 1e-3/200, respec-
tively. After getting the optimal parameters, we trained the
model with the optimal hyperparameters. We also used an
Earlystopping callback while training the model to avoid
overfitting.

G. EVALUATION OF THE PROPOSED MODEL

We conducted several experiments to compare the perfor-
mance of our proposed multi-branch model to that of an
image classification model and a clinical symptom-based
disease (particularly HFMD) classification model (MLP).
We used both images and clinical data for our proposed
model, only images for the image classification model and
clinical symptom data for the symptoms-based HFMD clas-
sification model (MLP). In the first experiment, we retrained
the pre-trained MobileNet and NasNetMobile models using
images only and evaluated their performances. We trained
the Multi-Layer Perceptron using the clinical dataset only
in the second experiment. In the final experiment, we satisfied
the proposed hybrid model employing mixed/integrated clin-
ical dataset and images data. This proposed model consists
of a clinical branch and an image processing branch. Thus,
we again adopted an experimental approach to select the best
pre-trained image classification model for HFMD diagnosis.
Firstly, we used MobileNet along with clinical branch to train
mixed input data and secondly, MobileNet was replaced with
NasNetMobile, and the same dataset was trained in the model.
For all these experiments, we created a checkpoint to save
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the model with the highest accuracy so that the saved model
could be used for the prediction with better accuracy. We eval-
uated the models using accuracy, sensitivity, specificity and
F1-score and visualised the performances using a confusion
matrix.

IV. RESULT AND DISCUSSION

We produced three different results for three datasets. All the
evaluation results were cross-validated using the k-fold (5-7)
validation technique.

A. IMAGE CLASSIFICATION

In the first experiment, we classified HFMD using images
only. Here, we retrained the pre-trained models of MobileNet
and NasNetMobile using the images. The results are pro-
duced by 5-fold cross-validation. Table 1 (first two rows)
present the results in terms of accuracy, sensitivity, and
specificity of image classification. As shown in the table,
the MobileNet model outperforms the NasNetMobile in
classifying HFMD images with an accuracy of 88%.
Figures 8 and 9 demonstrated the accuracy and loss of the
MobileNet and NasNetMobile models using image data.
As seen in the figure, both pre-trained models’ accuracy
increases (Figures 8 and 9 (a)), and loss value decreases
(Figures 8 and 9 (b)), gradually with more epochs. This
pattern demonstrates that both models can predict HFMD
from images with high accuracy and can be used for our
proposed hybrid deep neural networks model. Figure 10
presents a confusion matrix for each model to visualise the
performance of the models in the validation dataset. As shown
in Figure 10 (a) that MobileNet successfully classified 79% of
HEFMD images correctly and 96% of Non-HFMD images cor-
rectly, while NasNetMobile (Figure 10 (b)) classified HFMD
images with an accuracy of 85% and Non-HFMD images
with an accuracy of 87%. In addition, we trained our images
dataset with RestNet50 pre-trained model to further com-
pare our model’s performance with the image classification
approach. As claimed by Vakili ez al. [24] in their experiment,
RestNet50 model classified our dataset with an accuracy
of 91.2 % (see Table 1 (last row)). From confusion matrices
(see Figure 10), we can see that the image based classification
models misclassified some skin lesion. We manually verified
some false-positive results from MobileNet model and it
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FIGURE 8. Performance evaluation of MobileNet for image classification.
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FIGURE 9. Performance evaluation of NasNetMobile for image classification.
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FIGURE 10. Confusion matrix comparison of MobileNet and NasNetMobile pre-trained models for images only.

was found that similar appearing lesions (e.g., herpangina
and HFMD) were both classified as HFMD(see Figure 11).
Thus, this example illustrates the limitation of existing image
based HFMD diagnosis approach, where non-HFMD image
is misclassified as HFMD.
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B. CLINICAL DATASET CLASSIFICATION

In the second experiment, only the clinical dataset to clas-
sify HFMD with other skin diseases using MLP architec-
ture. Table 1 (third row) presents the 5-fold cross-validated
evaluation results of the MLP. The MLP can classify
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HFMD Image

Herpengenia Image

FIGURE 11. An example of a false-positive predicted result. Both
HFMD (left) and herpangina (right) are classified as HFMD.

HFDM’s clinical symptoms with very high accuracy (99%).
Figure 13a and 13b illustrate the accuracy and loss of one
of the validation sets for 50 epochs. Figure 13c visualised
the MLP model’s performance on the validation dataset.
The figure shows that it accurately classifies 100% of the
HEMD clinical samples and 92% of the Non-HFMD clin-
ical samples. This result shows that based on the clinical
symptoms, HFMD disease can be predicted accurately. How-
ever, HFMD’s clinical symptoms may conflict with other
non-HFDM diseases [40], [41]. Clinical symptoms inte-
grated with images can minimise this conflict and correctly
diagnose HFMD.

Training and validation accuracy
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(a) Accuracy

HFMD
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C. HFMD DIAGNOSIS USING IMAGE AND CLINICAL DATA

The proposed hybrid deep neural networks architecture was
tested in two settings: (i) MLP with pre-trained model
MobileNet and (ii) MLP with pre-trained model NasNetMo-
bile on the integrated clinical symptoms and images. Table 1
(fourth and fifth rows) present the 5-fold cross-validated
evaluation results of the proposed models on the integrated
data. As seen in the table, the hybrid deep neural networks
using integrated data (clinical symptoms and images) are
outperforming MobileNet, NasNetMobile and MLP. Accord-
ing to the results, these models can classifty HFMD and
non-HFMD with 100% accuracy. The claim is robust as
the 6-folds and 7-folds cross-validations of the hybrid deep
neural networks demonstrated very similar results (Table 1
(sixth-ninth rows)). Figures 13 and 14 present the training and
validation accuracy and loss for both MobileNet and NasNet-
Mobile based proposed models respectively. As seen in the
figures, hybrid deep neural networks with both pre-trained
models’ accuracy increases (Figures 13 and 14 (a)), and loss
value decreases (13 and 14 (b)), gradually with more epochs.
Figure 15 compares the confusion matrix of MobileNet
and NasNetMobile based proposed models respectively. The
figure illustrates that both the models correctly (100%)
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FIGURE 12. Performance evaluation and confusion matrix for clinical dataset classification.
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FIGURE 14. Performance evaluation for training and test sets for the proposed hybrid deep neural networks with NasNetMobile for 50 epochs.
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FIGURE 15. Confusion matrix for proposed hybrid deep neural networks.

classified all the HFMD and Non-HFMD validation samples. For the HFMD diagnosis, the position of the lesion is
These results demonstrate that the Hybrid Deep Neural Net- essential. It is essential to demonstrate whether our model
works have the potential to digitally diagnose HFMD in the extracts significant features from the expected region or
presence of similar non-HFMD diseases. position of interest in the image during model training.
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(a) Grad-CAM heatmap for the images predicted as HFMD by MobileNet based proposed model.
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(b) Grad-CAM heatmap for the images predicted as HFMD by NasNetMobile based proposed

model.

FIGURE 16. Grad-CAM heatmap plotted over the images predicted as HFMD by the proposed model. The
red colour in the heatmap signifies substantially relevant features or areas in images identified by the

proposed model.

To interpret the feature extraction from images, we plotted
the heatmap over the validation image using a technique
called Grad-CAM (Gradient Class Activation Map) [42]. For
each model, a validation image was selected for the predic-
tion, and a heatmap was plotted over the image, as shown
in Figure 16. These images illustrate that the image classi-
fication branch was extracting the features from the images’
expected region.

D. LIMITATION

Deep learning necessitates large datasets in order to develop
more accurate and robust models. Despite the fact that we
gathered data from various sources, it was still relatively
small in the context of deep learning. Although HFMD is
one of the most common diseases in Asian-Pacific coun-
tries, clinical data and images for the same patient were
not readily available. Further, our dataset has an uneven
distribution of clinical data and images. The clinical data
collected from doctors was significantly less than the number
of images collected over the internet. The presence of some
low-resolution images was another limitation of our dataset.
This research can further be improved using data from diverse
ethnic groups.

The proposed experiment integrates the features from
clinical data and images; however, we have not analysed
the correlation and association between images and clinical
symptoms. This experiment can be further extended to anal-
yse the correlation between image and clinical features and
its impact on disease diagnosis.
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V. CONCLUSION

In this paper, we proposed a lightweight and efficient Hybrid
Deep Neural Networks to detect or diagnose HFMD using
clinical symptoms and image data. The proposed Hybrid
Deep Neural Networks architecture has two input branches
1) Multi-Layer Perceptron and 2) modified pre-trained CNN
model to integrate the features learnt from clinical symp-
toms and image data. The performance of our proposed
multi-branch Hybrid Deep Neural Networks for diagnosing
HFMD was compared with the image classification model
and clinical symptom-based HFMD classification model
(MLP). The image classification models: MobileNet, Nas-
NetMobile and RestNet50, classified the skin lesions with
an accuracy of 88%, 85% and 91.2%, respectively; however,
this approach has some limitations of misdiagnosing simi-
lar appearing skin lesions. In another experiment, the MLP
model using the clinical dataset predicted HFMD with an
accuracy of approximately 100%. As HFMD is a skin disease,
clinical symptoms-based detection/diagnosis may not always
be correct as many other diseases (e.g., chickenpox) may
have similar symptoms. Thus, using both images and clinical
symptoms can improve the diagnosis of this disease. It is
worth noting that previous studies have used only image
classification techniques using traditional machine learning
or deep learning architectures to diagnose skin diseases.
However, to the best of our knowledge, no studies have been
conducted to diagnose HFMD from integrated features of
image and clinical symptom data. The proposed multi-branch
model overcomes these limitations and predicts the disease
with accuracy between 99%-100% using clinical symptoms
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and images. The learned model is lightweight and efficient,
which can be deployed in a smartphone to develop a mobile
app to detect or diagnose HFMD.

Most medical datasets contain images along with clini-
cal datasets. Thus, this proposed Hybrid Deep Neural Net-
works architecture can help diagnose other diseases with
integrated images and clinical symptoms data for the same
patient. Furthermore, this model can be enhanced to learn
other diseases using complex radiological images like X-Ray,
CT-Scan, MRI images and clinical data. The outputs should
be in better expectation by replacing the existed model with
the MobileNet layers with other image classification or image
segmentation models like U-Net, DenseNet, VGGNet, Rest-
Net50 or Alexnet.
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