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ABSTRACT To achieve the tasks provided by a user, it is necessary for robots to have a plan that fully exploits
their functionalities in an environment. The objective of this study is to realize robot task planning in real
space for effectively use of the robot’s functions The plan is formed by deriving a feasible action sequence
by interpreting the instructions within the scope of the action possibilities of the robots and the changes
in them. In this paper, we first propose an action graph as a novel environmental representation approach
to facilitate the understanding of the robot’s action possibility in real space. In the action graph, the action
possibility is represented by nodes, which describe the spatial position to perform each feasible action, and
edges, which describe the feasible actions, based on the subsystem-level affordance and the arrangement of
objects in the environment. We also propose an action-based spatio-temporal robot navigation (ASTRON),
which focuses on robot navigation tasks. ASTRON enables the robots to determine a feasible action sequence
that utilizes their functions by interpreting the instructions based on the action graph. The effectiveness of
the proposed method was evaluated through simulations and actual machine experiments in a coffee shop
environment. In the actual machine experiments, the proposed method was applied to robots with different
subsystem configurations. The experimental results demonstrated that the proposed method could plan the
feasible action sequence to complete the tasks by considering the environmental state and the subsystem
configurations of the robot.

INDEX TERMS Autonomous robots, task andmotion planning, semantic scene understanding, action graph.

I. INTRODUCTION
With the diversification of robot types in recent years,
the functions of each robot have also become more diverse.
Therefore, to complete a task set by a user, a planning
method that enables the robot to exploit most of its functions,
such as mobile bases, manipulators, and speech mechanisms,
is necessary. In conventional task planning, action sequences
for achieving instructions are planned using task representa-
tions in symbolic space, such as STRIPS and PDDL [1]–[3].
However, task planning in symbolic space has the following
two problems. First, it is difficult to consider the feasibility
of the robot’s actions in a real space as it depending on
the positional relationship between the object set and the
robot. Second, it is challenging to consider the changes in the
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environment in real space, such as changes in the arrangement
of objects due to the execution of actions by the robot and
changes in the feasibility of the robot’s actions due to these
environmental changes. Therefore, the sequence of actions
planned in symbolic space may include actions that the robot
cannot actually perform. In addition, the planning may not
consider the actions that the robot can originally perform.
In this study, we propose a method to realize task planning
in real space. The requirements for task planning in real
space are as follows. First, it is necessary to understand the
feasible actions for the robot and the change in them due to
the robot’s actions, considering the functions that the robot
has and the set of objects in the environment. Furthermore,
to incorporate the understood feasible actions in real space
into the planning problem, an environmental representation
method that describes the connections of the possible actions
is necessary.
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FIGURE 1. Overview of ASTRON.

A conventional method for representing the environment
for task planning or motion planning is the semantic map,
which describes the presence and the attributes of objects at
each point in real space [4], [5]. In addition, a 3D scene graph
describes not only the attributes of each object but also the
positional relationships between the objects [6]. In the 3D
scene graph, the environment structure is represented by a
graph in which the nodes describe the object attributes, such
as the position and the object label, and the edges describe the
positional relationships between the objects. The purpose of
these representations is to provide more accurate descriptions
of the object types and the object positions in the envi-
ronment. One approach that supplements the environment
representation with action-related information is adopting the
concept of affordance and adding information about action
associated with the objects to the object information [7].
However, the feasibility of the robot’s actions and the specific
positions of action execution, which are necessary for task
planning in real space, are not considered in this approach.
Thus, an environmental representation method, which aims
to understand the possible actions (that is, the actions that the
robot can perform in real space and the execution position
of the actions) and the changes in them caused by the action
involving state transition of the environment, is necessary.

The objective of this study is to realize a task planning
method in real space, which devises the executable action
sequence by interpreting the instructions within the action
possibilities of robots (spatial) and the changes in them (tem-
poral). To achieve this objective, we propose the following
two methods, as shown in the overview schematic in Fig. 1:
i) First, an action graph is proposed as an environmental rep-
resentation that describes the connection of feasible actions
for the robot in real space. ii) As a design example of task
planning in real space based on the action graph, an action-
based spatio-temporal robot navigation (ASTRON) method
is proposed, which focuses on robot navigation task. The
center of Fig. 1 shows the action graph. The action graph is an

environmental representation that describes the action possi-
bility of the robot and the change in them by the connections
between actions based on the environmental state, such as
the properties and the arrangement of the objects recognized
by the robot. The connections between feasible actions are
represented by the action graph. In this graph, the nodes
describe the specific positions at which the actions are to
be performed, and the edges describe the feasible actions,
such as movement (orange edges), speech (blue edges), and
manipulation (green edges). To effectively use the robot’s
functions, the types of feasible robotic actions in real space
and their execution positions are represented in a graph called
the action possibility graph, based on the subsystem-level
affordances that consider the subsystem configuration of
the robot and the environmental state. Examples of speech
actions with a robot’s speech mechanism include asking a
person to move from a location or to remove a movable
object. In addition, an example of a manipulation action is
removing a movable object from its location with the robot’s
manipulation mechanism. The specific execution positions
of the feasible actions are determined by considering the
position’s reachability based on the arrangement of the object
set and the distance of the robot from an object suitable
for performing an action given as prior knowledge. The
action graph is a multi-layered graph consisting of action
possibility graphs before and after the state transition of the
environment to describe changes in action possibilities due
to actions involving the state transition, such as speech and
manipulation. The actions involving the state transition of the
environment are described by the edges which connect the
action possibility graphs in the action graph (vertical blue or
green edges). In action graph-based task planning, a feasible
action sequence to accomplish a navigation task is planned
within the actions feasible for the robot in the environment
based on the action graph. Specifically, Dijkstra’s method
is applied to the constructed action graph, as shown on the
right side of Fig. 1, to obtain the action sequence to attain the
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target position. In planning, the action sequence is determined
after obtaining the action sequences following each strategy,
that is, each possible state transition of the environment
caused by the robot to achieve the instruction. In the example
in Figure 1, three strategies are derived: strategy 1, which
involves movement without any environmental change; strat-
egy 2, which involves removing the chair; and strategy 3,
which involves asking people. The candidates include strate-
gies that may seem to go a long way around, at first sight,
depending on the situation. Therefore, for example, action
sequences in which a robot, instead of approaching the goal
directly, approaches a person in a direction different from
the goal, and requests for help in reaching the goal, can be
performed.

This study makes the following contributions: i) Under-
standing the connections of feasible actions in the environ-
ment is realized with the action graph, where the nodes
describe the positions at which the robot can perform each
feasible action, and the edges describe the feasible actions
based on the subsystem-level affordance and the arrangement
of objects in the environment. This enables the planning of the
feasible action sequences which makes the robots effective
use of their capabilities. ii) The simultaneous representation
of the action possibility and the changes in it caused by
the robot action is realized using an action graph that has
a multi-layer construction. This allows the representation of
various actions in the action graph and the understanding of
the action sequences following candidate strategies to achieve
the instructions. The effectiveness of the proposed method
was evaluated through simulations and actual machine exper-
iments in a coffee shop environment.

II. RELATED WORK
A. TASK PLANNING AND MOTION PLANNING
Our work is related to task planning and motion planning
methods that consider the feasibility of the action in real
space. One of the conventional approaches is the task and
motion planning (TAMP) method which combines task plan-
ning in symbolic space and motion planning in the con-
figuration space [8]–[10]. The other approach is navigation
among movable obstacles (NAMO), which is a navigation
method that considers not only avoiding obstacles but also
interaction with movable obstacles [11], [12]. The feasibility
of actions in real space is verified using these methods based
on the following two procedures. First, the path to the goal of
each action is calculated for an environment, excluding the
movable objects through a motion planning method. Then,
the intersections of the calculated path with the excluded
movable objects are verified. If they are intersected, it is
difficult to achieve the verified action, and the interference
with the intersecting object is the required action (require-
ments) for the verified action. In the motion planningmethod,
the path is calculated to directly lead to the goal. Therefore,
it is difficult to determine the action sequence that may be
seen to go a long way around at first sight, with an approach

to realize the action feasibility and the requirements for the
action based on motion planning.

In contrast, in the proposed method, the action possibilities
of the robot in real space can be understood by constructing an
action graph based on the set of objects identified by the robot
and the robot’s subsystem configuration. In addition, in the
task planning based on the constructed action graph, it is
possible to plan an action sequence for each selectable state
transition of the environment to reach the goal. This enables
the robot to grasp selectable strategies in the environment,
including those that do not directly approach the goal and to
select an appropriate strategy.

B. ENVIRONMENTAL REPRESENTATION METHOD
Our work is also related to the methods of environmental
representation. One of the classic environmental representa-
tions is the occupancy map obtained using the simultaneous
localization and mapping (SLAM) method [13]. The occu-
pancy map describes the presence of objects at each point in
real space. The environmental map, which describes object
attributes such as object labels as well as the presence of
objects, is called the semantic map [4], [5]. Additionally, a 3D
scene graph, which describes not only the attributes of each
object but also the positional relationship between the objects,
was proposed [6]. These environmental maps are intended to
provide more accurate descriptions of objects in the environ-
ment. The data from the environmental representations have
been applied to traditional task planning methods in symbolic
space.

Environmental representations that describe both the data
related to the object and to the action in the environment have
been proposed. Action maps have been proposed as envi-
ronment representations focusing on actions, which embed
the action possibility in real space based on the history of
human activities [14], [15]. In addition, another approach is
to apply an object classification method based on the concept
of affordance to associate the actions with objects [16], [17].

Additionally, to utilize environmental representations for
motion planning methods in real space, representations, that
describe not only information related to individual actions but
also the connection of actions, particularlymovement actions,
are proposed. The occupancy map [13] and the topological
map [18], [19] describe the connections between sources and
destinations using a graph as possible movement actions in
the environment based on the robot’s traversability. In the
multi-layer environmental affordance map, the connections
between movement actions considering human activities are
reflected in the occupancymap based on the traversability and
the concept of the space inferred from the object set [20].

In contrast, in the proposed action graph, it is possible
to represent changes in the action possibility due to actions
involving the state transition of the environment by adopting
a multi-layered graph representation. This allows represent-
ing the connections between the multiple types of feasible
actions, including movement and actions involving state tran-
sition of the environment, such as speech and manipulation.
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FIGURE 2. Action graph constructing pipeline.

FIGURE 3. Construction of action possibility graph for movement.

III. ACTION GRAPH
A. OVERVIEW
The action graph Ga represents the action possibility (i.e. the
actions that the robot can performs, the objects on which
the actions are performed, and the position in real space
where the actions are performed) and the changes in it by the
connection of actions based on a recognized environmental
state O0.
The environmental state O0 = {o1, o2, . . . , oN o} consists

of a set of N o objects. Examples of objects in this study are
people, chairs, and tables. The object o has the following
information:

• lo: Label of the object
• po: Position of the object in a two-dimensional absolute
coordinate system

• θo: Direction of the object in a two-dimensional absolute
coordinate system

• so: Shape data of the object consisting of geometric
primitives such as square or circle and size. People are
represented by circles, and chairs or tables are repre-
sented by squares.

The action graph Ga defines a pair of sets Ga = (N ,E)
where N and E denote the set of nodes and edges, respec-
tively. The nodes, n, represent the positions where the robot
can perform actions in real space. The information contained
in each of the nodes n is as follows.
• pa: Position at which to perform the action in a
two-dimensional absolute coordinate system

In addition, actions a are assigned to the edges e. In other
words, a transition between the nodes implies performing set
action a. The information in each of the edges e is as follows.
• a: Action to be performed
• ca: Cost of executing the action

Action a contains the action label, the target object data,
the influenced object data, and other attributes necessary to
perform the action. The specific attributes of action a are
described in section III-C.

The action graph Ga consists of multiple action possibility
graphs. The action possibility graph describes feasible actions
for the robot and the position at which the actions are per-
formed based on the environmental state and the subsystem
configuration of the robot. The positions at which the feasible
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actions are performed are represented by the nodes of the
action possibility graph. The edges of the action possibility
graph represent feasible movement actions in which the robot
moves in real space. In addition, the feasible action involv-
ing the state transition of the environment is represented
by the edges connecting a prior action possibility graph
Ga0 with a posterior one Ga1 to the state transition because
the action possibility is changed owing to the state transi-
tion. By constructing an action graph with these multiple
action possibility graphs, it is possible to clearly describe the
action to be performed and the change in the corresponding
action possibility. If the prior action possibility graph to
the state transition of the environment Ga0 does not contain
any actions involving the state transition of the environment,
the action graphGa is equal to the action possibility graphGa0,
as follows:

Ga0 = Ga. (1)

However, if the prior action possibility graph Ga0 contains
actions involving the state transition of the environment,
the action graphGa contains the prior action possibility graph
Ga0 and the posterior action possibility graphs G

a
1,1∼NO

1
to the

state transition.

Ga0,G
a
1,1, . . . ,G

a
1,NO

1
∈ Ga, (2)

where NO
1 is the number of possible environment states

caused by the actions of the robot from the prior environment
state O0.

The design concept for the automatic construction of the
action graph is shown in Fig. 2.
1) Constructing the action possibility graphGm for under-

standing where the robot can reach in the environment
(section III-B)

2) Associating actions with objects in the environ-
ment based on the subsystem-based affordance
(section III-C)

3) Constructing action possibility graph Ga0 to repre-
sent the possibility of actions other than movement
(section III-D)
a) Selecting positions to perform the actions asso-

ciated with the objects among from the robot’s
reachable positions (section III-D1)

b) Adding the nodes and edges related to the asso-
ciated actions to the graph Gm based on the
action property and the selected reachable posi-
tions (section III-D2)

4) Representing actions involving state transition of envi-
ronment (section III-E)
a) Constructing posterior action possibility graphs

to actions involving the state transition of the
environment Ga

1,1∼NO
1
(section III-E2)

b) Constructing action graph Ga by connecting the
prior action graph Ga0 and the prior action graphs
Ga
1,1∼NO

1
(section III-E3)

The details of these processes are described below.

B. CONSTRUCTION OF ACTION POSSIBILITY GRAPH FOR
MOVEMENT
To sparsely represent where the robot can reach, the action
possibility graph for movement Gm is constructed by con-
sidering the arrangement and size of the recognized objects
in the environment. To understand the movement actions
feasible for the robot, we constructed this graph in a two-
dimensional space. The graph construction process is detailed
below using the example environment shown in Fig. 3a.

1) GENERATION OF GENERALIZED VORONOI DIAGRAM
First, the footprint of the objects in the environment, includ-
ing the wall, is expressed as a set of points in a two-
dimensional space. Then, the generalized Voronoi diagram is
generated by setting the base points of the diagram equal to
the points of the object, as shown in Fig. 3b.

2) EXTRACTING VALID NODES CONSIDERING OBJECTS
Because the generalized Voronoi diagram contains
untraversable edges and nodes unreachable by the robot,
the invalid nodes and edges are deleted by considering the
robot’s footprint, as shown in Fig. 3c.

3) SIMPLIFYING GRAPH FOR EFFICIENT EXPRESSION
The graph is simplified to express where the robot can reach
efficiently, as shown in Fig. 3d. The two connected nodes,
which have only two edges, are integrated into one node.
Then, the integration is adopted only if the new edge is
not close to objects. By performing this integration process
repeatedly, the number of nodes is reduced.

4) APPLYING SHORTCUT BASED ON DELAUNAY
TRIANGULATION
To improve the navigation efficiency, the connectable nodes
to each other are connected by the edge. The connectivity
is checked based on the intersection of the objects with the
edge candidates obtained by applying Delaunay triangulation
to the nodes.
Finally, the obtained action possibility graph for movement

Gm is as shown in Fig. 3e. Because the edges of the action
possibility graph for movement Gm represent the movement
action, movement is assigned to the action label la, and the
costs of actions ca are calculated based on the evaluation
index of the task planning and the length of the edges.

C. ASSOCIATION OF ACTION WITH OBJECT
The action provided between the robot and the objects
depends on the configuration of the robot subsystem. In addi-
tion, the action depends on not only the properties of each
object but also the objects around it. Therefore, the actions are
associated with the object set based on the subsystem-level
affordance, which is defined as the affordance considering
the robot’s subsystem configuration. In this study, we assume
that robots can acquire prior knowledge about the affordances
and actions, as shown in Tables 1 and 2 with the development
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FIGURE 4. Construction of action possibility graph.

TABLE 1. Prior knowledge of subsystem-level affordance.

of the affordance classification methods [16], [17] and the
action understanding methods [21], [22], Then, the actions
are associated with the recognized object sets based on the
prior knowledge and the robot’s subsystem configuration.

The action labels la are associated with the recognized
object sets, considering the combination of an object set
and a subsystem of the robot based on Table 1. In this
study, the assumed types of subsystems are mobile base,
speaker, and manipulator. Examples of action labels la

include movement , speech1 in which the robot asks a person
to let it to move through, speech2 in which the robot asks
a person to remove a chair, and manipulation in which the
robot removes a chair. The details of the subsystem-level
affordance are described as follows: The speech1 action,
which requires a speaker, is associated with a single person,
and the manipulation action, which requires a manipulator,
is associated with a single chair. Then, focusing on the object
sets, no action label is associated with the person sitting on
the chair, and the speech2 action, which requires a speaker,
is associated with a person near a chair. Specifically, speech2
is assigned if the distance between a person and a chair is
within a specific affordance range rspeech2,
The action properties corresponding to the action labels are

shown in Table 2. The properties of the action correspond to
action a embedded in the edges of the action graph Ga.
Each property of the action is described below.
• la: Label of the action
• oat : Target object that the robot acts on
• da: Appropriate distance from the target object required
to perform the action
This is essential information for placing the symbolic
actions in real space.

TABLE 2. Prior knowledge of action.

• oae : Influenced object as a result of the robot’s actions
If the target object and the influenced object are the
same, then the influenced object becomes itself . In addi-
tion, in the case of speech2, the influenced object
becomes chair .

• ea: Effect of the action on the influenced object
In this study, an example of the effect is removed .
removed implies that the influenced object will be
removed, and its location will be movable.

The prior knowledge of affordances and actions shown
in Tables 1 and 2 is a design example that can be extended.

D. CONSTRUCTION OF ACTION POSSIBILITY GRAPH
The execution positions of general action, including not only
the movement action but also the actions associated with
objects, are represented in an action possibility graph Ga0.
The requirements to ensure that a position is suitable for
performing the action are the reachability to the position and
from the position to the target object oat based on the robot’s
footprint and the surrounding obstacles, and an appropriate
distance to the target object oat .
The action possibility graph Ga0 is constructed by adding

nodes and edges related to every action associated with the
objects to the action possibility graph formovementGm based
on the following procedure shown in Fig. 4.

1) SELECTING REACHABLE NODES
The reachable nodes nr , whose position is reachable to
the target object of action oat , are selected from the
nodes of Gm.
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First, the Delaunay triangulation is applied to the points
that include the nodes ofGm and the position corresponding to
the target object po, as shown in Fig. 4b. Next, the approach-
able nodes nr are selected, as shown in Fig. 4c. The candidates
of nr are the nodes that are connected to the position of the
target object po in the result of the Delaunay triangulation.
Then, nr are adopted among the candidates by checking the
reachability, whether the edges related to the candidate inter-
sect with the surrounding obstacles considering the robot’s
footprint, as shown in Fig. 4c.

2) ADDITION OF NODES CORRESPONDING TO POSITIONS
FEASIBLE FOR ACTION
To facilitate action execution, the positions to execute the
action pa are set based on the selected reachable nodes and
the appropriate distance from the target object da, which is
one of the action properties given as the prior knowledge.
In addition, the action possibility graph Ga0 is constructed by
adding nodes na and edges related to pa to Gm.
First, the candidates for the position for the action pa are

set to the required distance da from the position of the target
object po and, on a straight line connecting the target object po

and the position of the selected reachable nodes pr , as shown
in Fig. 4d and follows:

pa = po + da
pr − po

‖pr − po‖
, (3)

Then, pa are adopted among the candidates by checking the
reachability, whether the robot can reach from the candidate’s
position to the target object po considering the surrounding
obstacles and the robot’s footprint, as shown in Fig. 4d.
Finally, the action possibility graph Ga0 is constructed by
adding na and the edges that connect na with nr to Gm,
as shown in Fig. 4e. The action labels la of all edges in the
action possibility graph Ga0 are set to movement . The cost of
the edges ca is calculated based on the length of the edges and
the evaluation index of the cost.

E. REPRESENTATION OF ACTIONS INVOLVING STATE
TRANSITION OF ENVIRONMENT
The feasible actions for the robot vary after the execution
of the action involving the state transition of the environ-
ment, such as the change in the object placement. Therefore,
the actions involving the state transition of the environment
are represented by directed edges, which connect the action
possibility graphs before and after the state transition.

First, the possible state transitions of the environment are
understood based on the properties of the actions associated
with objects. Then, the posterior action possibility graphs
after the recognized possible state transition Ga

1,1∼NO
1

are

constructed. NO
1 is the number of possible environmental

states in a single transition from the initial environment state
O0. Finally, the action graph is constructed by connecting
the prior possibility graph Ga0 and each posterior possibility
graphGa

1,1∼NO
1
with edges representing the actions that cause

the state transition. These procedures represent not only the
movement action but also actions involving the state transition
of the environment, which are associated with the objects in
the environment based on the subsystem configuration and
prior knowledge, as a graph in the robot configuration space.

The expression method of actions involving the state tran-
sition is described below in detail.

1) UNDERSTANDING POSSIBLE ENVIRONMENTAL STATE
All possible environment states O1,1∼NO1 in a single tran-
sition from the initial environment state O0 are captured.
Specifically, the possible states O1,1∼NO1 are captured as
combinations of the influenced object oae and effect ea

based on the actions a associated with the objects and
the action property given as prior knowledge, as shown
in Table 2.

2) CONSTRUCTION OF ACTION POSSIBILITY GRAPH AFTER
ACTIONS INVOLVING STATE TRANSITION OF ENVIRONMENT
The posterior action possibility graphs Ga

1,1∼NO1
are con-

structed for each recognized possible state transition of the
environment, which is the combination of the influenced
object oae and effect ea. It is assumed that the action effect
ea based on prior knowledge has no uncertainty in the graph
construction.

In general, the posterior action possibility graph Ga1,n is
constructed by adding and deleting relevant nodes and edges
from the prior action possibility graph Ga0 based on the initial
environment state O0, the influenced object oae , and the effect
ea. We describe a simpler approach to construct a posterior
action possibility graph Ga1,n for removed as an example of
action effects ea. remove means that the influenced object oae
is removed, and the object’s position is traversable. Therefore,
to demonstrate that the position of the influenced object oae
has become traversable, the posterior action possibility graph
Ga1,n is constructed by adding the node and edges to the prior
action possibility graph Ga0.
First, a new node is added to the position of the influenced

object oae in the prior action possibility graph G
a
0. In addition,

to identify the nodes reachable to the new node for the robot,
we applied Delaunay triangulation to the nodes in the prior
action possibility graph Ga0 and the new node, as shown
in Fig. 5b. The candidates of the reachable nodes are the nodes
connected to the position of the influenced object oae in the
result of Delaunay triangulation. Then, the reachable nodes
are selected from the candidates by checking the reachability,
whether the robot can reach from the candidate’s position to
the new node’s position considering the surrounding obsta-
cles considering the robot’s footprint, as shown in Fig. 5c.
Finally, the posterior action possibility graphGa1,n is obtained
by connecting the new nodes to the selected reachable nodes
with new edges, as shown in Fig. 5d. The action label of the
added edges la is set tomovement . In addition, the cost of the
added edges ca is calculated based on the length of the edges
and the evaluation index of the cost.
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FIGURE 5. Construction of action possibility graph after state transition of environment and Representation of actions involving state transition.

FIGURE 6. Task planning based on action graph.

The posterior action possibility graphs Ga
1,1∼NO1

are con-
structed by applying the above procedures for each combina-
tion of the influenced object oae and effect ea.

3) CONNECTING ACTION POSSIBILITY GRAPH BEFORE AND
AFTER THE STATE TRANSITION
The action graph Ga is constructed by connecting the prior
action possibility graph Ga0 and the posterior action possibil-
ity graphs Ga

1,1∼NO1
with the edges. Specifically, the nodes

related to the action causing the state transition of the envi-
ronment in the prior and posterior action possibility graphs
are connected to each other by directed edges, as shown
in Fig. 5e. These edges represent the actions involving the
state transitions of the environment and are set with the
attributes and costs of the actions. Also, the costs are calcu-
lated based on the action content and evaluation index.

IV. ACTION-BASED SPATIO-TEMPRAL ROBOT
NAVIGATION
A. OVERVIEW
Action-based spatio-tempral robot navigation (ASTRON) is
a task planning method in real space for the navigation tasks.
The navigation tasks are instructed with a pair of positions
corresponding to the start and the goal in a two-dimensional
absolute coordinate system.

In ASTRON, the action sequence that effectively utilizes
the robot’s functions is derived by interpreting the task within
the scope of the action possibility based on the action graph.
The flowchart of ASTRON is as shown in Fig. 1. The system
operates through the process of environmental recognition,
task planning, and action execution. In this study, we focus on
the task planning, which consists of problem representation,
setting, and planning, and the proposed components corre-
sponds to the problem representation and setting. First, for the
representation focusing on the action possibility of the robot,
the action graph is automatically constructed by the proce-
dure described in section III. Then, the action sequence to
reach the goal from the start is derived by applying Dijkstra’s
method to the constructed action graph. The obtained action
sequence contains the necessary information to execute in
real space because it consists of the positions (nodes) and the
contents (edges) of the feasible actions based on the action
graph.

The details of the task planning based on the action graph
are described below.

B. APPLYING ACTION GRAPH TO TASK PLANNING FOR
ROBOT NAVIGATION
1) SETTING
It is necessary to determine the start and goal nodes corre-
sponding to the instructed start and goal positions to apply
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TABLE 3. Verification contents.

FIGURE 7. Example of action sequence (Strategy 3).

the action graph to task planning. Because the action graph
consists of prior and posterior action possibility graphs to the
state transition of the environment caused by the action, there
are multiple nodes in the action graph that indicate the same
position. However, the strategy, or the necessary action, for
the robot to the position is different in the nodes. Therefore,
the start node is set to the node nearest to the initial robot’s
position in the prior action possibility graph Ga0, in the task
planning based on the action graph. In addition, the goal
nodes are set to the nodes nearest to the goal position in the
prior and posterior action possibility graphs Ga1.
For example, in the environment as shown in section III,

the goal nodes are set to three nodes, as shown in Fig. 6:
The first one is in the prior action possibility graph Ga0,
which corresponds to the strategy to reach the goal with
only the movement action. The second one is in the first
posterior action possibility graph Ga1,1, which corresponds to
the strategy of interfering with the chair by the movement
action and the manipulation action. The third is in the second
posterior action possibility graph Ga1,2, which corresponds to
the strategy of talking to a person with the movement action
and the speech action.

2) PLANNING
Then, the optimal action sequence A to reach the goal from
the start is derived by applying an optimization algorithm to

FIGURE 8. Experimental environments.

the action graph. In this study, Dijkstra’s method is adopted as
an example of fundamental algorithms for finding the shortest
paths between nodes in a graph, and other methods can also
be applied. First, Dijkstra’s method is applied to the pairs
of start and goal nodes for every strategy that the robot can
choose. Then, the action sequences with the least cost of each
strategy are obtained as shown in Fig. 6. Finally, the action
sequence with the least cost among the obtained action
sequences is selected as the optimal one A. The cost function
of the actions can be designed based on the movement dis-
tance, required time, energy consumption, etc. In this study,
the cost is calculated based on the movement distance as an
example.

The action sequence A derived in the example problem
shown in Fig. 6 is shown in Fig. 7.

V. EXPERIMENT
A. OVERVIEW
The verification contents are presented in Table 3. In Exp. 1,
we conducted an ablation study with simulations to verify the
understanding of the robot’s action possibility considering
both subsystem-level affordance and geometric reasoning.
In Exp. 2, we verified that an action graph with multi-layered
action possibility graphs can represent a wide variety of
actions and can capture the available strategies through an
ablation study with simulations. In Exp. 3, we conducted
actual machine experiments on several robots with different
subsystem configurations to verify that the proposed method
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TABLE 4. Robot list.

FIGURE 9. System configuration of ASTRON.

could plan feasible action sequences that could effectively use
the functions of the robot.

B. EXPERIMENTAL SETTING
1) ENVIRONMENT
The simulations and the actual machine experiments were
conducted in environments simulating a coffee shop,
as shown in Fig. 8. We assumed that the robot and the staff
cooperate with each another in the shop, and the standing
people represent the shop’s staff who cooperate with the
robot.

2) ROBOT
These experiments were conducted on four different sub-
system configurations with three different robots, as shown
in Table 4. Robot 1 is a mobile robot called P-3DX [23], with
a mobile base as its available subsystem. Robot 2 is a mobile
communication robot called Pepper [24], with a mobile base
with built-in and a speaker as its available subsystems. Robot
3 is a mobile manipulator called HSR [25], which has a
mobile base, a speaker, and a manipulator. Robot 4 is also
the HSR, which grasps an object using the manipulator and
can perform the speech2 action instead of the manipulation
action. As for the sensors, all robots are equipped with laser
range finders, and a camera is available for Robot 3.

3) SYSTEM CONFIGURATION
The system configuration is a design example of a robot
navigation system based on ASTRON as shown in Fig. 9.
In addition, the specific values of the parameters are shown

TABLE 5. System parameters.

in Table 5. The robots recognized objects in the environment
based on the action graph and the action sequence planned
based on the graph, and the obstacles using the mounted laser
range finder. It was assumed that the environmental state
did not change significantly during the short period of the
navigation task.

In the offline process, the system first obtains the environ-
mental state O0 based on a pre-constructed semantic map.
The class, position, and size of the objects in the environ-
ment are obtained by using an environmental sensing system,
which estimates by applying the object instance segmen-
tation algorithm [26] to images from 12 RGB-D cameras
[27]. Then, the action graph Ga is constructed based on the
obtained environmental state O0, the prior knowledge shown
in Tables 1 and 2, and the parameters shown in Table 5. The
environmental sensing system was used for more effective
verification rather than for the construction of the action
graph. Finally, the action sequence A is obtained through task
planning based on the action graph. The evaluation index of
action cost ca is the distance travelled by the robot. Therefore,
the cost is set considering the necessary distance to execute
the action, as shown in Table 5, and as follows

ca =


‖pa+1 − pa‖ (a = movement)
0.3 (a = speech1, 2)
0.3 (a = manipulation)

 , (4)

where pa and pa+1 are the starting position and the ending
position of the movement action, individually. Specifically,
the movement cost is the edge length, and the cost of the
speech1, 2 actions and the manipulation action are set con-
sidering that these actions involve only a slight movement

In the online process, the robot performs actions on
the obtained action sequences. Each action ai is processed
depending on the action label lai and is executed; here, i is
the action index of the action sequences. The robot’s velocity
in the movement action was calculated based on the fuzzy
potential method, which enabled the integrated consideration
of unknown obstacles observed using the laser range sensor
and the position of the next node [28]. In the manipulation
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TABLE 6. Result of Scenario 1.1 in Exp. 1.

action, the robot planned and followed the motion to move
towards the table based on the camera sensing of the AR
marker installed on the chair.

C. EXPERIMENT 1: VERIFICATION OF ACTION
POSSIBILITY GRAPH
1) EXPERIMENTAL CONDITIONS
In Exp. 1, we conduct verification under two scenarios in
which the environment is Env. 1 contains various object
placements, and the robots are Robot 3 and 4 which have dif-
ferent subsystem configurations, as shown in Table 3, Exp. 1.

2) RESULT
The result is shown in Tables 6 and 7. The figure of Com.
1.1 in Tables 6 and 7 shows the action possibility graph for
movement Gm obtained by applying the geometric reasoning
described in section III-B. The orange nodes and edges are
related to the movement action.
The figures of Com. 1.2 in Tables 6 and 7 show the result of

the action association with each object based on the environ-
mental state O0 according to the subsystem-level affordance.
In Scenario 1.1, the speech1 action or themanipulation action
are associated with objects because the assumed robot is
Robot 3. Meanwhile, the speech1, 2 actions are associated
with the objects in Scenario 1.2, where the target robot is
Robot 4. In particular, the area marked A in the figure shows
the features of the action associations based on the positional
relationships between the objects. Specifically, the actions
are not associated with people sitting on the chairs. In addi-
tion, when the speech2 action is feasible, the speech2 action
is associated with pairs of a person and a chair within a
certain distance, but not to the chairs outside the range.
Thus, we confirmed that the actions could be associated with
objects according to the robot’s subsystem configuration and
the arrangement of the object set for task planning in real
space.

The figures of Pro. in Tables 6 and 7 show the construction
result of the action possibility graph Ga considering both

the geometric reasoning and the action association described
above. Additionally, the blue and green nodes indicate the
execution positions of the speech1 and manipulation actions,
respectively, in Scenario 1.1. In Scenario 1.2, the blue nodes
indicate the execution positions of the speech1, 2 actions.
In particular, the areas marked B and C in the figure show
the features of the action possibility understanding based on
both geometric reasoning and action association. In the areas
marked B, the objects are associated with actions, but the
nodes for action positions are not set because it was found
based on the geometric reasoning described in section III-D1
that the robot could not reach there. Additionally, there are no
nodes around the objects associated with the actions because
the geometric reasoning described in section III-D2 revealed
that the robot could not maintain an appropriate distance
from the object for the action. Thus, we confirmed that the
execution position of feasible actions in real space could
be realized by constructing an action possibility graph that
considers both geometric reasoning and action association.

D. EXPERIMENT 2: VERIFICATION OF ACTION GRAPH
STRUCTURE
1) EXPERIMENTAL CONDITIONS
In this experiment, the assumed environment was Env. 1,
and the assumed robot was Robot 4, as with Scenario 1.2 in
Exp. 1. The action possibility graph for movement Gm and
the result of the action association were the same as those of
Com. 1.1 and Com. 1.2 in Table 7.
Action graphs were constructed based on the two compar-

isons and the proposed graph representation methods. Then,
the action sequences based on each action graph were com-
pared. The conditions of the graph representationmethods are
shown in Table 8. The comparison method 2.1 represents the
action possibility in the current environment as well as the
methods to understand the objects to be removed in real space
[8], [12]. In this method, the movable object positions were
traversable, and the cost of removing the object was added
when the robot passes through the position. The comparison
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TABLE 7. Result of Scenario 1.2 in Exp. 1.

TABLE 8. Condition of graph representation methods in Exp. 2.

FIGURE 10. Result of Com.2.1 in Exp. 2.

method 2.2 represents the change of the action possibility
caused by actions, that is, the posterior action possibility. The
positions that the robot can make traversable by its actions
were set as passable, and the cost of the actions was added to
themovement cost of the edges connected to nodes for actions
other than the movement action.

2) RESULT
The results are shown in Fig. 10-13. Fig. 10a shows the
obtained graph based on the method Com. 2.1, which repre-
sents the action possibility for the current state of the environ-
ment, that is, the prior action possibility. The action sequence
obtained by applying Dijkstra’s method to the obtained graph
is shown in Fig. 10b. The plan enables the robot to ask the
person blocking its way to let the robot through and move
toward the goal.

The graph shown in Fig. 11a is obtained based on the
method Com. 2.2, which represents the action possibility for
the environment state after the transition, that is, the posterior

FIGURE 11. Result of Com.2.2 in Exp. 2.

action possibility. In addition, the obtained action sequence
based on the graph is shown in Fig. 11b. The obtained
sequence implies that the robot passes through the position of
the chair associatedwith the speech2 and approaches the goal.
However, because the graph does not specify what action
causes the state transition of the environment, the obtained
sequence does not include asking the person to remove the
chair, and thus is not feasible for the robot.

The obtained action graph based on the proposed method
that represents the prior and posterior action possibility
graphs to the state transition of the environment is shown
in Fig. 12a. The planning result based on the obtained
action graph is shown in Fig. 13. Four selectable strategies
are obtained because there are four possible environments,
including no state transitions. No action sequence is obtained
for strategy 1 in which the robot makes no state transition,
and strategy 3, in which the robot asks the person at (0.2, 1.5)
to let through, as shown in Fig. 12d. The obtained sequence
for strategy 2 makes the robot to first approach the person at
(0.2, 1.5), perform the speech2 action in order to ask him to
remove the chair at (2.0, 1.4), and then pass through the chair
space. The obtained sequence for strategy 4 is the same as
that based on Com. 2.1.

The costs of action sequences obtained based on each
method are summarized in Table 9. The action sequence
with the least cost is that obtained based on Com 2.2, but
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FIGURE 12. Action graph constructed based on proposed method in Exp. 2.

FIGURE 13. Planning result based on action graph based on proposed method in Exp. 2.

TABLE 9. Cost of planned action sequence in Exp. 2.

FIGURE 14. Result of Scenario 3.1 in Exp. 3.

it is infeasible. Based on the proposed method, the action
sequence for strategy 2 has the least cost in the executable
action sequences. This solution is an action sequence that
includes the speech2 action that is difficult to represent in
Com 2.1.

Thus, we confirmed that for more diverse actions, it is
necessary for action graphs to clearly describe the action
possibilities and the changes in them caused by the action,
and the multi-layered action possibility graphs can accurately
represent the available strategies.

FIGURE 15. Result of Scenario 3.2 in Exp. 3.

E. EXPERIMENT 3: ACTUAL MACHINE EXPERIMENT
1) EXPERIMENTAL CONDITIONS
In this experiment, we conducted experiments in which the
actual robot works following the planned action sequence
from the start to the goal using the system Fig. 9.
The conditions of each scenario are shown in Table 3,
Exp. 3. In Scenario 3.1-3.3, Env. 3 and three types of
robots, Robot 1-3 with different subsystem configura-
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FIGURE 16. Result of Scenario 3.3 in Exp. 3.

tions were targeted. Also, Robot 4 worked in Env. 4 for
Scenario 3.4.

2) RESULTS
The results of Scenario 3.1-3.3 are shown in Figs. 14-16.
The results of the action association are shown in
Figs. 14a, 15a and 16a. It was confirmed that different
actions were associated with objects depending on the
subsystem configuration of each robot, even in the same
environment. The action graph and the planning result for
each scenario are shown in Figs. 14b, 15b and 16b. The
action sequences for the selectable strategies are shown in
Figs. 15c, 15d and 16c to 16h.

In Scenario 3.1, the planned action sequence was to
approach the goal by avoiding all the objects as obstacles
because the mobile robot has only the mobile base, as shown
in Fig. 14a and 14b. The strategy corresponded to strategy 1 in
Scenario 3.1 and 3.2. On the other hand, because the target
robot also had a speaker in Scenario 3.2, the selectable strat-
egy included not only the strategy to avoid all the objects but
also to ask a person to let through, as shown in Figs. 15a-15d.
Furthermore, in Scenario 3.3, where the robot had a speaker
and a manipulator, an action graph in which the speech1 and
themanipulation actions are associated with objects was con-
structed, as shown in Figs. 15a-15d. The selectable strategies
were six strategies consisting of a strategy to avoid all the
objects, to ask a person, and to remove each of the four mov-
able chairs. The costs of the action sequences for the strate-
gies derived in Scenario 3.1-3.3 are summarized in Table 10.

TABLE 10. Cost of the action sequences for each strategies in Scenario
3.1 to 3.3 of Exp. 3.

Note here that the environmental states are slightly different
in each scenario because of the observation noise of the envi-
ronmental sensing system. Figs. 14c, 15e and 16i show the
actual robot’s performance in real space following the least
cost action sequence among the possible choices for each
scenario. In Scenario 3.1, the robot reached the goal without
contact with any objects. In addition, the robot went to speak
to the person blocking the way, asked him to give way, and
then reached the goal in Scenario 3.2. Further, in Scenario
3.3, the robot approached the chair, removed the chair by
itself with the manipulator, and reached the destination. The
above results show that the proposed method can obtain a
feasible action sequence that can effectively utilize the robot’s
subsystems among the available strategies, depending on its
subsystem configuration.

The results of Scene 3.4 are shown in Fig. 17. The
speech1, 2 actions were associated based on the positional
relation between a person and a chair in the action association
as shown in Fig. 17a. The derived strategies included the
strategy to ask a person with the speech1, 2 actions as shown
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FIGURE 17. Result of Scenario 3.4 in Exp. 3.

TABLE 11. Cost of planned action sequences in Scenario 3.4 of Exp. 3.

in Fig. 17b-17d. The costs of the action sequences for each
strategy are summarized in Table 11. No action sequence was
obtained for strategy 1 to avoid all objects and strategy 4 to
ask a person to let through because the robot could not reach
the goal. The result of the action sequence for strategy 2, for
which the cost was least, is shown in Fig. 17e. Following the
action sequence, the robot actively approached the person,
requested him to remove the chair, and then passed through
it to reach the destination. The results of this scenario show
that the planned sequence is feasible in real space, as it can
represent actionswhere the target object oat and the influenced
object oae do not match.

In addition, the position to speak to a person was deter-
mined tomake the distance traveled the shortest amongwhere
the robot could speak to a person by considering the move-
ment after speaking, as shown in Fig. 17c. This is another
feature of task planning in real space where object placement
can be considered.

VI. CONCLUSION
The planner to exploit the functions that each robot has to
the fullest is necessary to achieve the task provided by a user.
The objective of this study was to enable the robot to derive
a feasible action sequence for effective use of the functions
by interpreting the instruction within the action possibility of
the robot in real space and the change in it.

In this study, an action graph was first proposed as a novel
environmental representation to facilitate the understanding
of the robot’s action possibility in real space. The action graph
represents the robot’s action possibility and the change in

it according to both the subsystem-level affordance and the
geometric reasoning related to the robot and the object set in
the environment, where the edge and the nodes represent the
action executions their specific positions, respectively. Then,
an action-based spatio-temporal robot navigation (ASTRON)
was proposed, which is a task planning method in real space
that focuses on robot navigation. ASTRON enabled the robot
to obtain the action sequence to reach a goal with more
effective use of its functions by understanding the selectable
strategies, that is, the action sequences for each possible state
transition of the environment based on the action graph.

In the experiments, we first confirmed that the action
possibility graph constructed according to both the
subsystem-level affordance and the geometric reasoning
facilitates the understanding of the action possibility. In addi-
tion, it was confirmed that the action graph consisting of mul-
tiple action possibility graphs facilitates the representation of
various actions and the understanding of the selectable strate-
gies in the environment. In the actual machine experiments
with multiple robots with different subsystem configurations,
we verified that the proposed method enables the robots to
obtain a feasible action sequence to utilize their subsystems.

In this study, it was assumed that people in the environment
were cooperative with the robots. The proposed method
also assumed that the environmental state would not change
dynamically in the short task period. We plan to extend
the proposed method for handling unexpected situations
out of these assumptions in future research. One concrete
approach is the online update of the action graph and the
action sequence considering the uncertainty based on the
partial observation using the sensors on the robot. Then, it is
necessary to analyze the extended method statistically, such
as the success rate, to evaluate the handling of the unexpected
situations.
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