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ABSTRACT Multiframe super-resolution (MFSR) can obtain a high-resolution image from a set of
low-resolution images. The performance of super-resolution is affected by the image prior information. The
current super-resolution algorithms typically use total variation prior and its improved version, restoring
the image edges well. However, it will produce artifacts and stair effects in the smooth region of the
image. Therefore, we propose a dark channel-based MFSR algorithm to achieve edge-preserving and noise-
suppressing. Firstly, the total variation prior is used to ensure the edge-preserving ability of the algorithm.
Secondly, the dark channel prior is added to suppress artifacts and stair effects. Finally, the weights of the
prior terms are iteratively adapted to obtain the final high-resolution image. Experiments show that the
proposed algorithm can achieve a better result in objective and subjective visual evaluations.

INDEX TERMS Image process, multiframe super-resolution, dark channel prior, total variation prior, image
prior combination, Bayesian framework.

I. INTRODUCTION
Resolution is a basic feature of an image, and it is also the
major factor limiting the scope of image application [1], [2].
Increasing the resolution of images can effectively expand
the scope of image applications. Super-resolution (SR) can
improve the resolution of images via mathematical methods
without changing the hardware of imaging system [3]. This
technology has great advantages in cost and it is widely used
in remote sensing, medical imaging, and other fields [4]–[7].

The SRmethods have been developed for decades. In 1984,
Tsai and Huang proposed a frequency domain based multi-
frame super-resolution (MFSR) algorithm [8], which proved
the theoretical feasibility of image SR. The algorithm recon-
structed the high-resolution (HR) image by the existing
sub-pixel displacement between the low-resolution (LR)
images, and was successfully applied to the LANDSAT
images. Kim et al. [9] improved the MFSR algorithm by
analyzing the noise and blur characteristics of the images.
Bose et al. [10] further optimized the MFSR algorithm by
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analyzing the registration error in the reconstruction process,
which expanded the application range of the algorithm. Rhee
and Kang [11] used discrete cosine transform (DCT) instead
of discrete Fourier transform (DFT) in the MFSR algorithm,
which can effectively improve the computational efficiency
of the algorithm. Because the MFSR algorithm based on the
frequency domain was simple in principle, fast in calculation
speed, and low in computing hardware requirements, it can
be easily implemented in engineering. However, in this type
of algorithms, only the global transformation motion could
be handled, and the prior information could not be used.

In order to solve the aforementioned problems, a series
of MFSR algorithms have been proposed. These algo-
rithms use the sub-pixel shifts between multiple LR images
to provide additional information for reconstructing HR
images, including nonlinear interpolation method [12]–[14],
iterative back projection (IBP) [14]–[17], projection onto
convex sets (POCS) [18]–[20], maximum likelihood (ML)
estimation [21], [22], maximum a posteriori probability
(MAP) [23]–[27], adaptive filtering [28], [29] and other
methods. The image MFSR problem is an ill-posed problem.
By adding image prior information, the ill-posed inverse
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problem is constrained as a well-posed problem, so that the
reconstruction result converges to obtain a stable solution.
Generally, the reconstruction results of the spatial domain
algorithm are better than the frequency domain algorithm,
but the spatial domain algorithm is sensitive to image prior
knowledge and registration information.

The image prior information has a decisive effect on
MFSR, and different prior information will lead to differ-
ent reconstruction results. The earliest image prior is the
Laplace prior [30], [31]. In this prior, the natural images are
assumed to be smooth, and noise will lead to image smooth-
ness characteristic loss. By imposing penalty constraints on
the high-frequency components of the reconstructed image,
the noise can be limited, and a smooth solution can be
obtained. However, it will result in blurred edges and loss
of texture information. In the Gaussian Markov Random
Field (GMRF) prior [32], by analyzing the distribution of
each image pixel and its neighboring pixels information,
the details and texture can be distinguished. In the Huber
Markov Random Field (HMRF) prior [33], the image is
assumed to be block smoothed. Compared with GMRF prior,
the HMRF prior uses the Huber function, instead of the
smoothness measurement function, to measure the image
spatial characteristics. Then, the details in the edges can
be preserved, and the noise in the smooth regions can be
suppressed.

The total variation prior (TV) [34]–[38] is widely used
in image deblurring, image denoising, and image MFSR.
However, this prior will produce stair effects in the smooth
area of images under strong noise. Farsiu et al. [30] proposed
a bilateral total variation (BTV) prior. In the BTV prior,
by comparing the original image with the translated image,
a larger weighted coefficient was assigned to the edge areas,
and a smaller weighted coefficient was assigned to the smooth
areas. Then a more robust result with more details can be
achieved.

Since different image priors have different effects on image
reconstruction, combining image priors became an effec-
tive way to improve the quality of reconstructed images.
Chantas et al. [39] combined the TV prior and the Product
of Expert (PoE) prior [40] to a new image prior, which
was able to simultaneously enforce the properties on the
image. Villena et al. [41] applied a combination of the sparse
TV prior and l1 prior, and the non-sparse simultaneous
auto-regressive (SAR) prior to the MFSR. This prior could
integrate the strong edge preservation of the sparse prior
and the smoothness of the non-sparse prior. In [42], a spa-
tially adaptive linear filter prior was proposed for the MFSR.
In [43], a filter bank and l1 norm based prior combination
method was presented. However, these methods still produce
artifacts and stair effects because the combined priors were
both based on the gradient properties of the image.

The dark channel is introduced by He et al. [44] for single
image dehazing, then Pan et al. [45] modify the prior that
the dark channel of natural images is sparse instead of zero
and enforce the sparsity for kernel estimation. Inspired by the

work in [45]–[47], we note that the DC pixels are less sparse
after the degradation process. Therefore, we introduce the DC
prior into MFSR algorithm.

In order to overcome the aforementioned shortcomings,
in this paper, we proposed a new algorithm to improve the
quality of the reconstructed image, and themain contributions
are as follows:

1) Introduce the dark channel (DC) prior to super-
resolution, in order to suppress the artifact and stair
effects during the image edges recovering.

2) Propose a new MFSR algorithm by combining the DC
and TV prior, which can effectively improve the MFSR
effect.

3) Experiment results verify that the above algorithm can
achieve better performance in both PSNR and SSIM.

The rest of this paper is organized as follows. In Section II,
we build the entire super resolution model. In Section III,
we give the detailed description of the DC-TV based MFSR
algorithm. Then, in Section IV, we represent the experiment
results and evaluate the proposed algorithm in comparison
with other representative benchmarks. Finally, we concluded
this paper in Section V.

II. THE SUPER-RESOLUTION RECONSTRUCTION MODEL
The super-resolution reconstruction model is composed of
image observation model, image noise model, image prior
model, and image registration model.

A. OBSERVATION MODEL
The observation model is established to describe the rela-
tionship between HR images and LR images. An LR image
with N = N1 × N2 pixels (where N1 and N2 are the row
number and column number of the image )can be obtained
from an HR image with P2N = PN1 × PN2 pixels(P is the
up-sampling factor) through a series of operations such as
rotation, displacement, blurring, down-sampling, and mixed
noise. The corresponding observation model is represented
by the Fig. 1.

FIGURE 1. Observation model relating LR images to the HR image.

According to this observation model, a mathematical
model can be established in matrix-vector form

ILl = SKlWMl I
H
+ nl, l = 1, 2, . . . , s, (1)

where s is the number of the LR images, IH ∈ RP
2N×1

and ILl ∈ R
N
× 1 are lexicographically ordered vectors used

to represent HR and LR images respectively. WMl is the
motion transformation matrix with size P2N × P2N , and
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the value is affected by the motion transformation parame-
ters Ml = {θl, dhl, dvl}. Kl is the blurring matrix with size
P2N × P2N , and S is the down-sampling matrix with size
N × P2N . nl represents the additive noise vector related to
the lth LR image.

B. IMAGE NOISE MODEL
The noise model of the image corresponds to the degradation
relationship between the LR images and the HR image. The
relationship can be expressed as the conditional probability
density function p(ILl | I

H ) of the LR image. Assuming that
the noise is additive white Gaussian noise (AWGN) with the
variance η−1l , according to (1), the noise model of the image
can be expressed as

p(ILl | I
H ,Ml, ηl) ∝ η

N
2
l exp

{
−
ηl
2

∥∥ILl − SKWMl I
H
∥∥2
2

}
,

(2)

Since the LR images are captured independently, the noises
can be assumed to be statistical independence. Therefore,
we can obtain the following expression

p(IL | IH ,M, {ηl}) =
s∏

l=1

p(ILl | I
H ,Ml, ηl), (3)

where the IL = {IL1 , I
L
2 , . . . , I

L
s } is the set of LR images and

M = {M1,M2, . . . ,Ms} is the set of registration parameters.

C. IMAGE PRIOR MODEL
Two image prior model is used in this paper, the TV prior
model p(IH | ηtv) controlled by hyperparameter ηtvand the
DC prior model p(IH |ηd ) controlled by hyperparameter ηd .

1) TV PRIOR MODEL
The TV prior is widely used because of the property of edge
preserving [48]. The mathematical expression of the image
TV prior is

p(IH | ηtv) ∝ η
P2N
2

tv exp
{
−
ηtv

2
TV (IH )

}
, (4)

where TV (IH ) has two different expressions, i.e.

TV (IH ) =
∑
i

√
(1hi(IH ))

2
+ (1vi(IH ))

2 (5)

and

TV (IH ) =
∑
i

|1hi(IH )| + |1vi(IH )|. (6)

In (5) and (6), 1hi(I ) = I (i) − I (r(i)) and 1vi(I ) =
I (i)− I (b(i)) respectively represents the horizontal and verti-
cal gradient of the image. Equation (5) is called the isotropic
TV model and (6) is called the anisotropic TV model. We use
the isotropic TV model in this paper, because compared to
the anisotropic TV model, the isotropic TV model is more
robust to image rotation, image reflection, and image position
transformation, and the reconstruction effect of the isotropic
TV model is also better than the anisotropic TV model [49].

2) DC PRIOR MODEL
The mathematical expression of the image DC prior model is

p(IH | ηd ) ∝ η
P2N
2

d exp
{
−
ηd

2

∥∥∥D(IH )∥∥∥
0

}
, (7)

where the D(IH ) represents the DC of the image.
The standard form of DC is expressed by

D(Ii) = min
j∈N (i)

Ij, (8)

where i and j are image pixel indexes and N (i) is an image
patch centered at i. Note that the nonlinear operation D(Ii)
cannot be directly used in the subsequent solution. Hence,
a linear operation Dc which is equivalent to this nonlinear
operation is applied in the following form

D(Ii) = min
j∈N (i)

Ij = Dc(i, :)I . (9)

The Dc in (9) is a matrix with size P2N × P2N and the
elements in ith row is acquired from the below formula

Dc(i, j) =
{
1 j = q
0 otherwise,

(10)

where q is the position index of the minimum value in the
given neighborhood N (i).

D. IMAGE REGISTRATION MODEL
The registration model aims to describe the motion transfor-
mation relation between the target images and the reference
image. The registration parameters are generally obtained
by using the first frame of the LR images as reference.
In contrast, we use the HR image as reference to obtain more
accurate registration parameters.

Using a 3-parameters motion model, the position relation-
ship between the reference image and the lth warped image
is (

xl
yl

)
=

(
cosθl −sinθl
sinθl cosθl

)(
x
y

)
+

(
dhl
dvl

)
, (11)

where (x, y) are the coordinates of the reference image and
(xl, yl) are the coordinates of the warped image. Ml =

(θl, dhl, dvl) respectively correspond to the rotation angle,
horizontal displacement, and vertical displacement in the
motion transformation.

Since the coordinates (xl, yl) are generally not integer val-
ues, the grid of the lth warped image should be calculated by
resampling (see Fig. 2). By using the bilinear interpolation
method to approximate the lth warped image, the value of the
pixels can be calculated by the weighted sum of four adjacent
points, that is

WMl I
H
≈ DaxDay Ise + (E − Dax )(E − Day )Inw
+(E − Dax )Day Isw + Dax (E − Day )Ine, (12)

where Ise, Ine, Isw, Inw respectively represent four adjacent
points in different directions around the target point. E is
the identity matrix, Dax and Day are diagonal matrices with
ax , ay as diagonal elements. [ax , ay]T represent the distance
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between the pixel point and the point located at the northwest.
The values of [ax , ay]T can be calculated by the following
formula {

ax = xl − floor(xl)
ay = yl − floor(yl).

(13)

FIGURE 2. The resampling process of the image registration model.
(a) The reference image grid (in black) and the l th warped image grid (in
red). (b) Detailed view of (a), with the pixels used for the re-sampled grid
element A24.

III. DC-TV BASED MFSR ALGORITHM
TheMFSR is an inverse processing of the image degradation.
The MFSR equation is an ill-posed problem and cannot be
directly solved. Therefore, the Bayesian Maximum a Posteri-
ori (MAP) estimation method is used. Then the MFSR aims
to find an estimate of IH which can maximize the probability
density function p(IH | IL), i.e.

{ÎH ,M̂, 2̂} = argmax
IH ,M,2

p
(
IH ,M,2 | IL

)
. (14)

where 2 = {{η1, η2, . . . , ηs}, ηtv, ηd } is the set of hyperpa-
rameters. Using the Bayesian inference rule, we have

p(IH ,M,2 | IL) =
p(IH ,M,2, IL)

p(IL)
, (15)

where the conditional distribution can be expressed as

p(IH ,M,2, IL) = p(IL |IH ,M, {ηl})p(IH | ηtv, ηd )

·

s∏
l=1

p(Ml)
s∏

l=1

p(ηl)p(ηtv)p(ηd ). (16)

The mathematical derivation is given in this section, and
the flowchart is shown in Fig. 3. Since the main contribution
of the proposed algorithm is the combination of the DC and
TV prior, we will first describe the image prior optimization
steps as follows.

A. THE PRIOR OPTIMIZATION
A combined prior named DC-TV is proposed to improve the
effect of the MFSR algorithm. The TV prior could preserve
the image edges by distinguishing between gradient change
areas and image smooth areas, but cannot get rid of the noise.
In addition, the DC prior have the ability to suppress the noise
by the sparse property of the l0 norm. Thus, the DC-TV prior
can effectively combined the edge preserving capability of

FIGURE 3. The flowchart of the proposed algorithm.

the TV prior and noise suppressing capability of the DC prior.
The expression of the DC-TV prior model is,

p(IH | ηtv, ηd ) = p(IH | ηtv)p(IH |ηd ). (17)

where p(IH | ηtv) and p(IH |ηd ) represent the TV prior and
the DC prior, respectively.

1) TV PRIOR OPTIMIZATION
The TV prior equation (5) cannot be directly tackled in the
proposed algorithm, so the majorization-minimization (MM)
approach [50] are used. Considering the follow inequality

√
z ≤

z+ u
2
√
u
, (18)

where u > 0, z > 0, and the equation is established when
u = z.
For the ith pixel of the image, we introduce a variable

Qtv(IHi , ui) =
(1hi(IH ))

2
+ (1vi(IH ))

2
+ u2i

2ui
. (19)

Thereby,Qtv(IHi , ui) has aminimumvalue equal to
∥∥∇IH∥∥,

i.e.

Qtv(IHi , ui) ≥
∥∥∥∇IH∥∥∥ = √(1hi(IH ))

2
+ (1vi(IH ))

2
. (20)
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Hence, the TV prior model can be approximated as

p(IH | ηtv) ∝ η
P2N
2

tv exp
{
−
ηtv

2
Qtv(IH ,U )

}
. (21)

where the U is a diagonal matrix of size P2N × P2N with
diagonal elements calculated

Uii =
√
(1hi(IH ))2 + (1vi(IH ))2 + ε2. (22)

2) DC PRIOR OPTIMIZATION
In the DC prior equation, the half-quadratic splitting L0
minimization approach [51] is proposed to tackle the L0
norm. By introducing an auxiliary vector g,

∥∥D(IH )∥∥0 can
be approximated in the following form

QD(IH , g) = ηg
∥∥∥DcIH − g∥∥∥2

2
+ ‖g‖0, (23)

where ηg is a penalty parameter. When ηg tends to infinity,∥∥D(IH )∥∥0 and QD(IH , g) are approximately equal. Calculate
the auxiliary vector g by minimizing (23), that is

ĝ = argmin
g

ηg

∥∥∥DcIH − g∥∥∥2
2
+ ‖g‖0. (24)

Thus, the solution of g is

ĝ =

{
DcIH (DcIH ) ≥ 1

ηg

0 otherwise.
(25)

This optimization updates g and Dc iteratively by amplify-
ing ηg so that QD(IH , g) approximately equal to

∥∥D(IH )∥∥0.
Hence, The DC prior model can be approximated as

p(IH | ηd ) ∝ η
P2N
2

d exp
{
−
ηd

2
QD(IH , g)

}
. (26)

B. REGISTRATION ESTIMATION
The sub-pixel registration is an important part of MFSR.
It is mainly obtained by interpolating between pixels. The
denser these pixels of the HR image are, the more realistic the
interpolation effect is, and the more accurate the registration
result becomes. Assuming that the registration parameters
obeys the multivariate Gaussian distribution [52], i.e.,

p(Ml) = N (Ml |M̄l, ζl), (27)

where M̄l is the preliminary registration parameters and ζl is
a priori covariance matrix.

After the MFSR image estimation IH is obtained,
the parameterMl can be estimated by minimizing the follow-
ing equation

M̂l = argmax
Ml

p(ILl |I
H ,Ml, ηl)p(Ml) (28)

which can be simplified by a logarithmic form, i.e.,

M̂l = argmin
Ml

ηl

∥∥∥ILl − SKWMl I
H
∥∥∥2
2

+(Ml − M̄l)T (ζ nl )
−1(Ml − M̄l). (29)

Since WMl I
H is nonlinear with respect to Ml , we perform

a first-order Taylor expansion onWMl I
H at the value M̄l , i.e.

WMl I
H
= WM̄l

IH + JM̄l
(Ml − M̄l), (30)

where JM̄l
is the Jacobian matrix and it can be calculated by

JMl =
∂(WMl I

H )
∂Ml

=
∂(WMl I

H )

∂

([
aTx , aTy

]T)
∂

([
aTx , a

T
y

]T)
∂
([
xTl , y

T
l

]T) ∂
([
xTl , y

T
l

]T)
∂Ml

.

(31)

The three parts of (31) can be calculated by (11), (12) and
(13), respectively. Hence, the final value [53] of JM̄l

is in the
form

JMl =
[
P1MlB1Ml + P2MlB2Ml ,B1Ml ,B2Ml

]
, (32)

where we have

P1Ml = diag(−xsin(θl)− ycos(θl)), (33)

P2Ml = diag(xcos(θl)− ysin(θl)), (34)

B1Ml = (E − Day )(Ine − Inw)+ Day (Ise − Isw), (35)

and

B1Ml = (E − Dax )(Isw − Inw)+ Dax (Ise − Ine). (36)

Substituting (32) into (29), the registration parameters Ml
can be solved by

(ζ n+1l )−1Ml = (ζ nl )
−1M̄l + ηl(SKJM̄l

)T SKJM̄l

+ηl(SKJM̄l
)T (ILl − SKWM̄l

IH ) (37)

with

(ζ n+1l )−1 = (ζ nl )
−1
+ ηl(SKJMl )

T SKJMl , (38)

where n is the number of iterations and the initial ζl =
ηl(SKJM̄l

)T SKJM̄l
is calculated by the initial registration

parameters M̄l .

C. ESTIMATION OF THE HYPERPARAMETERS
Generally, the distributions of hyperparameters {ηl} and ηtv
are Gamma distributions [54], i.e.

p(w) = 0(w|aw, bw) =
(bw)aw

0(aw)
waw−1 exp{−bww}, (39)

where w denotes the hyperparameter. Meanwhile, aw > 0
and bw > 0 are the shape and scale parameters of the
Gamma distributions, respectively. In our experiments, these
parameters are settled with aw = 1 and bw = 0.1.
Therefore, the hyperparameters {ηl} can be calculated by

the following equation

η̂l = argmax
ηl

p(ILl |I
H ,Ml, ηl)p(ηl). (40)
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Substituting (2) and (39) into (40), the estimate of ηl is

η̂l =
N + 2aηl − 2

2bηl +
∥∥ILl − SKWMl IH

∥∥2
2

. (41)

The hyperparameter ηtv can be calculated in the following
equation,

η̂tv = argmax
ηtv

p(IH |ηtv)p(ηtv). (42)

Substituting (4) and (39) into (42), the estimate of ηtv is

η̂tv =
P2N + 2aηtv − 2

2bηtv +
P2N∑
i=1

√
(1hi(IH ))

2
+ (1vi(IH ))

2

. (43)

The ηd is an empirical hyperparameter, and its value in our
experiments is

ηd = 0.1× ηtv. (44)

D. ESTIMATION OF HR IMAGE
After obtaining the image registration parametersM, and the
hyperparameters2, the HR image IH can be estimated by the
following equation

ÎH = argmax
IH

p(IL |IH ,M, {ηl})p(IH ) (45)

Substituting the optimization expression (19) and (23) into
(17), theMFSR solution formula can be simplified in the form[

6IH
]−1IH = s∑

l

ηl
[
SKWMl

]T ILl + ηdηgDTc g, (46)

where[
6IH

]−1
=

s∑
l=1

ηl[SKWMl ]
T SKWMl

+ηtv(1T
hU
−11h +1

T
v U
−11v)+ ηdηg(DTc Dc).

(47)

The reconstruction process of the proposed algorithm
includes the registration parameters estimation, the prior
term optimization, the hyperparameters estimation, and the
high-resolution image estimation. The stable solution of the
algorithm can be obtained by looping the reconstruction pro-
cess, and the loop termination condition is∥∥∥IH t

− IH
t−1
∥∥∥2
2∥∥IH t∥∥2

2

≤ ε1. (48)

where t is the iteration counter, and IH
0
is a zero vector. The

pseudo code of the algorithm is given in Algorithm 1.
In Algorithm 1, the first loop describing the reconstruction

process of the algorithm, and the second loop describing the
DC prior optimization. ηg is the parameter used during the
DC prior optimization process, and the value of ηg is between
ηinitg = 0.001 and ηmaxg = 8.

Algorithm 1 MFSR Using DC-TV Prior

Input: LR images IL , up-sampling factor P, iteration
counter t = 1.

Output: HR image IH
t
.

1: Estimate IH
1
by bicubic methods.

2: while termination condition (48) is not met do
3: Estimate Ml by IH

t
and (37).

4: Estimate U by IH
t
and (22).

5: Estimate ηl ,ηtv,ηd by IH
t
, (41), (43), and (44).

6: ÎH = IH
t
.

7: ηg = η
init
g .

8: while ηg < ηmaxg do
9: Estimate Dc by ÎH and (10).
10: Estimate g by ÎH and (25).
11: Update ÎH by (46).
12: ηg = ηg × 2.
13: end while
14: t = t + 1.
15: IH

t
= ÎH .

16: end while

IV. EXPERIMENTAL RESULTS
In the proposed DC-TV based MFSR algorithm, the TV prior
and DC prior were combined to simultaneously enhance the
edge preservation and stair effects suppression capability.
To evaluate the performance of the proposed algorithm, mul-
tiple sets of simulated images and real data are used in the
experiment. The experimental results on simulated images
can be evaluated by using objective evaluation criteria, such
as Peak Signal to Noise Ratio (PSNR) and Structural Sim-
ilarity (SSIM). The experimental results on real data can
intuitively reveal the advantages of the proposed algorithm.

A. EXPERIMENTS WITH SIMULATED IMAGE
Four images (Fig. 4) are employed in the simulation experi-
ments. Each original image is utilized to create 5 synthetic
images by image degradation model according to (1). The
degradation process includes the following steps.
• Warp images with rotation and translation. The rotation
angles are (

0◦, 3◦,−3◦, 5◦,−5◦
)
, (49)

and the translations are(
0
0

)
,

(
0
0.5

)
,

(
0.5
0

)
,

(
1
0

)
,

(
0
1

)
, (50)

pixels, respectively.
• Blur images by 3 × 3 Gaussian PSF with standard
deviation 1.

• Down-sample images with a factor of 2.
• Add independent identically distributed Gaussian noise.
Five different SNR levels (5dB, 15dB, 25dB, 35dB and
45dB) are selected for our experiments.

For the evaluation of our proposed algorithm, we compare
it with 1) bicubic interpolation, 2) the variational MFSR
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FIGURE 4. Four images that often used in MFSR experiments.
(a) butterfly, (b) cameraman, (c) lena, (d) EIAcen.

methodwith SAR prior, 3) the variationalMFSRmethodwith
TV prior, 4) the nonstationary prior combination method [42]
with the filter combination NF3, and 5) the l1 norm based
prior combination method [43] with the filter combination
NF2. The bicubic interpolation algorithm is simple and
easy to implement, but the results are relatively poor. The
MFSR method with SAR prior has robust noise suppres-
sion effects, while the MFSR method with TV prior have
strong edge preservation capabilities. The combined prior
NF3 and combined prior NF2 are the best selection in the
MFSRmethod [42] and the MFSRmethod [43], respectively,
which are denoted as NS_NF3 and NL1_NF2 to make a
distinction.

When quantifying the gain of these priors, the PSNR
and SSIM are exploited as our indicators. With different
prior information and SNR levels, the PSNR of four recon-
structed images are shown in Fig. 5, and the SSIM of four
reconstructed images are shown in Fig. 6. Both of them are
obtained by all the MFSR algorithms we need to compare
with.

FIGURE 5. Comparison of PSNR of MFSR algorithms with different image
priors for different images. (a) butterfly, (b) cameraman, (c) lena,
(d) EIAcen.

As shown in Fig. 5, the proposed DC-TV prior outperforms
other comparative methods at five different SNR levels. And
in Fig. 6, it can be observed that the proposed DC-TV prior
creates distinct advantages on both noise suppression and
edge structure preservation.

To demonstrate the performance in the case of low SNR,
the experiment results of 5dB image SNR is shown in Fig. 7.

FIGURE 6. Comparison of SSIM of MFSR algorithms with different image
priors. (a) butterfly, (b) cameraman, (c) lena, (d) EIAcen.

Obviously, both the SAR and NS_NF3 prior algorithm
performed better than the bicubic interpolation in Fig. 7,
while the TV andNL1_NF2 prior algorithm are inferior to the
bicubic interpolation. Specially, our proposed DC-TV prior
algorithm significantly outperformed the others. It indicates
that the SAR and NS_NF3 prior algorithm can effectively
suppress noise and reconstruct images when noise becomes
the main factor in image quality degradation.

FIGURE 7. Comparison of MFSR algorithms with different image priors
when the SNR is 5dB. (a) PSNR, (b) SSIM.

When the image SNR is 25dB, as shown in Fig. 8, the SAR,
TV, NS_NF3, and NL1_NF2 prior algorithms achieved sim-
ilar reconstruction effects, all of which are worse than the
bilinear interpolation. In Fig. 8, the PSNR of SAR and
NS_NF3 is worse than TV and NL1_NF2, while the SSIM
of SAR and NS_NF3 is better than that of TV and NL1_NF2.
Moreover, the performance of DC-TV prior algorithm obvi-
ously surpassed other algorithms.

When the image SNR is 45dB, as shown in Fig. 9, noise
has less influence on the image quality. In this situation, most
of the listed algorithms have achieved relatively good image
reconstruction results, except for the bilinear interpolation.
The performance of the DC-TV algorithm is still better than
other comparative algorithms. It proved that the DC-TV algo-
rithm could suppress noise without compromising the edge
preserving capability of the TV prior.
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FIGURE 8. Comparison of MFSR algorithms with different image priors
when the SNR is 25dB. (a) PSNR, (b) SSIM.

FIGURE 9. Comparison of MFSR algorithms with different image priors
when the SNR is 45dB. (a) PSNR, (b) SSIM.

B. EXPERIMENTS WITH REAL DATA
In addition to the aforementioned simulation experiments,
two sets of real image sequences have been used to verify
our proposed algorithm. These two sets were collected from
http://www.soe.ucsc.edu/ milanfar/software/sr-datasets.html
and are representative, widely used for experiments in many
papers on the MFSR algorithms.

The first set contains 35 frames of real images about word,
and the second set contains 20 ones about disk. Both of them
approximately follow the global translational motion model.
In our experiment, these two image sets were reconstructed
with a magnification of 2, with the results shown in Fig. 10
and Fig. 11.

Since there are no original HR images corresponding to
the real LR images, objective indicators such as PSNR and
SSIM cannot be used for experimental evaluation anymore.
Thus, subjective observation is employed to evaluate the
reconstruction effect based on real data.

For the word image sequence in Fig. 10, the result of
bicubic interpolation algorithm is too blurry to recognize. The
image edges of the SAR prior are smooth but blurred. And
that of the TV prior is seriously affected by the stair effects.
In contract, the NS_NF3 algorithm can effectively suppress
the stair effects in the smoothing area of the image, and the
NL1_NF2 algorithm has clear edges with less stair effects.
Moreover, the reconstructed image of our proposed algorithm
has the best visual performance with clear edges and no stair
effects.

Similarly, for the disk image sequence in Fig. 11, the recon-
structed image of bicubic interpolation algorithm is still
blurred, and the SAR prior is affected by artifacts. The results
of both the TV and NL1_NF2 prior are affected by the stair
effects. As a contrast, the NS_NF3 algorithm has the best
noise suppression effect, but over-smooths the image which
leads to the loss of edge information. As expected, the result

FIGURE 10. Comparison of reconstruction results based on an image
sequence about word. (a) the result of bicubic interpolation algorithm;
(b) the result of SAR prior; (c) the result of TV prior; (d) the result of
NS_NF3 prior; (e) the result of NL1_NF2 prior; (f) the result of our
proposed DC-TV prior algorithm.

FIGURE 11. Comparison of reconstruction results based on an image
sequence about disk. (a) the result of bicubic interpolation algorithm;
(b) the result of SAR prior; (c) the result of TV prior; (d) the result of
NS_NF3 prior; (e) the result of NL1_NF2 prior; (f) the result of the
proposed algorithm with DC-TV prior.

of our proposed algorithm has clear image edges, with less
influence of artifacts and stair effects, and the visual effect is
significantly better than other comparative algorithms.

V. CONCLUSION
In this paper, we introduced the DC prior to super-resolution.
By analyzing the sparse characteristics of the image DC
prior, this can be utilized to suppress the artifact and stair
effects during the edges recovering. Based on this superi-
ority, we proposed an MFSR algorithm by combining the
DC and TV prior. The experiments with simulated and real
images verified the effectiveness and robustness of our pro-
posed algorithm. For different SNR levels, our algorithm have
higher PSNR and SSIM values, especially in the case of low
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SNR. For real images, our proposed algorithm have the better
visual effect. In the future work, we will optimize the algo-
rithm to reduce its computational complexity, so that the DC
prior can be extended to the hyperspectral image processing
for better noise suppression.
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