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ABSTRACT This paper presents an analytical model for predicting the magnetic field performance of
permanent magnet synchronous motor with permanent magnet cutting. In order to satisfy the boundary
conditions, the defective permanent magnet is equivalent to a double-layer sector permanent magnet, and
the size of the sector-shaped permanent magnet is determined, this process is obtained by an equivalent
magnetic circuit model. Then, the motor is divided into four sub-domains: inner sector permanent magnet
sub-domain, outer sector permanent magnet sub-domain, air gap sub-domain and stator slot sub-domain.
Under the boundary conditions, the analytical solution and harmonic decomposition of the air gap magnetic
flux density and cogging torque for several different permanent magnet cutting sizes under no-load condition
are obtained by solving the Poisson equation and Laplace equation with the method of separating variables.
The analytical model is verified by the finite element method. The results show that the error between the
analytical method and the finite element method is less than 6%, and the solution time of the analytical
method is only 0.59% of the finite element method, the chamfered structure proposed in the paper reduces
the cogging torque amplitude 35%. Therefore, this method can provide powerful help for the initial design
of permanent magnet motors.

INDEX TERMS Sub-domain model, cutting permanent magnet, magnetic circuit method, magnetic flux
density.

I. INTRODUCTION
With the development of rare-earth permanent magnet (PM)
materials, PM machines have attracted extensive atten-
tion by scholars. Compared with conventional machines,
PM machines have the superiority in reliable operation, high
efficiency, flexible shape and size. Therefore, PM machines
are widely used in aerospace, electric vehicles, industrial
production, agricultural production and other fields [1]–[5].
Designers pay close attention to the electromagnetic field
distribution in PM machines, which is very important to
design a PM machine with excellent performance.

The numerical method and analytical method are usually
used in this field. The numerical method, represented by
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the finite element (FE) method, can better solve the non-
linear phenomena and complex topology [6]. This method
has universal applicability. However, in order to obtain accu-
rate calculation results, it is necessary to divide the model
with detailed mesh [7]. Inevitably, the FE method is quite
time-consuming. The analytical method can provide physi-
cal insight to the motors, which usually analyzed from two
directions: magnetic circuit model and magnetic field model.
The magnetic circuit model establish the connection of mag-
netic flux, reluctance and magnetic potential by applying
Kirchhoff’s law according to the path of magnetic flux. The
magnetic circuit model mainly adopts the equivalent mag-
netic network method and the equivalent magnetic circuit
method [8]–[10]. However, these methods cannot analyze the
harmonic characteristics of motor magnetic field. If we want
to get more accurate results, we need to divide the magnetic
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circuit meticulously [11]. Therefore, this method is generally
used in rough calculation of magnetic field. The magnetic
field model mainly adopts the sub-domain method. This
method divides the PM motor into several sub-domains, then
obtains the Laplace equation or Poisson equation satisfied by
the magnetic position function of each sub-domain. This pro-
cess is derived fromMaxwell’s equations. Therefore, the core
problem of this method is solving the differential equations.
The definite solution condition is the boundary condition
between the sub-domains [12]–[14]. The general solution
of Fourier series can be obtained by using the separating
variables method, and the result is very accurate [15], [16].
The difficulty of sub-domain method is establishing the spe-
cial structure sub-domain model and deal with the nonlinear
effect of magnetic circuit. In [17], [18], the auxiliary slot
structure, iron core protruding structure in PM motor are
treated respectively, and the FE method is used to verify.
In [19]–[21], the equivalent currentmethod and the equivalent
air gap permeability method are used to solve the nonlinear
effect of magnetic circuit. The results show that the improved
method is more accurate. In addition, some magnetic field
model can be implemented without solving the Laplace equa-
tion. For example, the magnetic island method [22], the air
gap magnetic field modulation method [23], and the three-
dimensional magnetic field calculation model based on the
equivalent surface current of the permanent magnet [24].

In this paper, an improved analytical model for calculating
the magnetic field distribution and cogging torque of PM
motor is proposed. This method realizes the combination of
magnetic circuit method and magnetic field method, which
can be used surface-mounted PM motor with arbitrary angle
cutting degree. The main work of this paper is as follows:
In Section II, an improved analytical model is derived and
obtained. Firstly, the angular PM is equivalent to two fan-
shaped PMs, which is convenient to describe the magnetic
field and matching boundary conditions of the PM. Then
the air gap magnetic field distribution and cogging torque
is obtained by solving the sub-domain differential equation.
In Section III, the air gap flux density and cogging torque
are calculated using the analytical model, and the accuracy
of the algorithm is verified by the FE method. In Section IV,
the advantages of the algorithm are discussed in terms of
operation speed and accuracy. In Section V, we summarize
the work of the paper and draw the final conclusion.

II. ANALYTICAL MODEL
The prototype model discussed in this paper is shown in
Figure.1. In order to facilitate analysis, the following assump-
tions are made:
(1) PM keeps linear demagnetization state;
(2) core permeability is infinite;
(3) ignore end effect and iron core saturation effect.
The specific parameters of the motor are as follows: R1 is

the inner radius of PM; R3 is the outer radius of PM; R4 is the
inner radius of stator; R5 is the radius of the slot bottom; R6
is the outer radius of stator.

FIGURE 1. Model of surface mounted PM synchronous motor with pole
clipping.

FIGURE 2. Equivalent of PM.

A. PM EQUIVALENT
In the classic sub-domain model, the boundary must be a
standard arc [25], [26]. But the boundary of the contact air
gap is no longer a standard arc when the corner of the PM is
cut. Therefore, when establishing the sub-domain model, the
boundary cannot be expressed by the standard boundary con-
ditions, which will hinder solving the sub-domain differential
equations. Therefore, the PM should be properly equivalent.
In order to ensure the accuracy of the calculation results,
the equivalent PM should not destroy the original distribution
of the air gap magnetic field. Therefore, the defective PM
is equivalent to a two-layer sector PM. According to the
above principles, it is necessary to keep the polar arc angle
between the PM and the rotor iron core boundary, the PM and
the air gap boundary unchanged after equivalence [27], [28].
The schematic diagram of the PM equivalence is shown
in the Figure.2. Where α1 is the polar arc angle of the inner
boundary of the PM, α2 is the polar arc angle of the outer
boundary of the PM, and R2 is the inner diameter of the
outer PM. It is worth noting that R2 is an important quan-
tity to be solved, and R2 is solved by the magnetic circuit
method, the solution process according to the principle of
invariance of air gap magnetic field. Since the arc length dif-
ference between the inner and outer boundaries of the sector
PM is very small, the PM is further simplified in the mag-
netic circuit method analysis process, as shown in Figure. 3.
The equivalent magnetic circuit models of the pre and post
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FIGURE 3. Further simplification of PM.

equivalent PMs are established respectively, as shown in
Figure.4. The inner arc length l1 of the PM and the outer arc
length l2 of the PM are derived as

l1 = 0.5 (R1 + R2) α1 (1)

l2 = 0.5 (R2 + R3) α2 (2)

FIGURE 4. Equivalent magnetic circuit model of PM.

The defective PM is shown in the Figure.3(a), regions I
and III of the model are two right angled trapezoids, and
there is a big difference between the top and bottom. In order
to better describe the magnetic resistance in this region,
the infinitesimal method is used to divide regions I and III

into N parts, as shown in the Figure.3(c), and the wide1τ of
the each PM is

1τ =
l1 − l2
2N

(3)

In region I, the height hn, magnetic resistance Rm,n and
magnetic flux 8mr,n of the nth PM are

hn = hu +
(n− 1) (hd − hu)

N
(4)

Rm,n =
hn

µ0µr1τL
(5)

8mr,n = 1τLBmr (6)

where hu and hd are the length of the upper and lower bottom
of the right-angled trapezoid, µ0 is the permeability of vac-
uum, µr is the relative permeability of the PM, L is the axial
length of the rotor, Bmr is the residual magnetic flux density
of PM.

In region II, the height hN+1, the magnetic resistance
Rm,N+1 and magnetic flux 8mr,N+1 of the N + 1 th PM are

hN+1 = hd (7)

Rm,N+1 =
hd

µ0µr (l1 − l2)L
(8)

8mr,N+1 = (l1 − l2)LBmr (9)

In region III, the height hN+1+n, the magnetic resistance
Rm,N+1+n and magnetic flux 8mr,N+1 of the N + 1 + n th
PM are

hN+1+n = hN−n (10)

Rm,N+1+n = Rm,N−n (11)

8mr,N+1+n = 8mr,N−n (12)

Ignoring the air gap between the poles, only the ring area
between the PM and the stator iron core is considered as
the effective air gap. According to the path taken by the
magnetic flux, the average air gap magnetic resistance Rg
corresponding to a single pole can be expressed as

Rg =
R4 − R3

µ0
R3+R4

2
π
p L

(13)

where p is the number of pole pairs.
The equivalent magnetic circuit model of defective PM is

shown in the Figure.4(a), which can be deduced according to
Ohm’s law of magnetic circuit

8g,n = 8mr,n −
8gRg
Rm,n

, n = 1, . . . , 2N + 1 (14)

Taking the sum of all the terms at both ends of equation (14)
and further simplify

8g =

2N+1∑
n=1

8mr,n(
1+

2N+1∑
n=1

Rg
Rm,n

) (15)
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The Figure.3(b) shows the PM after equivalent, and the
magnetic resistance Rm,I III and magnetic flux 8mr,I III in the
region I, III are

Rm,I III =
R2 − R1

0.5µ0µrL (R1 + R2) (α1 − α2)
(16)

8mr,I III = 0.5 (R1 + R2) (α1 − α2)LBmr (17)

The magnet resistance Rm,II and magnetic flux 8mr,II in
the region II are

Rm,II =
R3 − R1

0.5µ0µrL (R1 + R3) α2
(18)

8mr,II = 0.5 (R1 + R3) α2LBmr (19)

The equivalent magnetic circuit of the PM after equivalent
is shown in the Figure.4(b), which equivalent air gap flux can
be deduced according to Ohm’s law of magnetic circuit

8′g =
8mr,I III +8mr,II(
1+ Rg

Rm,I III
+

Rg
Rm,II

) (20)

According to the principle that the air gap magnetic field is
invariable, it can be obtained by substituting 8g for 8′g into
equation (20)

0 =
2
(
8mr,I III +8mr,II −8g

)
µ0µr8gRgL

=

[
(R1 + R2) (α1 − α2)

R2 − R1
+
(R1 + R3) α2
R3 − R1

]
(21)

where0 is the new defined amount to simplify of sub-sequent
reasoning.

By sorting out formula (21), the quadratic equation with R2
to be solved is obtained

0AR22 + 0BR2 + 0C = 0 (22)

where

0A = 0 − α1 −
2R1α2
R3 − R1

=
2R1

R2 − R1
(α1 − α2) (23)

0B = −

[
0 (R1 + R3)− (R3 − R1) (α1 − α2)

−α2
(R1 + R3)2

R3 − R1

]
=
−2 (R1R3 + R2R1)

R2 − R1
(α1 − α2) (24)

0C = 2R1R3

[
0 −

R1 (α1 − α2)
R2 − R1

−
(R1 + R3) α2
R3 − R1

]
=

2R1R2R3
R2 − R1

(α1 − α2) (25)

The discriminant 1 of the equation can be expressed as

1=02
B−40A0C=

4 (R1R3−R1R2)2 (α1−α2)2

(R2 − R1)2
>0 (26)

In practical sense, R2 is the positive solution of the equa-
tion, which can be expressed as

R2 =
−0B +

√
02
B − 40A0C

20A
(27)

According to the above reasoning, when R2 is calculated
according to equation (27), we think that the distribution of
the original air gapmagnetic field is not destroyed. This paper
discusses the chamfering situation when hm = 1.75mm,
α = 45◦. Calculated by equation (27) R2 = 35.31mm. The
motor data required for the calculation process is provided
in Table.1.

FIGURE 5. The sub-domain model of PM synchronous motor after pole
equivalence.

B. SUB-DOMAIN MODEL
After equivalent treatment of PM, the solution model of
the motor is finally determined, and the cross-section dia-
gram is shown in Figure.5. The motor is divided into
four sub-domains, namely inner PM sub-domain I, outer
PM sub-domain II, air gap sub-domain III and stator open slot
sub-domain IV. The partial differential equations of vector
magnetic potential EA in each sub-domain are derived from
Maxwell’s equation

∇
2EA = −µ0µr EJ − µ0

(
∇ × EM

)
(28)

where EJ is current density, EM is magnetization.
According to the difference of sub-domains, the differ-

ential equation of vector magnetic potential EA of each sub-
domain is simplified as

∇
2EAI = −µ0

(
∇ × EMI

)
, in subdomain I (29)

∇
2EAII = −µ0

(
∇ × EMII

)
, in subdomain II (30)

∇
2EAIII = 0, in subdomain III (31)

∇
2EAIV = −µ0µr EJIV, in subdomain IV (32)
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Taking radial magnetization as an example, the radial mag-
netization Mir and tangential magnetization Miθ of the ith
sub-domain can be expressed as [29]

Mir =

∞∑
n/p=1,3,5...

Mir,n cos [n (θ − θm)]

Miθ =

∞∑
n/p=1,3,5...

Miθ,n sin [n (θ − θm)],

i = I, II

(33)Mir,n =
4pBmr
nµ0π

sin
(
nπαpi
2p

)
Miθ,n = 0,

i = I, II (34)

where θm is the center position angle of N-pole of PM,
αpi is the pole arc coefficient of the PM in the i-th
sub-domain.

In 2-D plane analysis, EB has only tangential compo-
nent and radial component, which leads to EA having only
z component

EAI = AI (r, θ) · Eez, in subdomain I (35)
EAII = AII (r, θ) · Eez, in subdomain II (36)
EAIII = AIII (r, θ) · Eez, in subdomain III (37)
EAIV = AIV (r, θ) · Eez, in subdomain IV (38)

In order to simplify the derivation process, two functions
are defined [30]

Pz (x, y) = (x/y)z + (y/x)z (39)

Qz (x, y) = (x/y)z − (y/x)z (40)

In the sub-domain I, AI (r, θ) satisfies the differential
equation

∂2AI
∂r2
+

1
r
∂AI
∂r
+

1
r2
∂2AI
∂θ2
=
µ0

r
∂MIr

∂θ

R1 ≤ R ≤ R2, 0 ≤ θ ≤ 2π
(41)

where EMIr is the radial magnetization of the inner PM.
The boundary condition between PM and rotor iron core is

satisfied

∂AI
∂r

∣∣∣∣
r=R1

= 0 (42)

The general solution of Poission equation is

AI(r, θ) =
∞∑
n=1

AI,n
Pn(r,R1)
Pn(R2,R1)

cos(nθ )

+

∞∑
n=1

CI,n
Pn(r,R1)
Pn(R2,R1)

sin(nθ )+ η (r, θ) (43)

where η (r, θ) is the special solution of equation (41), it can
be expressed as

η (r, θ) =
∞∑
n=1

Xn (r) sin [n (θm − θ)] (44)

where Xn (r) can be expressed as

Xn (r)=
[
R1
n

(
R1
r

)n
f ′n (R1)+ f

′
n (r)

]
−

Pn (r,R1)
Pn (R2,R1)

[
R1
n

(
R1
R2

)n
f ′n (R1)+ f

′
n (R2)

]
(45)

fn (r)=



4Brp

π
(
1− n2

) · r · sin(nπ
2p
αp1

)
,

n/p = 1, 3, 5 . . .

−
2pBr
nπ
· r ln r · sin

(
nπ
2p
αp1

)
,

n = p = 1

0,
else

(46)

In the sub-domain II, AII (r, θ) satisfies the differential
equation

∂2AII
∂r2
+

1
r
∂AII
∂r
+

1
r2
∂2AII
∂θ2

=
µ0

r
∂MIIr

∂θ

R2 ≤ R ≤ R3, 0 ≤ θ ≤ 2π
(47)

The general solution of Poisson equation is

AII(r, θ)=
∞∑
n=1

(
AII,n

R2
n

Qn(r,R3)
Pn(R2,R3)

+BII,n
Pn(r,R2)
Pn(R3,R2)

)
× cos(nθ )

+

∞∑
n=1

(
CII,n

R2
n

Qn(r,R3)
Pn(R2,R3)

+DII,n
Pn(r,R2)
Pn(R3,R2)

)
× sin(nθ )+ ξ (r, θ) (48)

where ξ (r, θ) is the special solution of equation (47), it can
be expressed as

ξ (r, θ) =
∞∑
n=1

Yn (r) sin [n (θm − θ)] (49)

Yn (r)=
[
R2
n

(
R2
r

)n
g′n (R2)+ g

′
n (r)

]
−

Pn (r,R2)
Pn (R3,R2)

[
R2
n

(
R2
R3

)n
g′n (R2)+ g

′
n (R3)

]
(50)

gn (r)=


4Brp

π
(
1− n2

) · r · sin(nπ
2p
αp2

)
, n/p = 1, 3, 5 . . .

−
2pBr
nπ
· r ln r · sin

(
nπ
2p
αp2

)
, n = p = 1

0, else

(51)

In the sub-domain III, AIII (r, θ) satisfies the differential
equation 

∂2AIII
∂r2

+
1
r
∂AIII
∂r
+

1
r2
∂2AIII
∂θ2

= 0

R3 ≤ R ≤ R4, 0 ≤ θ ≤ 2π
(52)
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The general solution of Laplace equation is

AIII(r, θ)

=

∞∑
n=1

[
AIII,n

R3
n

Pn(r,R4)
Qn(R3,R4)

+ BIII,n
R4
n

Pn(r,R3)
Qn(R4,R3)

]

· cos (nθ)+
∞∑
n=1

[
CIII,n

R3
n

Pn(r,R4)
Qn(R3,R4)

+DIII,n
R4
n

Pn(r,R3)
Qn(R4,R3)

]
sin(nθ ) (53)

In the sub-domain IV, AIV (r, θ) satisfies the differential
equation

∂2AIVi
∂r2

+
1
r
∂AIVi
∂r
+

1
r2
∂2AIVi
∂θ2

= −µ0Ji

R4 ≤ R ≤ R5, θi ≤ θ ≤ θi + β

(54)

where Ji is the current density of i-th slot, θi is the initial
position angle of i-th slot, and β is angle occupied by notch.
In this sub-domain, the contact boundary between the slot

and the stator core meets the requirements

∂AIV,i
∂r

∣∣∣∣
r=R5

= 0 (55)

∂AIV,i
∂θ

∣∣∣∣
θ=θi

=
∂AIV,i
∂θ

∣∣∣∣
θ=θi+β

= 0 (56)

The general solution of Poisson equation is simplified as

AIV,i(r, θ) =
∞∑
m=1

AIV,i,m
βR4
mπ

Pmπ/β (r,R5)
Qmπ/β (R4,R5)

· cos
(
mπ
β
(θ − θi)

)
+ ζ (r, θ) (57)

where ζ (r, θ) is the special solution of equation (54), it can
be expressed as

ζ (r, θ) = AIV,i,0 +
1
2
µ0Ji

(
R25 ln r −

1
2
r2
)

(58)

C. INTEGRAL COEFFICIENT
The general solution of the vector magnetic potential of
each sub-domain is derived from the sub-domain model. The
undetermined coefficients need to be solved by boundary
conditions, which are the continuity of the vector magnetic
potential and the continuity of the tangential magnetic field
intensity.

At the interface of sub-domain I and sub-domain II, the
boundary condition is

AI(R2, θ) = AII(R2, θ), 0 ≤ θ ≤ 2π (59)
∂AI
∂r

∣∣∣∣
r=R2

=
∂AII
∂r

∣∣∣∣
r=R2

, 0 ≤ θ ≤ 2π (60)

At the interface of sub-domain II and sub-domain III, the
boundary condition is

AII(R3, θ) = AIII(R3, θ), 0 ≤ θ ≤ 2π (61)

∂AII
∂r

∣∣∣∣
r=R3

=
∂AIII
∂r

∣∣∣∣
r=R3

, 0 ≤ θ ≤ 2π (62)

At the interface of sub-domain III and sub-domain IV, the
boundary condition is

AIII(R4, θ) = AIV,i(R4, θ), θi ≤ θ ≤ θi + β (63)
∂AIII
∂r

∣∣∣∣
r=R4

=
∂AIV,i
∂r

∣∣∣∣
r=R4

, θi ≤ θ ≤ θi + β (64)

Combining with formula (43), (48), (59) we can get

AI,n =
1
π

∫ 2π

0
AII(R2, θ) cos(nθ )dθ = AII,n

R2
n
Qn (R2,R3)
Pn (R2,R3)

+BII,n
2

Pn (R3,R2)
+ Yn (R2) sin (nθm) (65)

CI,n =
1
π

∫ 2π

0
AII(R2, θ)sin(nθ )dθ = CII,n

R2
n
Qn (R2,R3)
Pn (R2,R3)

+DII,n
2

Pn (R3,R2)
+ Yn (R2) cos (nθm) (66)

Combining with formula (43), (48), (60) we can get

AII,n =
1
π

∫ 2π

0

∂AI
∂r

∣∣∣∣
r=R2

cos(nθ )dθ

= AI,n
n
R2

Qn (R2,R1)
Pn (R2,R1)

+ X ′n (R2) sin (nθm) (67)

CII,n =
1
π

∫ 2π

0

∂AI
∂r

∣∣∣∣
r=R2

sin(nθ )dθ

= CI,n
n
R2

Qn (R2,R1)
Pn (R2,R1)

− X ′n (R2) cos (nθm) (68)

Combining with formula (48), (53), (61) we can get

BII,n=
1
π

∫ 2π

0
AIII(R3, θ) cos(nθ )dθ

=AIII,n
R3
n
Pn (R3,R4)
Qn (R3,R4)

+BIII,n
R4
n

2
Qn (R4,R3)

(69)

DII,n=
1
π

∫ 2π

0
AIII(R3, θ)sin(nθ )dθ

=CIII,n
R3
n
Pn (R3,R4)
Qn (R3,R4)

+DIII,n
R4
n

2
Qn (R4,R3)

(70)

Combining with formula (48), (53), (62) we can get

AIII,n =
1
π

∫ 2π

0

∂AII
∂r

∣∣∣∣
r=R3

cos(nθ )dθ

= AII,n
R2
R3

2
Pn (R2,R3)

+BII,n
n
R3

Qn (R3,R2)
Pn (R3,R2)

+ Y ′n (R3) sin (nθm) (71)

CIII,n =
1
π

∫ 2π

0

∂AII
∂r

∣∣∣∣
r=R3

sin(nθ )dθ

= CII,n
R2
R3

2
Pn (R2,R3)

+DII,n
n
R3

Qn (R3,R2)
Pn (R3,R2)

+ Y ′n (R3) cos (nθm) (72)
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Combining with formula (53), (57), (63) we can get

AIV,i,0 +
1
2
µ0Ji(R25 lnR4 −

1
2
R24)

=
1
β

∫ θi+β

θi

AIII(R4, θ)dθ

=

∞∑
n=1

[
AIII,n

2R3
nβ

2
Qn (R3,R4)

+BIII,n
2R4
nβ

Pn (R4,R3)
Qn (R4,R3)

]
×M (n, i)

+

∞∑
n=1

[
CIII,n

2R3
nβ

2
Qn (R3,R4)

+DIII,n
2R4
nβ

Pn (R4,R3)
Qn (R4,R3)

]
×N (n, i) (73)

AIV,i,m
βR4
mπ

Pmπ /β (R4,R5)
Qmπ /β (R4,R5)

=
2
β

∫ θi+β

θi

AIII(R4, θ)cos
(
mπ
β
(θ − θi)

)
dθ

=

∞∑
n=1

[
AIII,n

2R3
nβ

2
Qn (R3,R4)

+BIII,n
2R4
nβ

Pn (R4,R3)
Qn (R4,R3)

]
×F (m, n, i)

+

∞∑
n=1

[
CIII,n

2R3
nβ

2
Qn (R3,R4)

+DIII,n
2R4
nβ

Pn (R4,R3)
Qn (R4,R3)

]
×G (m, n, i) (74)

Combining with formula (53), (57), (64) we can get

BIII,n =
1
π

Qs∑
i=1

∫ θi+β

θi

∂AIV,i
∂r

∣∣∣∣
r=R4

cos (nθ) dθ

=

Qs∑
i=1

µ0Ji
2π

(
R25
R4
− R4

)
M (n, i)

+

Qs∑
i=1

∞∑
m=1

AIV,m,i
π

F (m, n, i) (75)

DIII,n =
1
π

Qs∑
i=1

∫ θi+β

θi

∂AIV,i
∂r

∣∣∣∣
r=R4

sin (nθ) dθ

=

Qs∑
i=1

µ0Ji
2π

(
R25
R4
− R4

)
N (n, i)

+

Qs∑
i=1

∞∑
m=1

AIV,m,i
π

G (m, n, i) (76)

F (m, n, i) =
∫ θi+β

θi

cos (nθ) cos
[
mπ
β
(θ − θi)

]
dθ (77)

G (m, n, i) =
∫ θi+β

θi

sin (nθ) cos
[
mπ
β
(θ − θi)

]
dθ (78)

M (n, i) =
∫ θi+β

θi

cos (nθ) dθ (79)

N (n, i) =
∫ θi+β

θi

sin (nθ) dθ (80)

A linear system of equations with large order is obtained by
simultaneous equations (65)-(76). The equations are written
in matrix form

LX = R (81)

where L is the coefficient matrix of the equations, X
is the solution vector composed of undetermined coeffi-
cients in the general solution of the sub-domain equation,
and R is the additional vector, which is usually the addi-
tional effect produced by the special solution of Poisson
equation.

For the convenience of description,L,X,R is written in the
form of block matrix, as shown in equation (82)-(84) at the
bottom of the next page, where the submatrix I is the identity
matrix, and the elements in the other submatrixs are given by
equation (85)-(112).

IN×N = diag (1)N×N (85)

L(1)N×N = diag
(
−
R2
n
Qn (R2,R3)
Pn (R2,R3)

)
N

(86)

L(2)N×N = diag
(
−

2
Pn (R3,R2)

)
N

(87)

L(3)N×N = diag
(
n
R2

Qn (R2,R1)
Pn (R2,R1)

)
N

(88)

L(4)N×N = diag
(
−
R3
n
Pn (R3,R4)
Qn (R3,R4)

)
N

(89)

L(5)N×N = diag
(
−
R4
n

2
Qn (R4,R3)

)
N

(90)

L(6)N×N = diag
(
−
R2
R3

2
Pn (R2,R3)

)
N

(91)

L(7)N×N = diag
(
−
n
R3

Qn (R3,R2)
Pn (R3,R2)

)
N

(92)

L(8)N×QsK =

(
−
F (k, n, q)

π

)
N×QsK

(93)

L(9)N×QsK =

(
−
G (k, n, q)

π

)
N×QsK

(94)

L(10)Qs×N =

(
−
2R3
nβ

M (n, q)
Qn (R3,R4)

)
Qs×N

(95)

L(11)Qs×N =

(
−
R4
nβ

Pn (R4,R3)M (n, q)
Qn (R4,R3)

)
Qs×N

(96)

L(12)Qs×N =

(
−
2R3
nβ

N (n, q)
Qn (R3,R4)

)
Qs×N

(97)

L(13)Qs×N =

(
−
R4
nβ

Pn (R4,R3)N (n, q)
Qn (R4,R3)

)
Qs×N

(98)

L(14)QsK×N =

(
−
4R3
nβ

F (k, n, q)
Qn (R3,R4)

)
QsK×N

(99)

L(15)QsK×N =

(
−
2R4
nβ

Pn (R4,R3)F (k, n, q)
Qn (R4,R3)

)
QsK×N

(100)

L(16)QsK×N =

(
−
4R3
nβ

G (k, n, q)
Qn (R3,R4)

)
QsK×N

(101)
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L(17)QsK×N =

(
−
2R4
nβ

Pn (R4,R3)G (k, n, q)
Qn (R4,R3)

)
QsK×N

(102)

L(18)QsK×QsK = diag
(
βR4
nπ

Pkπ/β (R4,R5)
Qkπ/β (R4,R5)

)
QsK

(103)

R(1)1×N = (Yn (R2) sin (nθm))1×N (104)

R(2)1×N = (Yn (R2) cos (nθm))1×N (105)

R(3)1×N =
(
−X ′n (R2) sin (nθm)

)
1×N (106)

R(4)1×N =
(
X ′n (R2) cos (nθm)

)
1×N (107)

R(5)1×N =
(
Y ′n (R3) sin (nθm)

)
1×N (108)

R(6)1×N =
(
Y ′n (R3) cos (nθm)

)
1×N (109)

R(7)1×N =

 Qs∑
q=1

µ0Jq
2π

(
R25
R4
− R4

)
M (n, q)


1×N

(110)

R(8)1×N =

 Qs∑
q=1

µ0Jq
2π

(
R25
R4
− R4

)
N (n, q)


1×N

(111)

R(9)1×Qs
=

(
−
1
2
µ0Jq

(
R25 lnR4 −

1
2
R24

))
1×Qs

(112)

D. MAGNETIC FIELD CALCULATION
The integral coefficients of vector magnetic potential in
each sub-domain are obtained by matrix equations(81), and
the tangential and radial components of magnetic induction
intensity in polar coordinates can be expressed as

Br =
1
r
∂A
∂θ

(113)

Bθ = −
∂A
∂r

(114)

Finally, the analytical expressions of radial and tangential
air gap magnetic density are obtained

BIIIr (Rair , θ)

=−

∞∑
n=1

(
AIII,n

R3
Rair

Pn(Rair ,R4)
Qn(R3,R4)

+BIII,n
R4
Rair

Pn(Rair ,R3)
Qn(R4,R3)

)
× sin(nθ )

+

∞∑
n=1

(
CIII,n

R3
Rair

Pn(Rair ,R4)
Qn(R3,R4)

+DIII,n
R4
Rair

Pn(Rair ,R3)
Qn(R4,R3)

)
× cos(nθ ) (115)

BIIIθ (Rair , θ)

=−

∞∑
n=1

(
AIII,n

R3
Rair

Qn(Rair ,R4)
Qn(R3,R4)

+BIII,n
R4
Rair

Qn(Rair ,R3)
Qn(R4,R3)

)
× cos(nθ )

−

∞∑
n=1

(
CIII,n

R3
Rair

Qn(Rair ,R4)
Qn(R3,R4)

+DIII,n
R4
Rair

Qn(Rair ,R3)
Qn(R4,R3)

)
× sin(nθ ) (116)

whereRair is the air gap radius, the value ofRair is the average
of R3 and R4.

Using the Maxwell stress method, the cogging torque can
be expressed as

Tcog =
LR2air
µ0

∫ 2π

0
BIIIr (Rair , θ)BIIIθ (Rair , θ) dθ (117)

L =



IN×N 0 L(1)N×N L(2)N×N 0 0 0 0 0 0 0 0

0 IN×N 0 0 L(1)N×N L(2)N×N 0 0 0 0 0 0

L(3)N×N 0 −IN×N 0 0 0 0 0 0 0 0 0

0 L(3)N×N 0 0 −IN×N 0 0 0 0 0 0 0

0 0 0 IN×N 0 0 L(4)N×N L(5)N×N 0 0 0 0

0 0 0 0 0 IN×N 0 0 L(4)N×N L(5)N×N 0 0

0 0 L(6)N×N L(7)N×N 0 0 IN×N 0 0 0 0 0

0 0 0 0 L(6)N×N L(7)N×N 0 0 IN×N 0 0 0

0 0 0 0 0 0 0 IN×N 0 0 0 L(8)N×QsK

0 0 0 0 0 0 0 0 0 IN×N 0 L(9)N×QsK

0 0 0 0 0 0 L(10)Qs×N L(11)Qs×N L(12)Qs×N L(13)Qs×N IQs×Qs 0

0 0 0 0 0 0 L(14)QsK×N L(15)QsK×N L(16)QsK×N L(17)QsK×N 0 L(18)QsK×QsK



(82)

X =

( (
AI,n

)
1×N ,

(
CI,n

)
1×N ,

(
AII,n

)
1×N ,

(
CII,n

)
1×N ,

(
BII,n

)
1×N ,

(
DII,n

)
1×N ,(

AIII,n
)
1×N ,

(
CIII,n

)
1×N ,

(
BIII,n

)
1×N ,

(
DIII,n

)
1×N ,

(
AIV,i,0

)
1×Qs

,
(
AIV,i,k

)
1×QsK

)T
(83)

R =
(
R(1)1×N R(2)1×N R(3)1×N R(4)1×N (0)1×N (0)1×N R(5)1×N R(6)1×N R(7)1×N R(8)1×N R(9)1×Qs (0)1×QsK

)T
(84)
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TABLE 1. Units for magnetic properties main parameters of prototype
machines.

FIGURE 6. Air gap magnetic density without chamfering: (a) Radial
component; (b) Tangential component.

So far, the analytical solution of the air gap flux density and
the cogging torque considering the PM cutting is obtained.
The algorithm will be verified in Section III.

III. ANALYTICAL CALCULATION AND FE VERIFICATION
OF NO-LOAD MAGNETIC FIELD
Taking a 4-pole 24 slot surface mounted PM motor as an
example, the air gap flux density are calculated by the pro-
posed analytical method, and the analytical method is verified
by two-dimensional FE method. The basic design param-
eters of the prototype are shown in Table.1. It should be
noted that in the actual calculation of the general solution
of the sub-domain equation, the harmonic number can only
be taken to a finite degree, the parameter N is the max-
imum harmonic order of the vector magnetic potential in
sub-domains I, II and III; the parameter K is the maximum
harmonic order of the vector magnetic potential in the sub-
domain IV. and the values calculated in this section are
N = 100 and K = 25.

The calculation result of magnetic field distribution before
chamfering is shown in the Figure.6. The results show that
there are four inward concave spikes in the radial flux density
waveform in each half cycle, which reveals that the slotting
effect is the main reason for the distortion of the air gap
magnetic field waveform of the PM motors, and each arc
covered by the PM contains four slots, So the number of
spines is four; The Figure.8 compares the distribution of
air gap magnetic field when motor chamfering parameters

FIGURE 7. Harmonic decomposition of air gap magnetic density without
chamfering: (a) Radial component; (b) Tangential component.

FIGURE 8. Air gap magnetic density with chamfering: (a) Radial
component; (b) Tangential component.

FIGURE 9. Harmonic decomposition of air gap magnetic density with
chamfering: (a) Radial component; (b) Tangential component.

α = 45◦, hm = 1.75mm. The results show that the radial
air gap flux density after chamfering tends to bulge out at the
edge of the PM, which is the influence of the PM chamfering
on the air gap magnetic field; The analytical method is close
to the FE method in both the fluctuation trend and the peak
value. The Figure.7, Figure.9 are the harmonic decomposition
graphs in two cases. Obviously, the harmonic components in
two cases are also very consistent. On this basis, the Maxwell
tensor method is used to calculate the cogging torque in two
situations. The Figure.10 compares the results of the cogging
torque obtained by the analytical method and the FE method.
The cogging torque calculated by the proposed algorithm
is very close to the FE method. In addition, the calculated
peak cogging torque without chamfering is 745.5 mNm, and
the peak cogging torque after chamfering is 438.4 mNm,
which shows that the proposed permanentmagnet chamfering
structure can weaken the cogging torque effectively.

IV. DISCUSSION ON THE SPEED AND PRECISION OF
ALGORITHM OPERATION
In the partial enlarged view of Figure.6 and Figure.8, it can be
roughly seen from the visual effect that the analytical method
is accurate, but the data that can reflect the error is often more
convincing. In statistics, the root mean square (RMS) is usu-
ally used to compare the errors between data. But the value
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FIGURE 10. Cogging torque for diffierent conditions: (a) α = 0◦,
hm = 0mm; (b) α = 45◦, hm = 1.75mm.

involved in the calculation is usually discrete. Therefore,
the air gap magnetic density harmonics in several situations
are decomposed, as shown in Figure.7 and Figure.9. The
formula for calculating the RMS can be expressed as

RMSairgap =

√√√√√√
∑
i
(mA (i)− mF (i))2∑

i
mF (i)2

(118)

wheremA (i) andmF (i) are the amplitude of the i-th harmonic
air gap flux density respectively by analytical method and FE
method.

TABLE 2. Error estimate of electromagnetic quantity.

The RMS in several situations is obtained from equa-
tion (118), as shown in Table.2. When α = 0◦, hm = 0mm,
the RMS of the radial air gap magnetic density is 0.0242,
the RMS of the tangential air gap magnetic density is 0.1585;
When α = 45◦, hm = 1.75mm, the RMS the radial air
gap magnetic density is 0.0522, the RMS of the magnetic
density of the tangential air gap is 0.1998. Obviously, Data in
the Table.2 can intuitively reflect that the error between the
improved analytical method and the FE method is very small.
This shows that the calculation accuracy of the analytical
method is very high.

TABLE 3. Calculation time of analytical method and FE method.

On the other hand, the calculation speed of the algorithm
can better reflect its application value, because the FEmethod
is generally time-consuming. The two methods are respec-
tively applied to two computers of the same model. The

hardware properties of the computers and the calculation
time of the two methods are shown in Table.3. The results
show that the calculation speed of the analytical method is
only 0.5917% of the FE method. In summary, the analytical
method proposed in this article has excellent performance in
terms of accuracy and speed.

V. CONCLUSION
This paper presents an improved analytical method for pre-
dicting the magnetic field performance of PMmotor with PM
cutting. This method realizes the combination of magnetic
circuit method and magnetic field method. According to the
same pole arc angle and the principle of magnetic field invari-
ance, the defective PM is equivalent to a two-layer sector
PM, which can better match the boundary conditions. In the
equivalent analysis model, four sub-domains are established,
and the Poisson equation or Laplace equation is solved by the
method of separating variables. The FE results show that the
method has high accuracy. In addition, the solution time of
the analytical method is 5s, and that of the FEmethod is 845s,
which shows that the analytical method has a huge advantage
in terms of operating speed.

It is worth noting that it is assumed that the iron core is not
saturated in this study, and the accuracy of the results is high.
In spite of this, the high-precision and high-speed algorithm
studied in this paper is still helpful to the motor designer,
so the work in this paper is meaningful.
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