
Received July 16, 2021, accepted October 5, 2021, date of publication October 14, 2021, date of current version October 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3120004

Linguistic Patterns, Styles, and Guidelines for
Writing Requirements Specifications: Focus
on Use Cases and Scenarios
ALBERTO RODRIGUES DA SILVA
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1649-004 Lisboa, Portugal

e-mail: alberto.silva@tecnico.ulisboa.pt

This work was supported in part by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) under Grant UIDB/50021/2020 and
Grant 02/SAICT/2017/29360.

ABSTRACT A system requirements specification is a technical document extensively used during the
respective system life cycle. It gathers the concerns and needs of various stakeholders, describes the common
vision of that system, and therefore supports its development and operation processes. The popular form to
write requirements specifications is with natural languages that, however, exhibit characteristics that often
introduce quality problems, such as inconsistency, incompleteness, and vagueness, which shall be mitigated
or avoided to some extent. This paper is part of a series of papers that have discussed linguistic patterns
and linguistic styles to produce technical documentation more systematically and consistently. Specifically,
this paper proposes a cohesive set of patterns and styles to better write use cases and scenarios. It also
presents 38 practical guidelines and supports the discussion with concrete pedagogical examples represented
with different styles, namely: visual use cases diagram (UML), a rigorous requirements specification
language (RSL), and two informal controlled natural languages, one with a compact (CNL-A) and another
with a more complete and verbose writing style (CNL-B). We conducted a pilot evaluation session with
24 subjects who provided encouraging feedback, with positive scores in all the analyzed dimensions. Based
on this feedback, we may conclude that the adoption of these patterns, styles, and guidelines would help to
produce better requirements specifications, written more systematically and consistently.

INDEX TERMS Requirements specification, linguistic pattern, linguistic style, controlled natural language,
use case, structured scenario.

I. INTRODUCTION
Requirements engineering (RE) is a discipline that defines a
common vision and understanding of socio-technical systems
among the involved stakeholders and throughout their life
cycle [1], [2]. The negative consequences of ignoring early
RE activities are extensively reported and discussed in the
literature [3], [4].

A system requirements specification (or just ‘‘require-
ments specification’’) is a technical document that defines
and organizes the concerns of such systems from the RE
perspective. A good requirements specification offers several
benefits as reported in the literature such as [2], [5], [6]:
contributes to the establishment of an agreement and business
contract between customers and suppliers; provides a com-
mon ground for supporting the project budget and schedule

The associate editor coordinating the review of this manuscript and
approving it for publication was Laurence T. Yang.

estimation and plan; supports the project scope validation
and verification, and may support deployment and future
maintenance activities. It is usually recommended that a
requirements specification shall be defined accordingly as
a predefined template as well as a set of recommendations
on how to customize and use it. In general, these templates
recommend the use of various views and constructs (e.g.,
actors, use cases, user stories) that might be considered
‘‘modular artifacts’’ in the sense of their definition and reuse.
Because there are dependencies among these constructs,
some authors have argued that it is essential to minimize or
prevent them, and some of these templates give support in this
respect [7], [8].

Because requirements specifications support both techni-
cal and business stakeholders, they are usually written in nat-
ural languages. Indeed, natural languages reach an adequate
communication level since they are flexible, universal, and
humans are proficient at using them to communicate. So, they

143506 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7900-9846

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

FIGURE 1. Example of informal requirements that involve use cases and related elements.

have minimal adoption resistance as a requirements docu-
mentation technique. Nevertheless, they also exhibit intrinsic
features that frequently put them as the source of quality
problems like inconsistency, incompleteness, incorrectness,
and ambiguousness [1], [9]–[11].

For instance, a use case is a description of the possible
sequences of interactions between the system under discus-
sion and its external actors, related to a particular goal [12].
Despite being a popular manner to organize and define
(mostly functional) requirements, there are still difficulties in
bothmodeling andwrite use cases. As suggested in Fig. 1, use
cases and related elements, like actors and data entities, are
usually referred to in multiple requirements scattered all over
the text and, unfortunately, inconsistently represented with
different writing styles. For example, in Fig. 1, the names
‘‘User-operator’’ (in S1), ‘‘Operator’’ (in S3), and ‘‘user-
operator’’ (in S4) should refer to the same actor or user role;
or the sentences ‘‘sending an invoice to a customer’’ (in S2)
and ‘‘issue and send that invoice’’ (in S3) may refer the same
use case. These are simple but representative examples of
inconsistency and ambiguity inherent to the natural language
specification.

Due to these problems, some authors have proposed prac-
tical recommendations for writing requirements effectively,
including general guidelines like the followings [1], [11],
[13], [14]: the language should be simple, clear, and precise;
should follow a standardized format to give coherence and
uniformity to all sentences; the sentences should be simple,
short, and written in an affirmative and active voice style; or
that the vocabulary should be limited.

Furthermore, concerning the writing of use cases and sce-
narios, some authors have proposed more specific guide-
lines such as [15]–[19]. For instance, Lilly discusses several
‘‘pragmatic cures’’ for the writing of use cases, such as [18]:
Be explicit about the scope; Draw the system boundary (at
least in your head); Name the use cases from the perspective
of the Actor’s goals; Get agreement early in the project about
the use of actor names (and other terms); Make sure that

the granularity of the use cases is appropriate; The actors
may be defined too broadly, or The granularity of the use
case may be too coarse. Constantine and Lockwood discuss
and recommend avoiding the specification of concrete use
cases, i.e., those that refer to concrete terms (i.e., ‘‘John’’,
‘‘Mary’’) or specific user interfaces (e.g., ‘‘click in the Ok
button’’, ‘‘customer panel’’) and replace these by abstract,
generalized, and technology-free descriptions of the essence
of a problem, named as ‘‘essential use cases’’ [17]. Cockburn
discusses several types of use cases (e.g., casual vs dressed,
business vs. system, white-box vs. black-box) and discusses
his preferred format for the writing of use case scenarios
based on the following guidelines [15]: one column of plain
prose; numbered steps; no ’’if’’ statements; use the number-
ing convention in the extensions sections involving combi-
nations of digits and letters. Wirfs-Brock and Schwartz also
discusses several pragmatic recommendations for writing
use cases and introduces the conversational (two-columns)
form of use cases [16], then popularized by Constantine and
Lockwood [17].

However, some of these recommendations are still gen-
eral or difficult to apply in practice and need to be further
elaborated and exemplified considering specific constructs
as supported by controlled natural languages. In this scope,
we introduce linguistic patterns as grammatical rules that
allow their users to write correctly in a common language.
Despite the diversity of terms found in the literature – for
instance, ‘‘syntactic requirements pattern’’ [1] or ‘‘require-
ments template’’ [20] –, we assume in this paper the terms
‘‘linguistic pattern’’ and ‘‘linguistic style’’, as discussed by
Silva [21], to mean, respectively, the definition and the repre-
sentation of such grammatical rules.
In his paper, Silva focused on business-level constructs,

namely on constructs like glossary terms, stakeholders, busi-
ness goals, processes, events, and flows [21], and recently
on data entities [22]. Although inspired by that work, this
paper is substantially different because it is focused on the
textual specification of use cases and use case scenarios,

VOLUME 9, 2021 143507

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

and discusses not only patterns and writing styles but also
gathers and discusses the respective pragmatics, i.e., prac-
tical recommendations and guidelines for writing use cases
and scenarios (some of them previously discussed by other
authors). Besides, and on the contrary of other proposals, this
paper supports the discussion with a unique and rich running
example that includes common and pedagogical situations.
This example refers to the requirements of a fictitious infor-
mation system called ‘‘BillingSystem’’, which is an invoice
management system, inspired and adapted from the example
initially introduced by Silva [21], [22].

The patterns discussed in this paper allow requirements
engineers and product designers to write systematically and
rigorously use case’s aspects, including actors, use cases,
use case relationships, and use case scenarios. To better sup-
port the discussion, these linguistic patterns are represented
according to three linguistic styles, namely by a rigorous
requirements specification language (RSL) and two informal
controlled natural languages, the CNL-A (with a compact
representation) and the CNL-B (with a more verbose rep-
resentation). Also, we add practical guidelines to help to
better write such aspects. (Of course, the interested reader
might adjust these styles or define a new one according to
her preferences or needs.)

This paper is structured into seven sections. Section 2
introduces the relevance of controlled natural languages to
writing requirement specifications and introduces the three
languages used in this research. Section 3 introduces the
core notions adopted in the scope of this research, i.e., the
notions of linguistic pattern and linguistic style. Sections 2
and 3 are similar to those of the paper [22], however, they are
included in this paper for self-completeness for those readers
that did not read that previous paper. Section 4 discusses
the proposed use cases’ linguistic patterns and supports the
debate with a running example. Section 5 refers to and dis-
cusses the related work. Section 6 presents the conditions and
results of a pilot user session conducted to receive feedback
from IT professionals and students. Lastly, Section 7 presents
the conclusion and the open topics of research. Moreover,
Appendix A describes the running example used in Section 4
and includes a draft representation of that example with the
discussed writing styles as well as a UML use case dia-
gram. Appendix B summarizes the linguistic patterns and the
recommended vocabulary.

II. CONTROLLED NATURAL LANGUAGES
Requirements specifications are usually written with natu-
ral language and hence are expressive, easy to be read and
written by humans, but not very precise because they tend
to be ambiguous and inconsistent by nature and hard to be
automatically manipulated by computers [23]. The usage
of formal language methods could overcome some of these
problems [24]. Although, that only addresses part of the
question due to its difficulty in applying them into not-so-
critical systems because they require specialized training and
are time-consuming. In the attempt to get the best from

both worlds, i.e., the familiarity of natural languages and
the rigorousness of formal languages, some authors have
proposed controlled natural languages, which are engineered
to resemble natural languages [25].

A controlled natural language (CNL) defines a constrained
use of a natural language’s grammar (syntax) and a set of
terms (comprising the semantics of these terms) to be used
in the constrained grammar [1], [2]. The adoption of CNLs
may have the following benefits: CNL sentences are easy to
understand since they are like sentences in natural language;
however, they are less ambiguous than expressions in natural
language, since they have simplified grammar and a prede-
fined vocabularywith precise semantics; and are semantically
correct and can be computational manipulated since they may
have a formal grammar and predefined terms.

For the sake of the explanation of this paper, we consider
three different linguistic styles represented by two informal
CNLs (named as CNL-A and CNL-B) and a rigorously
defined CNL (the RSL language).

A. CNL-A AND CNL-B LANGUAGES
CNL-A and CNL-B are informally defined as follows.

CNL-A is intended to express statements in a compact
writing style, namely according to the following template:
‘‘<id> is a <type> <element> [, extends <isA>]?.’’,
in which ‘‘<id>’’, ‘‘<type>’’ ‘‘<element>’’ and ‘‘<isA>’’
are template fragments that are replaced by concrete text
fragments. Examples of sentences with this language can be:
kUser is a Person Stakeholder.
Customer is a User Actor.
CustomerVIP is a User Actor, extends a Customer.

On the other hand, CNL-B intends to express state-
ments in a more verbose, expressive, and complete writing
style, based on the following template: ‘‘< element><id>

[(<name>)]? is a <type> [and a <isA>]? [, described as
<description>]?.’’. Some equivalent sentences written with
this language can be the following:
Stakeholder KeyUser (Key User) is a Person, described as
a user representative.

Actor Customer is a User, described as a user that buys
products from the eShop.

Actor CustomerVIP (Customer VIP) is a User and a Customer,
described as a user that buys products from the eShop
with a special discount program.

B. RSL LANGUAGE
RSL is a controlled natural language designed for the rigorous
specification of requirements and tests [21], [26], [27]. RSL
includes several constructs logically classified according to
two dimensions [26]: abstraction level and specific concerns.
The abstraction levels are business, application, software, and
hardware levels. The concerns are active structure (subjects),
behavior (actions), passive structure (objects), requirements,
tests, relations and sets, and other concerns. From a syntac-
tical perspective, any construct can be used in any type of
system regardless of its abstraction level.

143508 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

FIGURE 2. RSL partial metamodel with use cases and related constructs.

Fig. 2 shows the RSL partial metamodel that involves the
constructs mostly related to this paper, particularly focused
on use cases specification. For example, Fig. 2 suggests that:
a use case may aggregate a set of scenarios; there are different
types of relationships between use cases, namely extend and
include relationships; a use case may use one data entity or
a cluster of data entities; a use case shall have one primary
actor (who has the use case’s goal) and might be participated
or supported by other actors.

The examples illustrated above can be represented with
RSL as:
Stakeholder KeyUser ‘‘Key User’’: Person [description ‘‘a
user representative’’]

Actor Customer: User [description ‘‘a user that buys
products from the eShop’’]

Actor CustomerVIP ‘‘Customer VIP’’: User [isA Customer
description ‘‘a user that buys products from the eShop
with a special discount program’’]

III. LINGUISTIC PATTERNS AND LINGUISTIC STYLES
As discussed originally by Silva [21], a linguistic pattern is a
set of rules that defines the elements and the vocabulary that
shall be used in the sentences of these requirements technical
documents. An element rule consists in a set of element
attributes (e.g., <id>, <name> or <type>) defined by the
following properties: name, type and multiplicity. On the
other hand, a vocabulary rule defines a set of literal terms
(e.g., ’’User’’, ’ExternalSystem’’, ’Timer’’) used to catego-
rize some element attributes and to restrict the use of a limited
number of terms. For example, the linguistic pattern Actor is
defined by the following set of rules (i.e., the Actor element
rule and the ActorType vocabulary rule):
Actor ::
<id:ID> <name:String> <type:ActorType>
<stakeholder:Stakeholder>? <isA:Actor>?
<description:String>?

enum ActorType::
User | ExternalSystem

The Actor element rule defines its element attributes
(e.g., <id>, <name>, <type>, <isA>, <stakeholder>,
<description>) and for each attribute the respective name
(e.g., name, type, isA), type (e.g., ID, String, ActorType,
Stakeholder) and multiplicity (e.g., ’?’) properties. The mul-
tiplicity of an attribute is not represented by default (and
in this case means ‘‘1’’, a mandatory attribute), or can be
represented by the following characters ’?’, ’+’, and ’∗’
meaning, respectively, 0..1 (optional), 1.. ∗ (one or many),
and 0.. ∗ (zero or many). The type of an attribute can be a type
(e.g., ID, String, Boolean); an element type (e.g., the Actor of
the isA attribute); or a vocabulary type (e.g., the ActorType
of the type attribute).

The ActorType vocabulary rule is prefixed with the
‘‘enum’’ tag and defines the values of its parts, namely the
literals ‘User’ and ‘ExternalSystem’.

As shown in this simple example, a linguistic pattern
defines two key aspects: a set of element attributes with
respective name, type, and multiplicity; and a vocabulary,
with a limited number of terms.

Furthermore, as suggested in Fig. 3, a linguistic pattern can
be represented in multiple manners depending on the needs
and interests of its users. In this context, a linguistic style is a
concrete representation of a linguistic pattern, which means
that a linguistic style is a specific template to which attributes
of the linguistic pattern can be substituted. Thus, a linguistic
pattern can be represented by multiple linguistic styles, such
as CNL-A, CNL-B, and RSL.

A linguistic style is an ordered set of two types of text frag-
ments: literal text fragments (e.g., ‘actor’, ‘[‘, ‘]’, ‘, described
as‘); and other template text fragments that are represented by
the pattern ‘‘<element_name.attribute_name>’’, i.e., the ele-
ment name followed by its attribute name, delimited between
‘<’ and ‘>’ (e.g., <actor.type>). For brevity, it is possible to
omit the reference to the ‘‘element_name.’’. The multiplicity
constraints are represented by the same characters referred to
above (i.e., ‘?’, ‘+’ and ‘∗’).

VOLUME 9, 2021 143509

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

FIGURE 3. Relation between linguistic pattern and linguistic style (UML
notation).

Also, the syntactical rules that define RSL constructs are
compliant with the following general linguistic style, as a
set of formal rules defined by an Extended BNF gram-
mar. This grammar is supported by the Xtext framework
(https://www.eclipse.org/Xtext/), which provides a ready-to-
use integrated authoring tool, built on top of the Eclipse IDE.
‘Element’ id=ID (name=STRING)? ‘:’ type=ElementType (‘[’
(‘[‘ ‘isA’ super=[Element])? (‘description’
description=STRING)? [etc.] ‘]’)?

We can even use different formats to define linguistic
styles. For example, using a verbose representation (i.e., using
complete names of the attributes), we may have:
Actor <actor.id> [<actor.name>]? is a <actor.type> [,
extends <actor.isA>]? [, associated with the
Stakeholder <actor.stakeholder>]? [, described as
<actor.description>]?.

Or using amore compact representation (i.e., using unqual-
ified names of the attributes) we may have the equivalent
representation. For the sake of simplicity, this would be the
adopted format to represent the linguistic styles CNL-A and
CNL-B throughout this paper.
Actor <id> [<name>]? is a <type> [, extends <isA>]? [,
associated with the Stakeholder <stakeholder>]? [,
described as <description>]?.

While for the definition of the RSL, we use the following
type of representation:
‘Actor’ name=ID (nameAlias=STRING)? ‘:’ type=ActorType
(‘[’
(‘isA’ super=[Actor])?
(‘stakeholder’ stakeholder= Stakeholder)
(‘description’ description=STRING)? ‘]’)?

IV. USE CASES’ LINGUISTIC PATTERNS
As originally proposed by Jacobson, a use case is ‘‘a descrip-
tion of the possible sequences of interactions between the
system under discussion and its external actors, related to
a particular goal’’ [12]. Then, in the scope of the Use-Case
2.0 approach, Jacobson et al. define use case as ‘‘all the
ways of using a system to achieve a particular goal for a
particular user’’ [28]. Also, in the UML (Unified Modeling
Language) specification, a use case is defined as ‘‘a set of
behaviors performed by a subject, which yields an observable
result that is of value for actors or other stakeholders of

the subject’’ [29], in which ‘‘subject’’ is the system under
discussion.

Some authors have adopted parts of the use case concept,
notably Cockburn [15], Wirfs-Brock and Schwartz [16], and
Constantine and Lockwood [17], [30] in what concerns the
writing of use case scenarios. Also, use cases were adopted
as a part of the UML and its diagrams are among the most
widely used parts of the language [29]. However, despite
its popularity, its adoption and use in practice are still hard
and inconsistent [15], [28], [31]. Due to this situation, the
patterns discussed in this paper consider the concept of ‘‘use
case’’ as defined by the UML standard, i.e.., use cases to
structure and specify the requirements of software systems,
which means that actors interact directly with the system
under consideration, or, as in Cockburn’s terminology [15],
they are ‘‘user-goals’’ or ‘‘elementary business processes’’
defined as ‘‘tasks performed by one person in one place at one
time, in response to a business event, which adds measurable
business value and leaves the data in a consistent state’’.

As illustrated in the mind map of Fig. 4, the linguistic
patterns discussed in this paper involve the following: actor,
use case, use case relationship, and use case scenario. The
patterns actor, use case, and use case relationship are based on
the UML language [29], while the pattern use case scenario
is inspired by the previous work of Cockburn [15], Wirfs-
Brock Schwartz [16], and Constantine and Lockwood [17].
The data entity and catch event patterns are used or referred in
the scope of the proposed use case pattern, but are discussed
elsewhere: in particular, the pattern data entity is extensively
discussed by Silva and Savic [22], and the pattern catch event
is based on the equivalent concept supported by languages
like BPMN or UML activity diagram.

This paper uses a running example to support the explana-
tion and discussion. This example refers to the requirements
of a fictitious information system called ‘‘BillingSystem’’,
which is an invoice management system inspired and adapted
from the example initially introduced by Silva [21]. Fig. 5
depicts some use cases and relationships of this example
with a simplified UML use case diagram: the BillingSystem
has to support the management of invoices customers, users,
products, etc. For the sake of simplicity, the examples showed
in this section are only represented in CNL-A and CNL-B
notations. However, Appendix A shows a more complete
description of these specifications in CNL-A, CNL-B, and
RSL, as well as an equivalent UML model.

A. ACTOR
1) LINGUISTIC PATTERN
In the scope of a requirements specification process, some
elements suggest subjects that start or participate in interac-
tions with the system under consideration. These elements
might be referred to in multiple requirements (such as user
stories or use cases) scattered throughout the text and, unfor-
tunately, inconsistently used with different names. Usually,
these elements denote different user roles, but can also denote

143510 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

FIGURE 4. A top-level view of the Use Case’s linguistic patterns (Mind Map notation).

FIGURE 5. Use case diagram of the BillingSystem example (UML partial model).

external systems, with which the system interacts. A good
practice is to explicitly define these elements with the Actor
construct and refer to it by its unique identifier whenever
relevant.

An Actor denotes an entity that has some goal on the use
case. Actors are usually end-users or external systems that
interact directly with the system and have a set of goals, i.e.,
tasks that need to get done using the system [12]. An actor is
also a special stakeholder (that would have direct interaction
with the system of discussion), but not every stakeholder is
an actor (e.g., a ‘‘manager’’ actor is a stakeholder, while a
‘‘project sponsor’’ is a stakeholder but usually is not an actor
because does not interact with the system.)

An Actor construct shall be defined by a unique id and
a type. Optionally, it can also include a suggestive name,
a generalization (isA) relationship to other (more abstract)
actor, a reference to a stakeholder, and a general description.
An actor shall be classified as a ‘‘User’’ or an ‘‘ExternalSys-
tem’’. Besides, concerning the relationship between actors
and use cases, the primary actor is the entity that has the
use case’s goal, while a supporting actor provides or receives
some information or service to or from the system.

The following rules define the linguistic pattern Actor with
its key fragments (lp1).
Actor ::
<id:ID> <name:String>? <type:ActorType>
<isA:Actor>? <stakeholder:Stakeholder>?
<description:String>?

enum ActorType ::
User | ExternalSystem

The application of this pattern is shown in this paper
with the languages CNL-A, CNL-B, and RSL. Also, this
pattern is found in other languages such as the UML [29],
SilabReq [32], [33], or XIS∗ [34]–[36]. However, these lan-
guages only support an id and name for the actors, while this
pattern recommends the explicit classification of actors and
the optional definition of the involved stakeholder.

2) LINGUISTIC STYLES
The following statements define different representations for
this pattern:

Style according to the informal CNL-A (s1-cnl-a):
<id> is a <type> Actor [and a <isA>]? [, refers to
<stakeholder>]?.

VOLUME 9, 2021 143511

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

Style according to the informal CNL-B (s1-cnl-b):
Actor <id> [(<name>)]? is a <type> [, and a <isA>]? [,
associated with the Stakeholder <stakeholder>]? [, who
<description>]?.

Style according to RSL (s1-rsl):
‘Actor’ id=ID (name=STRING)?‘:’ type=ActorType ‘[’
(‘isA’ super=[Actor])?
(‘stakeholder’ stakeholder =[Stakeholder])?
(‘description’ description=STRING)?

‘]’

3) GUIDELINES
In addition to a writing style, some practical guidelines shall
be taken into consideration, namely concerning the writing of
the following aspects:
• Id:
1) Identify the actor by a unique id so that it can be easily

referenced by use cases or in generalization relation-
ships between actors. Some authors prefer to only use
the name as the actor id for the sake of simplicity.

• Name:
2) Name an actor as the user role or as the external

system that interacts with the system. Use the com-
mon role names that already exist; do not invent new
ones.

3) Do not use job titles (e.g., ‘‘CEO’’, ‘‘CTO’’, ‘‘Project
Sponsor’’) because, despite they may have specific
needs and goals (i.e., they are stakeholders), they usu-
ally do not interact directly with the system.

• IsA (generalization relationship):
4) Only if need, define generalization relationships

between actors; this may be relevant if an actor is a gen-
eralization of others or vice-versa, i.e., a specialization
of another more general actor.

• Stakeholder:
5) If relevant, reference the stakeholder associated with

the actor; this may help to explicitly establish relation-
ships between actors and stakeholders. For instance,
the actor ‘‘Customer’’ can be associated with the stake-
holder ‘‘Organization Customer’’.

• Description:
6) If relevant, briefly describe the main goals of the actor.

4) EXAMPLES
Considering the BillingSystem example (see Appendix A for
a more complete description) and following a text analysis,
we identify and annotate the actors with dashed underlined
text and so, we can identify concepts like User, Administra-
tor, Manager, Operator, Customer, and ERP. These shall be
common names for user roles (e.g., Administrator, Manager,
Operator, Customer) and external systems (e.g., ERP), but
not names of concrete users (e.g., Mary or John), or job titles
(e.g., CEO, CIO, project manager).
A user is someone that has a user account and is
assigned to a user role, namely as [...].
The manager shall [...]. The operator shall [...].
The operator shall create invoices (with
respective details defined as invoice lines) [...].

While in the scope of the creation or update of an
invoice, the operator can create a customer record. The
approved invoices shall be sent to the respective
customer [...].
At the beginning of each year, the System shall archive
and export all paid invoices of the last year to the
external system ERP-System [...].

From this analysis and considering the linguistic styles
defined above, actors can be defined as follows:

Actors represented according to the style s1-cnl-a:
a_Manager is a User Actor.
a_Operator is a User Actor.
a_Customer is a User Actor, refers to stk_Customer.
a_ERP is a ExternalSystem Actor.

Actors represented according to the style s1-cnl-b:
Actor a_Manager (Manager) is a User, who Approves
invoices, etc.

Actor a_Operator (Operator) is a User, who Manages
invoices and customers.

Actor a_Customer (Customer) is a User, associated with
the Stakeholder stk_Customer, who Receives approved
invoices to pay.

Actor a_ERP is a ExternalSystem.

B. USE CASES
A use case is defined as ‘‘a set of behaviors performed
by a subject, which yields an observable result that is of
value for actors or other stakeholders of the subject’’ [29].
As mentioned above in Section 1, this is a general defini-
tion [15], [28], [31]. So, it is difficult to consistently write
use cases in practice. This means that additional guidance and
information shall be associated with a use case, namely some
classification schema, an involved data entity, etc. It shall be
also important how to define relationships between use cases.
Finally, it shall be important to define use case scenarios
consistently.

To avoid the general definition of use cases, and conse-
quent difficulty to write them, the use case construct shall
involve the following aspects:

(1) A use case shall be classified by a set of use case
types; for instance, types commonly found in information
systems that support data management tasks, e.g., Entity-
Create, EntityRead, EntityUpdate, EntityDelete actions, and
more as suggested in Table 1.

(2) A use case may apply to a data entity or domain object
as extensively discussed in [22].

(3) A use case shall define at least the primary actor (who
has the goal or who triggers some action that led to achieving
some goal), and optionally other supporting actors that might
participate; these actors can be end-users or external systems
(see Section in 4.1).

(4) By default, a use case is triggered by the primary
actor; however, there are some situations in which use cases
are triggered by events such as timers, receive messages,
or conditional events.

(5) A use case can include preconditions and postcon-
ditions (or success guarantees) that define conditions or
assumptions that shall be true, respectively, before and after
a successful use case execution.

143512 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

TABLE 1. Example of use case types.

1) LINGUISTIC PATTERN
The following rules define the linguistic pattern UseCase
(lp2).
UseCase::

<id:ID> <name:String>? <type:UseCaseType>
<stakeholder:Stakeholder>?
<primaryActor:Actor>
<supportingActors:Actor>*
<triggeredBy:CatchEvent>?
<dataEntity:DataEntityGeneric>?
<precondition:STRING>?
<postcondition:STRING>?
... (Use Cases Relationships, see Section 4.3)
... (Use Cases Scenarios, see Section 4.4)
<description:String>?

enum UseCaseType::
‘EntityCreate’ | ‘EntityRead’ | ‘EntityUpdate’ |
‘EntityDelete’[...] //see Table 1

The application of this pattern is shown extensively in this
paper with the languages CNL-A, CNL-B, andRSL. Also, the
application of this pattern is partially found in other languages
such as UML [29] and SilabReq [32]. However, these lan-
guages do not provide some aspects and extensions proposed,
such as the notion of use case classification; the relationship
between a use case and a data entity used in its context; the
relationship between a use case and the stakeholder that may
have defined it; or the explicit identification of a catch event
that may trigger the use case (e.g., a timer event), in those
situations that the use case is not triggered by the primary
actor.

2) LINGUISTIC STYLES
The statements below suggest different concrete representa-
tions for the UseCase linguistic pattern.

TABLE 2. Guidelines for writing use case’s names: Common terms to use
and to avoid.

Style according to the informal CNL-A, with essential and
few optional properties of a use case (s2-cnl-a):
<id> is a <type> UseCase [with <dataEntity>]? [, actor
<primaryActor>] [and participated by
<supportingActors>*]? [, triggered by <triggeredBy>]?.

Style according to the informal CNL-B (s2-cnl-b):
UseCase <id> [(<name>)]? is a <type>

[with <dataEntity>]?,
[actor <primaryActor>]
[and participated with actor(s) <supportingActors>*]?
[, triggered by <triggeredBy>]?
[, precondition <precondition>]?
[, postcondition <postcondition>]?
[, described as <description>]?.

Style according to RSL (s2-rsl):
‘UseCase’ id=ID (name=STRING)?‘:’ type=UseCaseType ‘[’

(‘primaryActor’ primaryActor=[Actor])
(‘supportingActors’ supportingActors=[Actor]*)?
(‘triggeredBy’ triggeredBy=[CatchEvent])?
(‘dataEntity’ dataEntity=[DataEntityGeneric]*)?

(‘precondition’ precondition=STRING)?
(‘postcondition’ postcondition=STRING)?

(‘description’ description=STRING)?
‘]’

3) GUIDELINES
To better apply a writing style, some practical guidelines shall
be considered, such as the following:
• Id:

(G7) Identify the use case by a unique id to be easily
referenced by other use cases (e.g., in the scope of
include or extend relationships). Some authors pre-
fer adopting a less techie format to express these ids
(e.g., ‘‘manage invoices’’, ‘‘send invoices’’) while oth-
ers prefer a format using only hierarchies of numbers
(e.g., uc_1, uc_1_3) or a format combined by num-
bers and use case names (e.g., uc_1_manage_invoices,
uc_1_3_SendInvoices). Regardless of your preference,
do apply your format consistently.

• Name:
(G8) Name a use case with a ‘‘verb-noun’’ structure
that states the actor’s goal. E.g., ‘‘Approve Invoices’’,
‘‘Send Invoices’’, ‘‘Register Payment’’.
(G9) Use concrete ‘‘strong’’ verbs instead of general-
ized, weaker ones because weak verbs may indicate
uncertainty. As summarized in Table 2, strong verbs

VOLUME 9, 2021 143513

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

are: create, update, merge, calculate, migrate, send;
while weaker verbs are: make, report, use, organize,
record, find, process, maintain, list.
(G10) Use specific nouns instead of generic terms
because specific terms are stronger. Examples of strong
terms are invoice, payment, user account, customer;
while weaker terms are: data, paper, report. In gen-
eral, strong nouns correspond to the data entities’
names.
(G11) Define the verb from the primary actor’s per-
spective. For example, define ‘‘Receive Invoices not
yet Paid’’ (stated from the actor manager’s perspective)
instead of ‘‘Send Invoices not yet Paid’’ (from the
system’s perspective); or ‘‘Receive Closed Invoices’’
(from the actor ERP’s perspective) instead of ‘‘Send
Closed Invoices’’ (from the system’s perspective).

• Type:
(G12) Classify the use case according to some classifi-
cation schema; for example, based on types commonly
found in information systems, like EntityCreate, Enti-
tyRead, EntityUpdate, EntityDelete, EntitiesImport,
and more as suggested in Table 1. This can be useful
to give a quick understanding of the use case and to
support search and filter features on the management
of use cases.

• Stakeholder:
(G13)Refer to the primary stakeholder that may have
defined the use case. Despite being optional, it can be
relevant to identify who is the main stakeholder of the
use case in case you need to understand and further
discuss it.

• Primary Actor, Supporting Actors, and Trigger Event:
(G14) The use case has a primary actor and may
have one or more supporting actors. In general and by
default, consider the primary actor as the subject that
triggers the use case (e.g., ‘‘Create Invoice’’, ‘‘Register
Payment’’) and so, in that situation do not express any
trigger event because it would be redundant.
(G15) Define and associate trigger events (e.g., a timer
event ‘‘Beginning of the Year’’ or a conditional event
‘‘Invoices not paid after 30 days’’) to use cases that
are not started by the primary actor but by the system
based on some catch event or condition (e.g., ‘‘Receive
Invoices not yet Paid’’, ‘‘Receive Closed Invoices’’).
(G16)Define and use consistently few types for classify
trigger events; use only catch event types, for example
as defined by the BPMN language (e.g., with timer,
conditional, signal, and error event types).

• Data entity:
(G17) If relevant, refer to the data entity manipulated
in the scope of the use case. In business information
systems, use cases manipulate data entities, which are
also commonly called conceptual or domain objects.
For instance, ‘‘Invoice’’, ‘‘Customer’’ or ‘‘Product’’ are
data entities of the running example (see [22] for further
details).

4) EXAMPLES
Considering the BillingSystem example, candidate actors
are annotated as , use cases as
underlined text, and data entities as bold text, as
follows:
User-operator shall create new invoices (with
respective invoice details). However, before sending an
invoice to a customer, the invoice shall be formally
approved by the user-manager. Only after such approval,
the user-operator shall issue and send that invoice
electronically by e-mail. Also, for each invoice, the
user-operator needs to keep track if it is paid or not.
At the beginning of each year, the System shall archive
and export allpaid invoices of the last year to the
external system ERP-System [...].

From this analysis we identify the following use cases:
‘‘create a new invoice’’, ‘‘update invoice’’, ‘‘approve
invoice’’, ‘‘issue and send invoice’’, ‘‘keep track if it is paid’’,
and ‘‘archive and export all paid invoices’’. These use cases
are mostly referring to a common data entity: invoice with
its details. From this analysis and considering the linguistic
styles defined above, we may define the following use cases
specification:

Use Cases represented according to the style s2-cnl-a:
uc_1_ManageInvoices is EntitiesManage UseCase with
e_Invoice, actor a_Operator.

uc_1_1_CreateInvoice is EntityCreate UseCase with
e_Invoice, actor a_Operator.

uc_1_2_UpdateInvoice is EntityUpdate UseCase with
e_Invoice, actor a_Operator.

uc_1_3_SendInvoices is EntitiesInteropSendMessage UseCase
with e_Invoice, actor a_Operator and participated by
a_Customer.

uc_1_4_PrintInvoice is EntityReport UseCase with
e_Invoice, actor a_Operator.

uc_1_5_RegisterPayment is EntityUpdate UseCase with
e_Invoice, actor a_Operator.

uc_4_ReceiveClosedInvoices is EntitiesInteropSendMessage
UseCase with e_Invoice, actor a_ERP.

Use Cases represented according to the style s2-cnl-b:
UseCase uc_1_ManageInvoices (Manage Invoices) is a
EntitiesManage with e_Invoice, actor a_Operator.

UseCase uc_1_1_CreateInvoice (Create Invoice) is a
EntityCreate with e_Invoice, actor a_Operator.

UseCase uc_1_2_UpdateInvoice (Update Invoice) is a
EntityUpdate with e_Invoice, actor a_Operator.

UseCase uc_1_3_SendInvoices (Send Invoices) is a
EntitiesInteropSendMessage with e_Invoice, actor
a_Operator and participated with actor aU_Customer.

UseCase uc_1_4_PrintInvoice (Print Invoice) is a
EntityReport with e_Invoice, actor a_Operator,
precondition ‘‘e_Invoice.state in {Approved, Issued,
Paid}’’.

UseCase uc_1_5_RegisterPayment (Register Payment) is a
EntityUpdate with e_Invoice, actor a_Operator,
precondition ‘‘e_Invoice.state = Approved’’,
postcondition ‘‘e_Invoice.state = Paid’’.

UseCase uc_4_ReceiveClosedInvoices (Receive Closed
Invoices) is a EntitiesInteropSendMessage with
e_Invoice, actor a_ERP, triggered by TimerEvent
‘‘Beginning of the Year’’.

C. USE CASES RELATIONSHIPS
According to the original definition of use cases [12] and as
defined in UML [29], use cases may establish relationships
to provide reusability and flexibility. To represent such rela-
tionships, the use case linguistic pattern shall consider the
following additional aspects:

143514 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

(1) A use case shall establish ‘‘include’’ relations to other
use cases; this relationmeans that the behavior of the included
use case is added to the source use case at a given point of its
execution.

(2) A use case shall define ‘‘extensions points’’ in its
context; this means that it can be extended by other use cases
in these specific points and based on some extend relations.

(3) A use case shall extend the behavior of other use cases
(the target use cases) in its specific extension point, by an
‘‘extend’’ relation.

1) LINGUISTIC PATTERN
The following rules extend the linguistic pattern Use-
Case (lp2) by supporting these relationships with the
version (lp3).
UseCase::

<id:ID> <name:String>? <type:UseCaseType>
...
(‘extensionPoints’ <extensionPoints:ExtensionPoints>)?
(‘includes’ <includes:UseCase>)*
(‘extends’ <extends:UCExtends>)*
...

UCExtends:
<targetUsecase:UseCase> ‘onExtensionPoint’

<targetExtensionPoint:ExtensionPoint>;

2) LINGUISTIC STYLES
The following statements define concrete representations for
the extended UseCase linguistic pattern, but just for the
CNL-B andRSL because, due to its inherent characteristics of
a compact and simple writing style, CNL-A does not include
such details of specification.

Style according to the informal CNL-B (s3-cnl-b):
UseCase <id> [(<name>)]? is a <type>
...
[, with extension points (<extensionPoints>)]?
[, includes <includes>]?
[, extends <targetUsecasen> on extension point
<targetExtensionPointn>]?

...

Style according to RSL (s3-rsl):
‘UseCase’ id=ID (name=STRING)?‘:’ type=UseCaseType ‘[’
...
(extensionPoints= UCExtensionPoints)?
(includes= UCIncludes)?
(extends+= UCExtends)*

...

3) GUIDELINES
To better apply a writing style, some practical guidelines shall
be considered, such as the following:

• ExtensionPoints:
(G18) Define suggestive names for the extensions
points; these names represent optional features or func-
tions that would extend the behavior of the source
use case, which can adapt the names of generic oper-
ations (e.g., xp_Create, xp_Update, xp_Print) or the
names of the related use cases (e.g., xp_PrintInvoice,
xp_CreateCustomer); You may also prefix their names
with a suggestive text, e.g. ‘‘xp_’’ or similar.

• Include relationship:
(G19) Identify the use case (with its identifier) to estab-
lish an include relationship to another use case.
(G20) Do not concern with the relative order of
the include relationship because this shall only be
expressed if you later define use case scenarios with
respective steps (see Section 4.4).

• Extend relationship:
(G21) Identify the use case (with a unique identifier) to
establish an extend relationship with another use case
(the target use case) and identify one of its extension
points.
(G22) Do not concern with the relative order of the
extend relationship because this shall only be expressed
if you define use case scenarios with respective steps.

4) EXAMPLES
Considering the BillingSystem example (see Appendix A)
and the use cases defined previously in Section 4.2.4,
we may define the relationships between them, namely
‘‘extend’’ and ‘‘include’’ relationships as depicted in
the UML use case diagram of Fig. 5. For example,
we may specify a general use case that supports the
management of invoices (the uc_1_ManageInvoices) and
defines several extension points (e.g., xp_Create, xp_Update,
xp_ConfirmPayment). Then, the other more specific use
cases (e.g., uc_1_1_CreateInvoice, uc_1_3_SendInvoices,
and uc_1_4_PrintInvoice) establish an extend relationship
with that general use case. On the other hand, consider-
ing that in the context of the use case ‘‘send invoices’’
(i.e., uc_1_3_SendInvoices) it needs to print the selected
invoice(s) into a PDF file, this interaction can be specified
by an include relationship between uc_1_3_SendInvoices and
uc_1_4_PrintInvoice.

With these considerations in mind, we may redefine the
above use cases, according to the linguistic style s3-cnl-b,
as follows:
UseCase uc_1_ManageInvoices is a EntitiesManage with
e_Invoice, actor a_Operator, with extensions points
(xp_Create, xp_SendInvoices, xp_PrintInvoice).

UseCase uc_1_1_CreateInvoice is a EntityCreate with
e_Invoice, actor a_Operator, extends
uc_1_ManageInvoices on extension point xp_Create.

UseCase uc_1_3_SendInvoices is a
EntitiesInteropSendMessage with e_Invoice, actor
a_Operator and participated with actor a_Customer,
extends uc_1_ManageInvoices on extension point
xp_SendInvoices, includes uc_1_4_PrintInvoice.

UseCase uc_1_4_PrintInvoice is a EntityReport with
e_Invoice, actor a_Operator, extends
uc_1_ManageInvoices on extension point xp_PrintInvoice.

D. USE CASE SCENARIOS
Use cases can be further detailed with the specification of
scenarios, namely one main or common scenario and several
nested, alternative, and exception scenarios. There are several
proposals for writing use case scenarios, however, we shall

VOLUME 9, 2021 143515

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

consider the following aspects when reasoning about this
linguistic pattern:

(1) A scenario can be described according to different
formats, such as an informal narrative story or as a structured
scenario with a flow of sequential steps, which is the format
discussed in this paper.

(2) If relevant, the behavior of a use case can be detailed by
a set of scenarios, which can be classified as Main, Nested,
Alternative or Exception scenarios; a use case may have just
one main scenario (also known as ‘‘basic path’’ or ‘‘happy
flow’’), and zero or more nested, alternative and exception
scenarios; if relevant, a scenario may be described by a
sequence of steps and additional sub-scenarios.

(3) Nested, alternative or exception scenarios shall be asso-
ciated to one specific step, and so, can be considered sub-
scenarios but with precise semantics, namely: (i) a nested
scenario assigned to a specific step means that the behavior
of such step is break-down into a sequence of (sub)steps
performed as a nested sub-flow; (ii) an alternative scenario
assigned to a specific step means that an optional or alterna-
tive behavior of that step can exist and can be defined with
this scenario; (iii) an exception scenario means behavior that
happens when something in that specific step can go wrong.

(4) Scenarios and steps shall be identified by a unique id
in the scope of their use case, and this id shall suggest some
nested and relative order, e.g., ‘‘1, 2, . . . , 2.2, 2.3, 2.3a., . . . ’’.

(5) Steps are usually triggered by an actor or by the system
under consideration, and, in more rare situations, by a catch
event; consequently, they can be classified as Actor, System,
or Event steps. Furthermore, a step can be classified by
the involved type of action, e.g., Actor-PrepareData, Actor-
CallSystem, System-Execute, System-ReturnResult, Event-
Timer, Event-Conditional.

(6) There are special steps that refer to the behavior
described by other use cases, which reflect include or extend
relationships. In this situation, a step can express such behav-
ior by a reference to the target or source use case and can
use tags like ‘‘Include’’, ‘‘Extend’’ or ‘‘ExtendedBy (this
corresponds to the inverse of the extend relationship).

1) LINGUISTIC PATTERN
The following rules define the linguistic pattern UseCaseSce-
nario (lp4) that shall be considered in the scope of a use case.
UseCase::

<id:ID> <name:String>? <type:UseCaseType>
...
(<mainScenario:MainScenario>)?
...

MainScenario::
(<idn:ID>)? <name:String>
(<description:String>)?
(<steps:Step>)*

Step::
<id:ID>
((<type:StepType> (<actor:Actor>)? <name:String>) |
(<ucTypen:StepUCType> <usecase:UseCase>))
(<description:String>)?
(<nextStep:NextStep])?
(<scenarios:Scenario>)*

Scenario::
<id:ID>
<type:ScenarioType> <name:String>
(<description:String>)?
(<stepsn:Step>)*

enum ScenarioType:: ‘Nested’|‘Alternative’|‘Exception’

enum StepType:: ‘Actor’ | ‘System’ | ‘Event’

enum StepUCType:: ‘Include’ | ‘Extend’ | ‘ExtendedBy’

2) LINGUISTIC STYLES
The following statements define two concrete representations
for the UseCaseScenario linguistic pattern (lp4), namely for
the languages CNL-B and RSL. Due to its inherent charac-
teristics of a compact writing style, CNL-A does not include
such details.

Style according the informal CNL-B (s4-cnl-b):
// UseCaseScenario
[<id>.]? Scenario <name> (Main): <description>?
<steps>*

// Step
<id>. [[<type [<actor>]?: <name>] | [<ucType> <usecase>]]
[<description>]? .
[Rejoin at <nextStep:Step>]?.
<scenarios>*

// Scenario
<id>. Scenario <name> (<type>): [<description>]?
<steps>*

Style according RSL (s4-rsl):
‘UseCase’ id=ID (name=STRING)?‘:’ type=UseCaseType ‘[’

...
(mainScenarios+=MainScenario)?
...

‘mainScenario’ id=ID ‘(’ ‘Main’ ‘)’ (name=STRING) ‘[’
(‘description’ description=STRING)?
(steps+=Step)* ‘]’;

‘step’ name=ID
(‘(‘(type=StepType)’)’
(name=STRING))|((typeUC=StepUCType)
(usecase=[UseCase])))
(‘actor’ actor=[Actor])?
(‘description’ description=STRING)?
(‘nextStep’ next=Step)?
(‘[‘ (scenarios += Scenario)* ’]’)?

‘scenario’ id=ID ‘(type=ScenarioType) (name=STRING) ‘[’
(‘description’ description=STRING)?
(steps+=Step)* ‘]’;

3) GUIDELINES
Follows practical guidelines for writing use case scenarios:

• Scenarios and Use Cases:
(G23) For each use case, determine the common
(or ‘‘happy’’) path to the actor’s goal; Ignore other
possible paths through the use case at first; write
these scenarios later, as alternative or exception
subscenarios.
(G24)Write a scenario as a sequence of steps, ordered
by time.
(G25) If a subscenario appears complex or if it is
important and you want to emphasize it, you may
decide to document it as a separate and complementary

143516 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

use case and express such connection through (i) an
include relationship, if it is a nested scenario; or
(ii) an extend relationship (or the inverse ‘‘extend-
edBy’’ relationship) if it is an alternative or exception
scenario. E.g., the step ‘‘3. Actor: Select a customer’’ of
the uc_1_1_CreateInvoice has an alternative scenario,
3a. Scenario CustomerNotExist, which expresses an
include to the use case uc_1_6_CreateCustomer.
(G26)Do not use both extend and extendedBy relation-
ship types; pick one type and use it consistently. For
instance, in this paper we used ‘‘include’’ and ‘‘extend-
edBy’’ in the examples shown (see Appendix A).

• Scenarios:
(G27) Do not give an id to the main (or common)
scenario; however, if you still want to give it an id, use
some special value like ‘‘0’’, ‘‘Step.0’’ or so.
(G28) Define an id to uniquely identify a nested, alter-
native, or exception scenario; this id shall be combined
with the step id to which the scenario is assigned
(e.g., ‘‘3.’’, ‘‘Step3.’’) with a letter (e.g., ‘‘a’’, ‘‘b’’)
giving an id such as ‘‘3.a’’, ‘‘Step2.b’’.
(G29) Define a name to a scenario; for example,
‘‘MainScenario’’ for the common scenario and a
short readable name like ‘‘SelectAndUnselectItems’’,
‘‘SearchItems’’, ‘‘CustomerNotSelectedException’’,
for the other scenarios.
(G30) Optionally, define a brief description of the sce-
nario; e.g., ‘‘Select and unselect invoices’’, ‘‘Search
invoices’’, ‘‘Customer not yet selected’’.
(G31)Define the type of the scenario; namely: ‘‘Main’’
for the main or common scenario, and ‘‘Nested’’,
‘‘Alternative’’ or ‘‘Exception’’ for, respectively, nested,
alternative, or exception subscenarios.
(G32)Be consistent in how to begin and end the scenar-
ios: i.e., your scenarios shall begin and end by a step
triggered by the system or by the actor. For instance,
in our examples, the main scenarios started always with
a step triggered by the system, e.g., the first step of the
uc_1_1_CreateInvoice’s main scenario is ‘‘1. System:
Shows the interaction space CreateInvoice . . . ’’, but
could be started by the actor with ‘‘1. Actor: Select the
option CreateInvoice from the interaction space Man-
ageInvoices’’. Both options are acceptable, so, pick one
and be consistent throughout your specification.
(G33) Do not use ‘‘Rejoint at’’ for nested scenarios: A
‘‘Rejoint at’’ is a special property of a step that allows
to terminate or interrupt the current control flow by
specifying the id of the next step; Because a nested
scenario represents a set of sub-steps, when its last
sub-step ends the control flow resumes to the next top-
level step, so you do not need to express that in a nested
scenario.
(G34) Do use ‘‘Rejoint at’’ for alternative or exception
scenarios, but only if need, i.e., only when the last sub-
step (of the alternative or exception scenario) ends the
control flows do not resume to the next top-level step.

• Steps:
(G35) Define explicitly the type of the step that shall
reflect who triggers the action: in general, the actor or
the system. Because you have explicit the step type, do
not add to the step sentence again the name ‘‘actor’’,
‘‘system’’ or similar because it will become redun-
dant. E.g., ‘‘3. Actor: Select a customer’’, ‘‘4. System:
Shows the customer’s data’’ in the main scenario of
uc_1_1_CreateInvoice.
(G36) For those use cases that are triggered by events
(e.g., see uc_3_ReceiveAlertOfInvoicesNotYetPaid or
uc_4_ReceiveClosedInvoices), their first steps are usu-
ally of type ‘‘event’’. Use consistently the same types
as discussed for G16, for instance, as defined by the
BPMN language (with timer, conditional, signal, and
error event types). Define a consistent format to write
event-based steps, e.g., for timer events, ‘‘Event Timer:
Beginning of the year’’ or ‘‘Event Timer: Starts on 1st
of January at 21:00, repeat every year’’ based on a
template like ‘‘starts on <date> [at <time>] [, repeat
every <time-period>]’’.
(G37) Write a step with a simple explanatory state-
ment, with no branching, exceptions, or groups of
steps; if need use instead nested, alternative or excep-
tion scenarios. See e.g., the nested scenario of the
uc_1_1_CreateInvoice ‘‘5a: Scenario CreateInvoice-
Line (Nested)’’, which is assigned to step 5, defined as
a simple statement like ‘‘5. Actor: Creates one or more
invoice lines’’.
(G38)Write steps in consistent and easy-to-read state-
ments; Steps shall not describe details related to
user interfaces, preliminary design, software archi-
tecture, or quality requirements. Avoid the use of
techie terms and define your own set of verbs and
objects, like those shown in Table 3, and use them
consistently.

4) EXAMPLES
Considering the BillingSystem example (see Appendix A)
and the use cases defined previously in the previous sec-
tions, we may consider that the main scenario of the use
case ‘‘uc_1_1_CreateInvoice’’ is defined informally by the
following brief description:

VOLUME 9, 2021 143517

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

TABLE 3. Guidelines for writing steps: Common verbs and terms to use
and to avoid.

However, this informal description can be improved signif-
icantly, for instance, according to the linguistic style s4-cnl-b
and the discussed guidelines:

UseCase uc_1_1_CreateInvoice
[...]
0. Scenario MainScenario (Main):
1. System: Shows the interaction space CreateInvoice with
empty fields and with the following actions: Confirm,
Cancel, AddInvoiceLine, AddCustomer; by default, the
invoice’s creation date is filled with the current
date, and the invoice’s id is filled with an auto-
number.

2. Actor: Selects a customer
3. System: Shows the customer’s data, namely its full
name and fiscal identification

4. Actor: Creates one or more invoice lines
5. Actor: Selects the action Confirm.
6. System: Validates the submitted data.
7. System: Creates the Invoice information, which shall
be in the ‘‘Pending’’ state.

8. System: Displays a success message of ‘‘Invoice
Created and Waiting for Approval’’.

2a. Scenario CustomerNotExist (Alternative): Customer
does not exist and has to be created
2a.1. Actor: Selects the action AddCustomer
2a.2. [ExtendedBy uc_1_6_CreateCustomer].

4a: Scenario CreateInvoiceLine (Nested): Create invoice
lines [Repeat ‘‘1.. *’’]
4a.1. Actor: Selects the action AddInvoiceLine
4a.2. Actor: Selects a product and enters the number
of items
4a.3. System: Updates the InvoiceLine and Invoice
values.

...
6a: Scenario CustomerNotSelectedException (Exception):
Customer not yet selected
6a.1 System: Check that a customer was not yet
selected.
6a.2 System: Displays an error message.
Rejoin at 2.

6b: Scenario InvoiceLineNotAddedException (Exception):
Invoice lines not yet added
6b.1 System: Check that there is not at least one

invoice line added.
6b.2 System: Displays an error message.
Rejoin at 4.

Further examples are included in Appendix A with the
scenarios of the use cases depicted in Fig. 5.

V. RELATED WORK
Writing requirements specifications has involved creating
descriptions of the application domain, prescription of what
the system shall do, and other organizational, legal, or techno-
logical constraints [1], [2], [5], [6]. In general, these require-
ments have been specified with natural languages due to their
higher expressiveness and ease of use. However, the use of
natural language presents also disadvantages like ambiguity,
inconsistency, and incompleteness, extensively discussed in
the literature [1], [9]–[11]. Due to these problems, specifi-
cations are usually written in a natural language but com-
plemented by some sort of models and other representations
that use controlled natural languages (CNLs) or semi-formal
modeling languages.

A CNL is a constructed language based on a natural lan-
guage, being more restrictive concerning lexicon, syntax, and
semantics while preservingmost of its natural properties [25].
CNLs have been designed to support technical writing or
knowledge engineering, to improve the translation, or to pro-
vide natural and intuitive representations for formal notations.
CNLs can be classified into two general categories: human-
oriented andmachine-oriented CNLs. Human-oriented CNLs
intend to improve the readability and comprehensibility of
technical documentation and to simplify and standardize
human-human communication for special purposes. On the
other hand, machine-oriented CNLs intend to improve the
translatability of technical documents and the acquisition,
representation, and processing of knowledge. Since the struc-
ture of CNLs is usually simpler than the structure of natural
language, in general, CNLs are easier for a computer to
process and more natural for humans to understand. An ideal
CNL for knowledge representation should also be effortless
to write and expressive enough to describe the problem at
hand [37].

These languages (e.g., CNLs and modeling languages)
include a set of elements – like glossary terms, data entities,
actors, use cases, or other types of requirements – that explic-
itly or implicitly define its abstract syntax and semantics, and
addresses different concerns at multiple abstraction levels.
Also, these languages offer different notations or concrete
syntaxes such as textual, graphical, tabular, or even form-
based representations [38].

Our first attempts on the research of requirements specifi-
cations started with the design of languages by Videira and
Silva [13], [14], Ferreira and Silva [39], Savic et al. [33],
Ribeiro and Silva [35], [36], and recently Silva [26] with the
RSL language. RSL is a rigorous CNL for the specification
of requirements and tests, that includes constructs commonly
used by the community, such as goals, use cases, user stories,
constraints, or quality requirements [21], [27]. The design of

143518 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

RSL strongly influenced (andwas influenced by) the proposal
of this set of patterns.

As referred in Section 1, this is the third on a series of
papers that discuss best practices for the writing of require-
ments specifications. The first paper of this series [21] intro-
duces the notions of linguistic pattern and linguistic style
and proposes a set of patterns for business-level concepts,
such as glossary term, stakeholder, business task, event, and
flow. It also discusses the representation of such patterns
with the RSL language. The second paper of this series [22]
discusses a set of patterns for data entities and related ele-
ments (e.g., data attributes, constraints, and enumerations)
and introduces the CNL-A and CNL-B informal languages.
That second paper also presents an extensive discussion of
the related work by comparing different representations of
data-related elements, specifically, by comparing NLs, for-
mal languages, CNLs, and modeling languages based on
the PENS framework [25]. Apart from the introduction of
the notions of linguistic pattern and linguistic style, that are
shared among these papers, this third paper has the same goals
as the others, but it is focused on how to better write use
cases and scenarios. Still, and differently from the others,
this paper also provides an extensive number of practical
guidelines.

Use case is one type of requirement that attracted a lot
of interest from the community, specifically in the scope of
modeling languages like UML [29] or SysML [40]. Use cases
were originally proposed by Jacobson to describe the func-
tional requirements of a software system in a text paragraph
style format [12]. Jacobson’s use cases were deliberately
simple and informal so that they could be understood by both
technical and business stakeholders. Their simplicity makes
them a popular technique for the aim of documentation and
validation [9], [28], [41].

But, as mentioned above, the use of natural languages
present difficulties in what concerns consistency and under-
standability [1], [2], [9]–[11], [22]. That means that without
recommendations on writing styles and specific guidance it
would be difficult to produce high quality and consistent
specifications. In this respect, Table 4 shows a concise com-
parison of relevant work in this area of requirements specifi-
cations focused on use cases. For each work (i.e., each line of
the table), ‘‘Y’’ indicates the presence of a specific property
or contribution. Each work contributes at a document and
or a sentence level and, at each of these levels, can con-
tribute with linguistic patterns (P), linguistic styles (S), and
guidelines (G), as discussed throughout this paper. Finally,
involving document-level approaches, a work can propose
and discuss aspects related to file templates (T).

For a more extensive analysis, Tiwari and Gupta [41]
review the existing literature for the evolution of the use cases,
their applications, quality assessments, open issues, and
future directions. They performed a keyword-based search to
identify the most relevant studies related to use case specifi-
cations research, which resulted in a data set of 119 papers
published between 1992 and 2014.

A. DOCUMENT-LEVEL APPROACHES
Some authors have discussed how to organize requirements
at a document-level, usually in the form of ‘‘requirements
specification templates’’. These requirements templates are
structured in chapters and complementary appendixes and are
usually supported by templates in Word, Excel, or similar
files, which are then customized or used directly.

For instance, Robertson and Robertson [42] propose the
Volere requirements specification template that first appeared
in 1995 and has evolved since then. The Volere techniques
are described in their book ‘‘Mastering the Requirements
Process’’ [2] and have expanded to include several aspects
such as the context or scope model, business use case, and
product use case scenarios to model responses and provide a
basis for both story writing and implementation strategy.

Cockburn [15] discusses some general aspects for a
requirements specification template (or in his terminology, a
‘‘requirements file’’), based on simple customization of the
Volere template.

Silva et al. [8] survey some requirements templates –
specifically IEEE Std 830-1998 [10], RUP Software Require-
ments Specification Template [3], and Withall template
[6] – and discuss a set of guidelines that would allow struc-
turing a requirements specification template in chapters and
complementary appendixes minimizing their dependencies.

Currently, web repositories like TemplateLAB(https://tem
platelab.com) or Project Management Docs(https://www.proj
ectmanagementdocs.com) provide a variety of use case tem-
plates and examples in Word or Excel files, some of them
inspired on the original contributes of Robertson and Robert-
son [42], Constantine and Lockwood [17], Cockburn [15]
and others. However, these templates usually only provide
a general structure and format for such documents and do
not include (or just include in a shallow way) practical guid-
ance on how to better write the sentences included in those
documents.

B. SENTENCE-LEVEL APPROACHES
Conversely, some works have discussed how to write require-
ments specifications at the sentence-level more systemati-
cally and consistently, which is the perspective of this paper.
Of course, these two groups of approaches – document-level
and sentence-level – shall be combined to produce better
requirements specifications.

1) APPROACHES ON USE CASES AND SCENARIOS
In what concerns the writing of use cases and scenarios
there have been several contributes. Some guidelines and
recommendations have been proposed namely concerning the
structure and style of sentences to reduce ambiguities and
inconsistencies, such as CP [19], CREWS [43], CR [44],
and SSUCD’s [45]. For instance, CREWS provides six style
guidelines and eight content guidelines for writing and refin-
ing these scenarios, and for integrating different scenarios
into a use case [46].

VOLUME 9, 2021 143519

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

TABLE 4. Summary of the Related Work.

Tiwari and Gupta [41] survey twenty use case templates
(at both document and sentence levels) that have been pro-
posed and applied for various specification problems rang-
ing from informal descriptions with paragraph-style text to
more formal keyword-oriented templates. Examples of such
templates are proposals by Lilly [18], Constantine and Lock-
wood [17], Wirfs-Brock and Schwartz [16], Leite et al. [47],
Cockburn [15], Dutoit and Paech [48], or Kulak and
Guiney [49]. Tiwari and Gupta [41] conclude that use cases
have been evolved from initial plain, semi-formal textual
descriptions to a more formal template structure facilitating
automated information extraction in various software devel-
opment life cycle activities such as requirement documen-
tation, requirement analysis, requirement validation, domain
modeling, test case generation, planning and estimation, and
maintenance.

However, these use case templates show some limitations
that are addressed and mitigated to some extent with our
proposal. First, they tend to mix both the ‘‘concepts’’ with
their ‘‘representations’’ or, in our terminology, the linguistic
patterns (i.e., abstract syntax with the definition of the key

elements and respective properties) with the linguistic styles
(i.e., concrete syntax with textual representations). In general,
most of the proposals are more focused on the discussion
of the concepts and not on their representation. For example
(i) the original use case template, proposed by Robertson and
Robertson [42], included elements like use case name, pre-
conditions, postconditions, basic and alternate flow of events;
or (ii) the use case template proposed by Cockburn [15]
included fields such as scope, level of abstraction, trigger,
main and alternate flows, variations, and extension points.

Second, these concepts and respective representations are
usually characterized in a general and informal way (e.g.,
with just natural language descriptions complemented with
some simple examples), which raises difficulties with their
application and use in practice. On the contrary, in our paper,
both linguistic patterns and linguistic styles are defined with
formal rules that help to mitigate these difficulties. In addi-
tion, by providing that separation between the concepts and
their representations, anyone can extend or define their rep-
resentations of use cases and scenarios but keeping and
applying the same set of concepts.

143520 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

Third, there are some concepts introduced in the linguistic
patterns discussed in this paper that were not found in the
analysis of the related work, namely the concepts of (i) actor
and use case classification, (ii) use case associate with a data
entity, (iii) use case triggered by a catch event, (iv) scenario
and step classification, (v) scenario that can be started by a
catch event or actor or the system itself.

Fourth, some guidelines discussed in this paper were nat-
urally borrowed from the related work, such as: Identify
the actor and the use case by a unique id (G1 and G7);
Name a use case with a ‘‘verb-noun’’ structure that states the
actor’s goal (G8); For each use case, determine the common
(or ‘‘happy’’) path to the actor’s goal; Ignore other possible
paths through the use case at first; write these scenarios
later, as alternative or exception sub-scenarios (G23); Write
a scenario as a sequence of steps, ordered by time (G24).
However, others were not found from the literature analysis,
namely, to mention a few: Classify the use case according to
some classification schema (G12); In general and by default,
consider the primary actor as the subject that triggers the use
case (G14); Define and associate a trigger event to use cases
that are not started by the primary actor but by the system
based on some event or condition (G15); Define and use
consistently few types for classify trigger events; use only
catch event types (G16); If relevant, refer to the data entity
manipulated in the scope of the use case (G17).

2) OTHER APPROACHES
Concerning the writing of other types of requirements,
some approaches have influenced the research discussed in
this paper. For instance, the ‘‘INCOSE Guide for Writing
Requirements’’ [11] is a popular and respected reference
in the systems engineering community, which includes a
broad set of characteristics and rules for helping write clear
and concise requirements and needs. The INCOSE guide
provides forty-one rules organized in the following cate-
gories: accuracy, concision, non-ambiguity, singularity, com-
pleteness, uniqueness, abstraction, tolerance, uniformity, and
modularity. Despite this guide mainly consider functional
requirements, some rules can apply as well to the writing
of use cases, e.g., Define terms (R4), Refer to diagrams and
tables (R25), Use active voice and identify the actor (R2),
Classify requirements by type (R31), or Conform to structure
and patterns (R44).

Mavin et al. [50] propose five structural rules for the writ-
ing of functional requirements based on the EARS approach
(the Easy Approach to Requirements Syntax), namely rules
for the following classes of requirements: ubiquitous (i.e.,
with the general structure ‘‘The <System Name> shall
<System Response>’’), state-driven, event-driven, optional
feature, and unwanted behavior.

On the other hand, from the agile software development
community, user stories have been widely used as ele-
ments to represent the requirements from the user’s point
of view. A user story is a semi-structured specification of
requirements using a sentence template following a popular

form like [51]: ‘‘As <Who>, I want/need/can/would like
<What>, so that <Why>’’, where it defines Who wants it,
What is expected from the system, and optionally, Why it is
important [51], [52]. Despite their popularity, user stories are
usually defined in a general and high-level way, with each
main action captured in a separate story. Therefore, stake-
holders may lose the ‘‘bigger picture’’ of the system they are
developing while the number of stories increases [53]. More-
over, some proposals have discussed similarities between
user stories and use cases, and how to provide transformations
between them [54], [55].

Raharjana et al. [56] conduct a systematic literature
review on the analysis and impact of NLP (natural lan-
guage processing) tools on user stories and concluded that
the purpose of NLP studies in user stories is broad, rang-
ing from discovering defects, generating software artifacts,
identifying the key abstraction of user stories, and trac-
ing links between model and user stories. Many of these
findings are similarly applicable to other types of require-
ments such as use cases or functional requirements. For
instance, manually reviewing requirements against such a
large number of rules and guidelines, as discussed above,
is a tedious, time-consuming, and error-prone task. To reduce
these limitations, this process has been supported by soft-
ware tools, like RAT (https://www.reusecompany.com),
QVscribe (https://qracorp.com/qvscribe/), IBMRQA (https://
www.ibm.com/products/requirements-quality-assistant), or
Requirements Scout (https://www.qualicen.de/en/), which
use NLP techniques to automatically analyze and check
the quality of requirements against some of these guide-
lines, like EARS [50], [57] and INCOSE [11], [58], [59].
Arrabito et al. [60] report an experience using three NLP
analysis tools, concerning their performance in detecting
ambiguity and under-specification in requirements docu-
ments and compare them concerning other qualities like
learnability, usability, and efficiency.

VI. EVALUATION BASED ON A PILOT USER SESSION
To evaluate the patterns, styles, and guidelines proposed in
this paper, and to receive feedback from people not directly
involved in this research, we conducted a pilot user session
based on a questionnaire that was sent to several subjects
(mainly IT students, researchers, professionals, and col-
leagues work on the RE area) and answered during April
and May of 2021. That questionnaire was answered by a
group of 24 subjects (see Fig. 6 for a graphical demographic
analysis), 8 women and 16 men, with at least a BSc degree,
namely 7 with a BSc, 9 with an MSc, and 8 with a Ph.D.
degree. Most of the participants had professional experience,
namely 4 participants with less than 3 years, 3 participants
between 3 and 10 years, and 10 participants with more than
10-years of experience. Participants had previous experience
in the following IT roles: software developer (10), require-
ments engineer (9), business analyst (8), quality assurance
engineer, and software tester (2).

VOLUME 9, 2021 143521

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

FIGURE 6. Demographic analysis of the group of participants in the pilot
user session.

A. USER SESSION SETUP
The user session was conducted under the following condi-
tions: tests took place at the participant’s environment (e.g.,
office or home environment); realization of the task without
previous use and learning of the proposed patterns; main
information sent by email; users were free to think and share
ideas if they wanted.

The user session and respective preparation processes
involved the following tasks:

Task-1: (Preparation)We prepared a PDF document (avail-
able at https://bit.ly/2Sxs1UE) that described a draft version
of the proposed linguistic patterns, styles, and guidelines; this
document also included a shorter version of the ‘‘BillingSys-
tem’’ example as discussed in the paper.

Task-2: (Preparation) We prepared a questionnaire using
Google Forms (available at https://bit.ly/3xPZt8Y) consisting
of 3 sections with a total of 17 questions:

Section 1: Respondent Characterization. The first five
questions (Q1 to Q5) were focused on the general characteri-
zation of the participant with the following aspects: national-
ity, gender, academic level, years of professional experience,
and type of professional experience.

Section 2: Linguistic Patterns, Styles, and Guidelines. Nine
questions (Q6 to Q14) were directly related to the assessment
of the proposed patterns, styles, and guidelines; we first asked
participants to rate in a 5-Likert scale (i.e., from 0 to 5,
0—Do not know, 1-Very Low, 2 -Low, 3-Medium, 4-High,
and 5-Very High) how does she rate the proposed linguistic

patterns, linguistic style, and guidelines, in what concerns
different specific qualities (e.g., relevance, simplicity, expres-
siveness, readability, completeness). Then, we include open-
ended questions so that respondents could provide more
information and feedback based on their knowledge and
understanding.

Section 3: Further Feedback. Three additional questions
(Q15 to Q16) were more time-consuming: the participant
was challenged to specify some use cases informally referred
in the case study (and not included in the sent PDF),
namely specify the use cases ’’uc_2_ApproveInvoices’’,
’’uc_2_1_ApproveInvoice’’, ’’uc_3_AlertInvoicesNotYet
Paid’’. Finally, participants were invited to shortly explain
their decisions regarding the previous question and provide
their general feedback.

Task-3: (Preparation)We prepared a list of participants and
invited them to collaborate in the user session. An email with
clear instructions on how to complete the survey was sent to
these candidate participants and they were asked to fill in the
evaluation questionnaire.

Task-4: (Execution) Each participant read the PDF doc-
ument with the additional instructions and performed
autonomously the proposed tasks; in the end, they answered
the evaluation questionnaire.

Task-5: (Analysis) We collected the responses submitted
by the participants and analyzed their results.

B. QUESTIONNAIRE ANALYSIS
As referred above, the questionnaire has several questions
grouped into three sections, in which section 2 is the most
extensive and involves three dimensions of analysis.

The first dimension concerns the evaluation of the dis-
cussed linguistic patterns (i.e., Actor, Use Case, Use Case
Relationships, and Use Case Scenario) based on the follow-
ing question: Q6. How do you rate the discussed Linguistic
Patterns? Responses to this dimension revealed good to very
good grades, as summarized in Table 5 and illustrated in the
box plot of Fig. 7. Use Case Relationships pattern was rated
slightly below 4 (i.e., 3.96), while the others had the average
ratings above 4, namely 4.04 for Actor, 4.26 for Use Case, and
4.13 for Scenario patterns in the 5-Likert scale (in which 1
is Very Low and 5 Very High). There was one participant
that answered 0 (meaning that she did not know how to rate
these aspects), and we did not consider her answer for these
numbers.

Some of the feedback provided by the participants on
the open-ended question about linguistic patterns was: ‘‘my
suggestion is to use figures for each example (use case, actor,
etc.) because the reader having a quick look at the figures
can better understand the involved concepts’’, ‘‘they capture
well the use case specs’’, ‘‘linguistic patterns are useful to
deal with the challenges of using natural language to describe
requirements’’, ‘‘you are asking for two different things in
your questionnaire question: (a) relevant and (b) complete’’.

The second dimension evaluates the proposed guidelines
associated with the respective patterns (i.e., Actor, Use Case,

143522 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

FIGURE 7. Results from the survey on the linguistic patterns (above) and
guidelines (below), box plots.

TABLE 5. How do participants rate the linguistic patterns and Guidelines?.

Use Case Relationships, and Use Case Scenario), which is
based on the following question: Q8. How do you rate the
Guidelines of the discussed linguistic patterns? Responses
to this question also revealed good to very good grades,
as summarized in Table 5 and illustrated in the box plot of
Fig. 7. Guidelines to the writing of the Actor pattern was rated
slightly below 4 (i.e., 3.96), while the others had the average
ratings above or equal 4, i.e., 4.00 for Use Case Relationships,
and 4.17 for Use Case and Scenario, in the 5-Likert scale
(in which 1 is Very Low and 5 Very High).

TABLE 6. How do participants rate the linguistic Styles (values on a 1–5
scale)?.

Some of the feedback provided by the participants on the
open-ended question about the guidelines was: ‘‘they are
quite good and promote the quality of use case specs’’, ‘‘use
case relationships are less likely to create ambiguities and
mistakes since there are not many things that can go wrong,
so the guidelines are not as relevant as the others’’, ‘‘the
guidelines are relevant and complete’’.

The third dimension evaluates the writing styles CNL-A,
CNL-B, and RSL considering the following qualities: sim-
plicity, expressiveness, readability, and completeness. Table 6
summarizes the average scores on this dimension, based on
which we may verify the following findings: RSL is the
most precise and complete writing style, with a score of,
respectively, 4.25 and 4.08, but is the less natural and simple
language, with respectively a score of 2.96 and 3.08. On the
other hand, CNL-A is less precise (with 4.46) and complete
(3.30). Finally, between these two, RSL-B is the most expres-
sive (3.88) and natural (3,75) writing style. Still regarding this
third dimension, to the question Q13 (i.e., Which notation
do you consider more appropriate for writing use cases and
scenarios?), 12 (50%) participants responded that CNL-B is
the most appropriate notation, followed by 10 participants
(42%) that voted for RSL, and only 2 participants (8%) that
voted for CNL-A. Follows some feedback provided by the
participants in this respect: ‘‘CNL-B is easier to read and
understand’’, ‘‘the CNL-B seems to be a good middle ground
between too much simplicity (such as provided by CNL-A)
and too much complexity (such as provided by RSL)’’,
‘‘CNL-B is a more natural language, so easier to learn and
adopt, although on a second run I consider the other notations
to bemore precise and therefore more helpful to someone that
is going to implement the specified requirements’’, ’’CNL-B
provides a balance of detail and succinct’’, ‘‘RSL seems to
be the most suitable’’, ‘‘CNL-B might be a little easier to
understand since it’s closer to the natural languages, however
RSL gives more complete information, while maintaining the
simplicity to read all the information’’, ‘‘I prefer RSL because
CNL-A and CNL-B are less complete but globally more near
natural language; as you insert more details, RSL is more far
from natural language but it is more precise and complete’’,
‘‘I prefer CNL-B because we need to discuss the use cases

VOLUME 9, 2021 143523

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

with the domain experts; the more the language deviates from
natural language, the harder it will be for them to validate
the requirements’’. These users’ preferences are aligned with
what we had perceived since RSL sentences are less natural
and less easy to read than the equivalents in CNL-A or
CNL-B. On the other hand, CNL-B provides a good balance
between expressiveness, naturalness, and simplicity.

Regarding the open-ended questions of section 3, most
of the participants did not answer. However, those that
answered provide encouraging comments and feedback, such
as: ‘‘Good work, Congrats!’’, ‘‘Keep going the work, really
good’’, ‘‘The paper gives some very nice explanations on the
’notion’ of a use case and summarizes a lot of very helpful
do’s and dont’s; as a lecturer (which I am right now) I would
love to share them with my students (hence, I am longing for
your paper to be published!); as a business analyst, working
quite extensively with use case (10+ years ago, for 10+year),
I do see a huge benefit in the do’s and dont’s’’. The analysis
of these comments led to the conclusion that it would be
helpful for the participants to have an appropriate tool editor
that would better support the writing of the chosen style,
and, on the other hand, they refer that more research shall
be developed around user stories and agile approaches.

To sum up, the results collected from this evaluation were
generally encouraging with positive scores in all the analyzed
dimensions. Even when it is stated that the number of par-
ticipants in the session is small, some usability experts, like
Nielsen and Landauer, observed that a group of 5 testers is
enough to uncover over 80% of the usability problems [61].
Also, since our questionnaire focuses on the usability of the
patterns, styles, and guidelines, we may claim that 24 partici-
pants are a fair number for an exploratory assessment, at least
to identify major flaws in the usability of such proposals.

VII. CONCLUSION
A requirements specification describes the technical concerns
of a system and is used throughout several stages of its
life cycle. It is a technical document that helps to share a
common vision of the system under consideration among the
main stakeholders, as well as facilitate its development and
management processes. The use of natural language in such
specifications is widespread and effective because humans
can easily read and write them. However, natural language
also shows inherent characteristics that often present as the
root cause of many quality problems, such as inconsistency,
incompleteness, and ambiguousness.

Due to these problems, natural language specifications are
many times supplemented with some sort of other models
and representations that use controlled, formal or semi-formal
modeling languages. These languages may include a set
of constructs (e.g., data entity, actor, use case, scenar-
ios, user stories) that explicitly or implicitly define its
abstract syntax and semantics, and addresses different con-
cerns and abstraction levels. These languages also provide
different notations or concrete syntaxes, such as textual,
graphical, tabular, form-based representations. Additionally,

as discussed in the related work, there are some propos-
als to better write different types of requirements, such as
functional requirements [2], [10], [11], [50], [57]–[59], user
stories [51], [52], [56], or use cases and scenarios [15],
[16]–[18], [47]–[49]. For instance, Tiwari and Gupta [41]
survey twenty use case templates that have been proposed and
applied for various specification problems.

However, these ‘‘use case templates’’ have some limita-
tions that are addressed and mitigated to some extent with
our proposal: First, they tend to mix both the ‘‘concepts’’
with their ‘‘representations’’. Second, these concepts and
respective representations are usually defined in a general and
informal way, which raises difficulties with their application
and use in practice. Third, there are some concepts introduced
in the linguistic patterns discussed in this paper that were not
found in the related work, namely: the concepts of actor and
use case classification, use case associate to a data entity,
use case triggered by a catch event, scenario and step clas-
sification, a scenario that can be started by a catch event or
actor or the system itself. Fourth, some guidelines discussed
in this paper were naturally borrowed from the related work,
however, others were not found from the related work, such
as: Classify the use case according to some classification
schema (G12); In general and by default, consider the primary
actor as the subject that triggers the use case (G14); Define
and associate a trigger event to use cases that are not started
by the primary actor but by the system based on some event
or condition (G15); Define and use consistently few types for
classify trigger events; use only catch event types (G16); If
relevant, refer to the data entity manipulated in the scope of
the use case (G17).

We claim that we need better and more specific guid-
ance to improve the way requirements engineers and product
designers write and validate their specifications. We argue
that improving the awareness and knowledge of linguistic
patterns, like the ones discussed in this paper, complemented
with writing styles and practical guidelines, may contribute to
enhance this current situation. On the other hand, as showed
throughout this paper with the languages CNL-A, CNL-B,
and RSL, these linguistic patterns may be represented in
practice by different writing styles, being it compact (as
with CNL-A), verbose (as CNL-B), or even based on a rig-
orous requirements specification language (as with RSL).
This discussion was supported by a simple yet pedagogical
and straightforward running example that allows illustrating,
in fact, both the proposed linguistic patterns and associated
writing styles. Appendix A includes a more complete version
of this example with multiple textual representations as well
as a visual UML notation.

This work was validated with a pilot user session with
24 participants, IT professionals and students, not directly
involved in the research. The feedback received from this
experiment was generally promising with positive scores in
all the analyzed dimensions.

For future work, we intend to research the following
challenges. First, survey how RE practices are adopted in

143524 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

real-world projects by IT consulting organizations, and eval-
uate how close these practices are from the contributes of
this paper. Second, discuss and define further linguistic pat-
terns, namely for user stories, goals, other types of require-
ments, as well as for test cases and acceptance criteria. Third,
explore and evaluate different writing styles, including and
combining textual with tabular and visual representations.
Fourth, explore and implement document automation fea-
tures, specifically by automatically generate requirements
specifications according to different writing styles (e.g., com-
pact or verbose styles) from an intermediate format like
the one defined with RSL or similar. Fifth, research NLP
techniques and libraries, and applied them to automatically
check and improve the quality of requirements at sentence
and document levels.

APPENDIX A: THE RUNNING EXAMPLE: BILLINGSYSTEM
This paper uses a running example to support the explana-
tion and discussion of the proposed linguistic patterns and
linguistic styles. This example refers to the requirements of a
fictitious information system called ‘‘BillingSystem’’ which
is an invoice management system. The following text par-
tially describes a variety of its informal requirements. For the
sake of consistency, we slightly modify the example initially
introduced in [21].

A. INFORMAL REQUIREMENTS
The following sentences describe the informal requirements
of the BillingSystem. For the sake of readability, these sen-
tences highlight special text fragments as follows: candidate
actors are ; data entities are bold, and
use cases are marked as underlined text.
The BillingSystem is a system that allows its users to
manage customers, products, and invoices.
A user is someone that has a user account and is
assigned to a user role, namely as administrator,
manager, operator, and customer.
The administrator may register and manage users[...].
The manager shall manage products and shall configure
VAT (value-added tax) values [...].
The operator shall manage customers and invoices [...].
The operator shall create invoices (with respective
details defined as invoice lines). An invoice shall
have the following information: customer id, dates
(e.g., of creation, approval, and paid), status (e.g.,
created, approved, sent, paid), total value with and
without VAT. Also, an invoice line shall include
product id, number of items, product value with and
without VAT. While in the scope of the creation or
update of an invoice, the operator can create a
customer record.
Before sending an invoice to a customer, the invoice
shall be formally approved by the manager. Only after
such approval, the operator shall print and send that
invoice electronically by e-mail. In addition, for each
invoice, the operator needs to keep track if it is paid
or not.
The System shall automatically alert the manager, for
all the invoices sent to customers but not yet paid,
after 30 days of their respective issue date.
At the beginning of each year, the System shall archive
and export all paid invoices of the last year to an
external system, the ERP-System.
[...]

The following text fragments describe the use cases and
related elements represented with the CNL-A, CNL-B, and
RSL languages. For the sake of briefness, these fragments
present a complete specification for only the use cases most
directly related to the management of invoices. Also, for the
sake of understandability and further comparison, Fig. A.1,
in Section A.2, shows the equivalent UML use case diagram,
and Section A.3 provides a very compact writing style based
on the user story pattern.

B. REPRESENTED GRAPHICALLY WITH A UML USE CASE
DIAGRAM
C. WITH AN AGILE AND VERY COMPACT WRITING STYLE
DataEntities: e_Customer, e_Invoice, e_InvoiceSimple, ...

Actors: Manager, Operator, Customer, ERP, ...

User Stories:
As a Operator I want to Manage invoices.
As a Operator I want to Create an invoice.
As a Operator I want to Update an invoice.
As a Operator I want to Send invoices to the customer.
As a Operator I want to Print invoices.
As a Operator I want to Register the payment of paid
invoices.

As a Operator I want to Create customer records.
As a Manager I want to Consult invoices waiting for
approval.

As a Manager I want to Approve invoices.
As a Manager I want to Receive alert of invoices not paid
When (conditional event) Invoices not paid after 30
days.

As a ERP system I want to Receive closed invoices When
(timer event) Beginning of the year.

D. WITH A COMPACT WRITING STYLE (CNL-A)
DataEntities:
e_Customer is a Master DataEntity [...].
e_Invoice is a Document DataEntity [...].
e_InvoiceSimple is a Document DataEntity [...].

Actors:
a_Manager is a User Actor.
a_Operator is a User Actor.
a_Customer is a User Actor.
a_ERP is a ExternalSystem Actor.

Use Cases:
uc_1_ManageInvoices is a EntitiesManage UseCase with

e_Invoice, actor a_Operator.
uc_1_1_CreateInvoice is a EntityCreate UseCase with
e_Invoice, actor a_Operator,
extends uc_1_ManageInvoices.

uc_1_2_UpdateInvoice is a EntityUpdate UseCase with
e_Invoice, actor a_Operator,
extends uc_1_ManageInvoices.

uc_1_3_SendInvoices is a EntitiesInteropSendMessage
UseCase with e_Invoice, actor a_Operator and
participated by a_Customer, includes
uc_1_4_PrintInvoice, extends uc_1_ManageInvoices.

uc_1_4_PrintInvoice is a EntityReport UseCase with
e_Invoice, actor a_Operator,
extends uc_1_ManageInvoices.

uc_1_5_RegisterPayment is a EntityUpdate UseCase with
e_Invoice, actor a_Operator,
extends uc_1_ManageInvoices.

uc_1_6_CreateCustomer is a EntityCreate UseCase with
e_Customer, actor a_Operator,
extends uc_1_1_CreateInvoice and uc_1_2_UpdateInvoice.

uc_2_ConsultInvoicesToApprove is a EntitiesBrowse UseCase
with e_Invoice, actor a_Manager.

uc_2_1_ApproveInvoice is a EntityUpdate UseCase with
e_Invoice, actor a_Manager,
extends uc_2_ConsultInvoicesToApprove.

VOLUME 9, 2021 143525

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

FIGURE A.1. Partial use case model of the BillingSystem (UML notation).

uc_3_ReceiveAlertOfInvoicesNotYetPaid is a
EntitiesInteropSendMessage UseCase with e_Invoice,
actor a_Manager, triggered by ConditionalEvent
‘‘Invoices not paid after 30 days’’.

uc_4_ReceiveClosedInvoices is a
EntitiesInteropSendMessage UseCase with
e_InvoiceSimple, actor a_ERP, triggered by TimerEvent
‘‘Beginning of the Year’’.

E. WITH A VERBOSE WRITING STYLE (CNL-B)
DataEntities:
DataEntity e_Customer is a Master [...].
DataEntity e_Invoice is a Document [...].
DataEntity e_InvoiceSimple is a Document [...].

Actors:
Actor a_Manager (Manager) is a User, who Approves

invoices, etc.
Actor a_Operator (Operator) is a User, who Manages
invoices and customers.

Actor a_Customer (Customer) is a User, associated with
the Stakeholder stk_Customer, who Receives approved
invoices to pay.

Actor a_ERP is a ExternalSystem.

Use Cases:
UseCase uc_1_ManageInvoices is a EntitiesManage with
e_Invoice, actor a_Operator, with extension points
(xp_Create, xp_Update, xp_ConfirmPayment,

xp_SendInvoices, xp_PrintInvoice).
UseCase uc_1_1_CreateInvoice is a EntityCreate
with e_Invoice, actor a_Operator,
postcondition ‘‘Invoice.state = Pending’’,
extends uc_1_ManageInvoices onExtensionPoint
xp_Create, with extension points (xp_CreateCustomer).

UseCase uc_1_2_UpdateInvoice is a EntityUpdate with
e_Invoice, actor a_Operator,
extends uc_1_ManageInvoices onExtensionPoint xp_Update,
with extension points (xp_CreateCustomer).

UseCase uc_1_3_SendInvoices is a
EntitiesInteropSendMessage with e_Invoice, actor
a_Operator and participated with actor a_Customer,
postcondition ‘‘Invoice.state = Issued’’,
includes uc_1_4_PrintInvoice,
extends uc_1_ManageInvoices onExtensionPoint
xp_SendInvoices.

UseCase uc_1_4_PrintInvoice is a EntityReport with
e_Invoice, actor a_Operator,
precondition ‘‘Invoice.state in Approved, Issued,
Paid’’,
extends uc_1_ManageInvoices onExtensionPoint
xp_PrintInvoice.

UseCase uc_1_5_RegisterPayment is a EntityUpdate with
e_Invoice, actor a_Operator,
precondition ‘‘Invoice.state in Issued’’,
postcondition ‘‘Invoice.state = Paid’’,
extends uc_1_ManageInvoices onExtensionPoint
xp_ConfirmPayment.

UseCase uc_1_6_CreateCustomer is a EntityCreate with
e_Customer, actor a_Operator,
extends uc_1_1_CreateInvoice onExtensionPoint

143526 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

xp_CreateCustomer,
extends uc_1_2_UpdateInvoice onExtensionPoint
xp_CreateCustomer.

UseCase uc_2_ConsultInvoicesToApprove is a EntitiesBrowse
UseCase with e_Invoice, actor a_Manager,
with extension points (xp_ApproveInvoice).

UseCase uc_2_1_ApproveInvoice is a EntityUpdate with
e_Invoice, actor a_Manager,
precondition ‘‘Invoice.state = Pending’’,
postcondition ‘‘Invoice.state = Approved OR
Invoice.state = Rejected’’,
extends uc_2_ConsultInvoicesToApprove onExtensionPoint
xp_ApproveInvoice.

UseCase uc_3_ReceiveAlertOfInvoicesNotYetPaidis a
EntitiesInteropSendMessage with e_Invoice, actor
a_Manager, triggered by ConditionalEvent ‘‘Invoices not
paid after 30 days’’.

UseCase uc_4_ReceiveClosedInvoices is a
EntitiesInteropSendMessage with e_InvoiceSimple, actor
a_ERP, triggered by TimerEvent ‘‘Beginning of the
Year’’.

Use Case’ Scenarios:

UseCase uc_1_ManageInvoices
[...]
0. Scenario MainScenario (Main):
1. System: Shows a list of Invoices and available
actions, namely of CreateInvoice, UpdateInvoice,
ConfirmPayment, SendInvoices, and PrintInvoice. In
addition, there are actions to Close the interaction

space, Select/Unselect Invoices, Search Invoices, and
Filter Invoices.

2. Actor: Browses the list of Invoices and consult
Invoices

3. Actor: Selects the option Close.
4. System: Shows the interaction space Home.
2a. Scenario FilterItems (Alternative): [...]
2b. Scenario SearchItems (Alternative): [...]
2c. Scenario SelectAndUnselectItems (Alternative): Select
and unselect invoices [...]

2d. Scenario CreateInvoice (Alternative):
2d.1. Actor: Selects the action CreateInvoice.
2d.2. [ExtendedBy uc_1_1_CreateInvoice] Creates an
Invoice.

2e. Scenario UpdateInvoice (Alternative):
2e.1. Actor: Selects the action UpdateInvoice.
2e.2. [ExtendedBy uc_1_2_UpdateInvoice] Updates a
selected Invoice.

2f. Scenario SendInvoices (Alternative):
2f.1. Actor: Selects the action SendInvoices.
2f.2. [ExtendedBy uc_1_3_SendInvoices] Sends selected
invoices to a customer.

UseCase uc_1_1_CreateInvoice
[...]
0. Scenario MainScenario (Main):
1. System: Shows the interaction space CreateInvoice with
empty fields and with the following actions: Confirm,
Cancel, AddInvoiceLine, AddCustomer; by default, the
invoice’s creation date is filled with the current
date, and the invoice’s id is filled with an auto-
number.

2. Actor: Selects a customer
3. System: Shows the customer’s data, namely his full
name and fiscal identification

4. Actor: Creates one or more invoice lines
5. Actor: Selects the action Confirm.
6. System: Validates the submitted data.
7. System: Creates the Invoice information, which shall
be in the ‘Pending’ state.

8. System: Displays a success message of ‘Invoice Created
and Waiting for Approval’.

2a. Scenario CustomerNotExist (Alternative): Customer
does not exist and has to be created
2a.1. Actor: Selects the action AddCustomer
2a.2. [ExtendedBy uc_1_6_CreateCustomer].

4a: Scenario CreateInvoiceLine (Nested): Create invoice
lines [Repeat ‘‘1.. *’’]

4a.1. Actor: Selects the action AddInvoiceLine

4a.2. Actor: Selects a product and enters the quantity
of items

4a.3. System: Updates the InvoiceLine and Invoice
values.

6a: Scenario CustomerNotSelectedException (Exception):
Customer not yet selected
6a.1 System: Check that a customer was not yet
selected.
6a.2 System: Displays an error message.
Rejoin at 2.

6b: Scenario InvoiceLineNotAddedException (Exception):
Invoice lines not yet added
6b.1 System: Check that there is not at least one
invoice line added.
6b.2 System: Displays an error message.
Rejoin at 4.

UseCase uc_1_3_SendInvoices
[...]
Scenario MainScenario (Main):
1. System: Shows the interaction space SendInvoices,
namely with the following settings [...], and with
available actions: Send, Cancel.

2. Actor: Sets criteria to send invoices [...], namely
shall select just one Customer and the respective
Invoices to send.

3. Actor: Select the action Send.
4. System: Validates the send criteria.
5. System: Creates an email message with all selected
invoices.

6. System: Send an email message to the Customer.
7. System: Displays a success message of ‘Invoices Sent
to the Customer’.

5a: Scenario PrintAndAttachInvoices (Nested): Print and
Attach Invoices
1. [Include uc_1_4_PrintInvoice] [Repeat for each
selected invoice].
2. System: Attach the printed PDF files to the email
message.

UseCase uc_1_6_CreateCustomer
[...]
Scenario MainScenario (Main):
1. System: Shows the interaction space CreateCustomer,
with empty fields, and with available actions (Confirm,
Cancel); by default, the customer’s creation date is
filled with the current date.

2. Actor: Fills the customer fields [...].
3. Actor: Select the action Confirm.
4. System: Validates the submitted data.
5. System: Creates the Customer information.
6. System: Shows the previous interaction space.
UseCase uc_4_ReceiveClosedInvoices
[...]
Scenario MainScenario (Main):
1. Event Timer: Beginning of each year.
2. System: Produces the list of closed invoices from
e_Invoice.

3. System: Sends the list of closed invoices to the
a_ERP.

4. Actor: Receives the list of closed invoices.
5. System: Moves the closed invoices from e_Invoice to
e_ClosedInvoice.

6. System: Register the success operation in Log.

F. WITH A RIGOROUS WRITING STYLE (RSL)
DataEntities:
DataEntity e_Customer: Master [...]
DataEntity e_Invoice ‘‘Invoices’’: Document [...]
DataEntity e_Invoice_Simple: Document [...]

Actors:
Actor a_Manager ‘‘Manager’’: User [description ‘‘Approves
Invoices, etc.’’]

Actor a_Operator ‘‘Operator’’: User [description
‘‘Manages invoices and customers’’]

Actor a_Customer ‘‘Customer’’: User [description
‘‘Receives approved invoices to pay’’]

VOLUME 9, 2021 143527

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

Actor a_ERP: ExternalSystem

Use Cases:
UseCase uc_1_ManageInvoices ‘‘Manage Invoices’’:
EntitiesManage [
primaryActor a_Operator
dataEntity ec_Invoice
extensionPoints xp_Create, xp_Update,
xp_ConfirmPayment, xp_SendInvoices,

xp_Print]

UseCase uc_1_1_CreateInvoice ‘‘Create Invoice’’:
EntityCreate [
primaryActor a_Operator
dataEntity e_Invoice
postcondition ‘‘e_Invoice.state = Pending’’
extensionPoints xp_CreateCustomer
extends uc_1_ManageInvoices onExtensionPoint xp_Create]

UseCase uc_1_2_UpdateInvoice ‘‘Update Invoice’’:
EntityUpdate [
primaryActor a_Operator
dataEntity e_Invoice
extensionPoints xp_CreateCustomer
extends uc_1_ManageInvoices onExtensionPoint xp_Update]

UseCase uc_1_3_SendInvoices ‘‘Send Invoices’’:
EntitiesInteropSendMessage [
primaryActor a_Operator
supportingActors a_Customer
dataEntity e_Invoice
postcondition ‘‘e_Invoice.state = Issued’’
includes uc_1_4_PrintInvoice
extends uc_1_ManageInvoices onExtensionPoint
xp_SendInvoices]

UseCase uc_1_4_PrintInvoice ‘‘Print Invoice’’:Entity
Report[primaryActor a_Operator
dataEntity e_Invoice
precondition ‘‘e_Invoice.state in Approved, Issued,
Paid’’ extends uc_1_ManageInvoices onExtensionPoint
xp_Print]

UseCase uc_1_5_RegisterPayment ‘‘Register Payment’’:
EntityUpdate [
primaryActor a_Operator
dataEntity e_Invoice
precondition ‘‘e_Invoice.state = Issued’’
postcondition ‘‘Invoice.state = Paid’’
extends uc_1_ManageInvoices onExtensionPoint
xp_ConfirmPayment]

UseCase uc_1_6_CreateCustomer ‘‘Create Customer (in the
Invoice context)’’: EntityCreate [
primaryActor a_Operator
dataEntity e_Customer
extends uc_1_1_CreateInvoice onExtensionPoint
xp_CreateCustomer
extends uc_1_2_UpdateInvoice onExtensionPoint
xp_CreateCustomer]

UseCase uc_2_ApproveInvoices ‘‘Approve Invoices’’:
EntitiesBrowse [
primaryActor a_Manager
dataEntity e_Invoice
extensionPoints xp_ApproveInvoice]

UseCase uc_2_1_ApproveInvoice ‘‘Consult and Approve
Invoice’’: EntityUpdate [
primaryActor a_Manager
dataEntity e_Invoice
precondition ‘‘e_Invoice.state = Pending’’
postcondition ‘‘e_Invoice.state in Approved,
Rejected’’
extends uc_2_ApproveInvoices onExtensionPoint
xp_ApproveInvoice]

UseCase uc_3_ReceiveAlertOfInvoicesNotYetPaid:
EntitiesInteropSendMessage [
primaryActor a_Manager
actorParticipates a_Manager
triggeredBy ConditionalEvent ‘‘Invoices not paid after
30 days’’

dataEntity e_Invoice_Simple]

UseCase uc_4_ReceiveClosedInvoices:
EntitiesInteropSendMessage [
primaryActor a_ERP
triggeredBy TimerEvent ‘‘Starts on 1st of January at
21:00, repeat every year’’
dataEntity e_Invoice_Simple
precondition ‘‘e_Invoice.state = Paid’’]

Use Case’ Scenarios:

UseCase uc_1_ManageInvoices
[...]
mainScenario s0 (Main) ‘‘Happy Flow’’ [
step s1 (System) ‘‘Shows a list of Invoices and available
actions, namely of CreateInvoice, UpdateInvoice, ...’’

step s2 (Actor) ‘‘Browse the list of Invoices and consult
Invoices’’ [
scenario s2a (Alternative) ‘‘Filter invoices’’ [
step s1 (Actor) ‘‘Selects the option ’aFilter’’’
step s2 (System) ‘‘Shows the filter options’’
step s3 (Actor) ‘‘Sets the criteria to filter
invoices’’
step s4 (Actor) ‘‘Selects the option Filter’’
step s5 (System) ‘‘Shows a list of invoices that
satisfy the defined filter criteria’’]

scenario s2b (Alternative) ‘‘Search invoices’’ [
step s1 (Actor) ‘‘Select the option a Search’’
step s2 (System) ‘‘Shows the search options’’
step s3 (Actor) ‘‘Enters the search query’’
step s4 (Actor) ‘‘Select the option Search’’
step s5 (System) ‘‘Shows a list of invoices that

satisfy the defined search criteria’’]
scenario s2c (Alternative) ‘‘Select and unselect
invoices’’ []
scenario s2d (Alternative) ‘‘Create invoice’’ [

step s1 (Actor) ‘‘Selects the option CreateInvoice’’
step s2 <extendedBy uc_1_1_CreateInvoice>]

scenario s2e (Alternative) ‘‘Update invoice’’ [
step s1 (Actor) ‘‘Selects the option UpdateInvoice’’
step s2 <extendedBy uc_1_2_UpdateInvoice>]

scenario s2f (Alternative) ‘‘Send invoices’’ [
step s1 (Actor) ‘‘Selects the option SendInvoices ‘‘
step s2 <extendedBy uc_1_3_SendInvoices>]]

step s3 (Actor) ‘‘Selects the option Close’’
step s4 (System) ‘‘Shows the interaction space Home’’]

UseCase uc_1_1_CreateInvoice
[...]
mainScenario s0 (Main) ‘‘Happy Flow’’ [
step s1 (System) ‘‘Shows the interaction space
CreateInvoice with empty fields and
with the following actions: Confirm, Cancel,
AddInvoiceLine, AddCustomer;
by default, the invoice’s creation date is filled with
the current date, and
the invoice’s id is filled with an auto-number.’’

step s2 (Actor) ‘‘Selects a customer’’ [
scenario s3a (Alternative) ‘‘Customer does not exist
and has to be created’’ [

step s1 (Actor) ‘‘Selects the action AddCustomer’’
step s2 <extendedBy uc_1_6_CreateCustomer>]]

step s3 (System) ‘‘Shows the customer’s data, namely his
full name and fiscal identification’’

step s4 (Actor) ‘‘Creates one or more invoice lines’’ [
scenario s4a (Nested) ‘‘Create Invoice Lines’’ repeat
‘‘1.. *’’[

step s1 (Actor) ‘‘Selects the action AddInvoiceLine’’
step s2 (Actor) ‘‘Selects a product and enters the

quantity of items’’
step s3 (System) ‘‘Updates the InvoiceLine and

Invoice values’’]]
step s5 (Actor) ‘‘Selects the action Confirm’’
step s6 (System) ‘‘Validates the submitted data’’ [

scenario s6a (Exception) ‘‘Customer not yet selected’’
[

step s1 (System) ‘‘Check that a customer was not
yet selected’’
step s2 (System) ‘‘Displays an error message’’
nextStep s0.s2]

143528 VOLUME 9, 2021

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

scenario s6b (Exception) ‘‘Invoice lines not yet
added’’ [
step s1 (System) ‘‘Check that there is not at least

one invoice line added’’
step s2 (System) ‘‘Displays an error message’’
nextStep s4]]

step s7 (System) ‘‘Creates the Invoice information, which
shall be in the ‘Pending’ state’’

step s8 (System) ‘‘Displays a success message of ‘Invoice
Created and Waiting for Approval’’’]

UseCase uc_1_3_SendInvoices
[...]
mainScenario s0 (Main) [
step s1 (System) ‘‘Shows the interaction space
SendInvoices, namely with the following settings [...],
and with available actions: Send, Cancel’’

step s2 (Actor) ‘‘Sets criteria to send invoices [...],
namely shall select just one Customer and the
respective Invoices to send’’

step s3 (Actor) ‘‘Selects the action Send’’
step s4 (System) ‘‘Validates the send criteria’’
step s5 (System) ‘‘Creates an email message with all
selected invoices’’ [
scenario s5a (Nested) ‘‘Print and Attach Invoices’’ [
step s1 <include uc_1_4_PrintInvoice> repeat ‘‘for

each selected invoice’’
step s2 (System) ‘‘Attach the printed PDF files into

the email message’’]]
step s6 (System) ‘‘Send email message to the Customer’’
step s7 (System) ‘‘Displays a success message of
‘Invoices Sent to the Customer’’’]

UseCase uc_1_6_CreateCustomer
[...]
mainScenario s0 (Main) ‘‘Happy Flow’’ [
step s1 (System) ‘‘Shows the interaction space
CreateCustomer, with empty fields, and with available
actions (Confirm, Cancel); by default, the customer’s
creation date is filled with the current date’’

step s2 (Actor) ‘‘Fills the customer fields [...]’’
step s3 (Actor) ‘‘Select the action Confirm’’
step s4 (System) ‘‘Validates the submitted data’’
step s5 (System) ‘‘Creates the Customer information’’
step s6 (System) ‘‘Shows the previous interaction space’’]

UseCase uc_4_ReceiveClosedInvoices
[...]
mainScenario s0 (Main) ‘‘Happy Flow’’ [
step s1 (Event:Timer) ‘‘Starts on 1st of January at 21:00,
repeat every year’’
event ev4_BeginningOfTheYear

step s2 (System) ‘‘Produces the list of closed invoices
from e_Invoice’’

step s3 (System) ‘‘Sends the list of closed invoices to
the a_ERP’’

step s4 (Actor) ‘‘Receives the list of closed invoices’’
step s5 (System) ‘‘Moves the closed invoices from
e_Invoice to e_ClosedInvoice’’

step s6 (System) ‘‘Register success operation in Log’’]

APPENDIX B: SUMMARY OF LINGUISTIC PATTERNS FOR
REQUIREMENTS SPECIFICATION: FOCUS ON USE CASES
G. LINGUISTIC PATTERNS
Actor

UseCase
UseCaseRelation
UCExtendRelation
UCIncludeRelation

UseCaseScenario
UseCaseScenarioStep

DataEntity (not discussed in this paper)

H. RECOMMENDED VOCABULARY
Actor
ActorType: User | ExternalSystem

UseCase

UseCaseType:
EntityCreate|EntityRead|EntityUpdate|EntityDelete
[...]

UseCaseRelation
UCExtendRelation:
extensionPoints, extends, onExtensionPoint

UCIncludeRelation: includes
UseCaseScenario
UseCaseScenarioType:
Main | Nested | Alternative | Exception

Step
StepType: Actor | System | Event
StepUCType: Include | Extend | ExtendedBy
Rejoin at

REFERENCES
[1] K. Pohl, Requirements Engineering: Fundamentals, Principles, and Tech-

niques. Berlin, Germany: Springer-Verlag, 2010.
[2] S. Robertson and J. Robertson, Mastering the Requirements Process,

2nd ed. Reading, MA, USA: Addison-Wesley, 2006.
[3] J. L. Eveleens and C. Verhoef, ‘‘The rise and fall of the chaos report

figures,’’ IEEE Softw., vol. 27, no. 1, pp. 30–36, Jan. 2010.
[4] Chaos Summary 2009 Report, the 10 Laws of Caos, Standish Group,

Boston, MA, USA, 2009.
[5] B. Kovitz, Practical Software Requirements: Manual of Content and Style.

Shelter Island, NY, USA: Manning, 1998.
[6] S. Withall, Software Requirements Patterns. Unterschleißheim, Germany:

Microsoft Press, 2007.
[7] J. Verelst, A. R. Silva, H. Mannaert, D. A. Ferreira, and P. Huysmans,

‘‘Identifying combinatorial effects in requirements engineering,’’ in Proc.
EEWC. Cham, Switzerland: Springer, 2013, pp. 88–102.

[8] A. R. Silva, J. Verelst, H. Mannaert, D. A. Ferreira, and P. Huysmans,
‘‘Towards a system requirements specification template that minimizes
combinatorial effects,’’ inProc. 9th Int. Conf. Qual. Inf. Commun. Technol.,
Sep. 2014, pp. 124–129.

[9] D. Fernéndez, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra, A. Vetro,
T. Conte, M. T. Christiansson, D. Greer, C. Lassenius, and T. Männistö,
‘‘Naming the pain in requirements engineering: Contemporary problems,
causes, and effects in practice,’’ Empirical Softw. Eng., vol. 22, no. 5,
pp. 2298–2338, 2017.

[10] IEEE Recommended Practice for Software Requirements Specifications,
Standard 830-1998, 1998, pp. 1–40, doi: 10.1109/IEEESTD.1998.88286.

[11] Guide for Writing Requirements, V.3, INCOSE, San Diego, CA, USA,
2019.

[12] I. Jacobson, Object-Oriented Software Engineering—A Use Case Driven
Approach. Reading, MA, USA: Addison-Wesley, 1992.

[13] C. Videira and A. R. Silva, ‘‘Patterns and metamodel for a natural-
language-based requirements specification language,’’ in Proc. of CAiSE
Short Paper, Jun. 2005, pp. 1–6.

[14] C. Videira, D. Ferreira, and A. R. Silva, ‘‘A linguistic patterns approach
for requirements specification,’’ in Proc. 32nd EUROMICRO Conf. Softw.
Eng. Adv. Appl. (EUROMICRO), Aug. 2006, pp. 302–309.

[15] A. Cockburn, Writing Effective Use Cases. Reading, MA, USA:
Addison-Wesley, 2001.

[16] R. Wirfs-Brock and J. Schwartz, ‘‘The art of writing use cases,’’ in Proc.
Tutorial OOPSLA Conf., 2001, pp. 1–159.

[17] L. Constantine and L. A. Lockwood, ‘‘Structure and style in use cases
for user interface design,’’ in Object Modeling and User Interface Design.
Reading, MA, USA: Addison-Wesley, 2001, pp. 245–280.

[18] S. Lilly, ‘‘Use case pitfalls: Top 10 problems from real projects using
use cases,’’ in Proc. Technol. Object-Oriented Lang. Syst. (TOOLS),
Aug. 1999, pp. 174–183.

[19] K. Cox, K. Phalp, and M. Shepperd, ‘‘Comparing use case writing guide-
lines,’’ in Proc. 7th Int. Workshop Requirements Eng., Found. Softw. Qual.,
2001, pp. 101–112.

[20] A. Durán, B. Bernárdez, M. Toro, R. Corchuelo, A. Ruiz, and J. Pérez,
‘‘Expressing customer requirements using natural language requirements
templates and patterns,’’ in Proc. IMACS/IEEE CSCC, Jul. 1999, pp. 1–6.

[21] A. R. Silva, ‘‘Linguistic patterns and linguistic styles for requirements
specification (I): An application case with the rigorous RSL/business-level
language,’’ in Proc. 22nd Eur. Conf. Pattern Lang. Programs, Jul. 2017,
pp. 1–27.

[22] A. R. Silva and D. Savić, ‘‘Linguistic patterns and linguistic styles for
requirements specification: Focus on data entities,’’ Appl. Sci., vol. 11,
no. 9, p. 4119, Apr. 2021, doi: 10.3390/app11094119.

VOLUME 9, 2021 143529

http://dx.doi.org/10.1109/IEEESTD.1998.88286
http://dx.doi.org/10.3390/app11094119

A. R. Silva: Linguistic Patterns, Styles, and Guidelines for Writing Requirements Specifications

[23] N. Fuchs, K. Kaljurand, and T. Kuhn, ‘‘Attempto controlled english
for knowledge representation,’’ in Reasoning Web. Cham, Switzerland:
Springer, 2008, pp. 104–124.

[24] S. Schneider, The B-Method: An Introduction. London, U.K.: Palgrave
Macmillan, 2001.

[25] T. Kuhn, ‘‘A survey and classification of controlled natural languages,’’
Comput. Linguistics, vol. 40, no. 1, pp. 121–170, Mar. 2014.

[26] A. R. Silva, ‘‘Rigorous specification of use cases with the RSL language,’’
in Proc. ISD, AIS, 2019, pp. 1–12.

[27] A. C. Paiva, D. Maciel, and A. R. Silva, ‘‘From requirements to automated
acceptance tests with the RSL language,’’ inCommunications in Computer
and Information Science, vol. 1172. Cham, Switzerland: Springer, 2020,
pp. 39–57.

[28] I. Jacobson, I. Spence, and B. Kerr, ‘‘Use-case 2.0,’’ Commun. ACM,
vol. 59, no. 5, pp. 61–69, 2016.

[29] OMG. (2017).Unified Modeling Language, Version 2.5.1. [Online]. Avail-
able: http://www.omg.org/spec/UML/

[30] L. Constantine, S. Lockwood, Software for Use: A Practical Guide to
the Models and Methods of Usage-Centred Design. Reading, MA, USA:
Addison-Wesley, 1999.

[31] I. Jacobson, ‘‘Use cases-Yesterday, today, and tomorrow,’’ Softw. Syst.
Model., vol. 3, no. 3, pp. 210–220, 2004.

[32] D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, and
A. R. Silva, ‘‘SilabMDD: A use case model-driven approach,’’ in Proc.
ICIST, Mar. 2015, pp. 1–6.

[33] A. R. Silva, ‘‘Use case specification using the SilabReq domain specific
language,’’ Comput. Inform., vol. 34, no. 4, pp. 877–910, 2016.

[34] A. R. Silva, J. Saraiva, R. Silva, and C. Martins, ‘‘XIS-UML profile for
eXtrememodeling interactive systems,’’ in Proc. 4th Int. WorkshopModel-
Based Methodolog. Pervas. Embedded Softw. (MOMPES), Mar. 2007,
pp. 55–66.

[35] A. Ribeiro and A. R. Silva, ‘‘XIS-mobile: A DSL for mobile applications,’’
inProc. 29th Annu. ACMSymp. Appl. Comput., Mar. 2014, pp. 1316–1323.

[36] A. Ribeiro and A. R. Silva, ‘‘Evaluation of XIS-mobile, a domain specific
language for mobile application development,’’ J. Softw. Eng. Appl., vol. 7,
no. 11, pp. 906–919, 2014.

[37] R. Schwitter, ‘‘Controlled natural languages for knowledge representa-
tion,’’ in Proc. 23rd Int. Conf. Comput. Linguistics, Posters. Strouds-
burg, PA, USA: Association for Computational Linguistics, 2010,
pp. 1113–1121.

[38] M. Mernik, J. Heering, and A. M. Sloane, ‘‘When and how to
develop domain-specific languages,’’ ACM Comput. Surv., vol. 37, no. 4,
pp. 316–344, 2005.

[39] D. de Almeida Ferreira and A. R. Silva, ‘‘RSL-IL: An interlingua for
formally documenting requirements,’’ in Proc. 3rd Int. Workshop Model-
Driven Requirements Eng. (MoDRE), Jul. 2013, pp. 40–49.

[40] OMG. (2017).System Modeling Language, Version 1.5. [Online]. Avail-
able: http://www.omg.org/spec/SysML/

[41] S. Tiwari and A. Gupta, ‘‘A systematic literature review of use case speci-
fications research,’’ Inf. Softw. Technol., vol. 67, pp. 128–158, Nov. 2015,
doi: 10.1016/j.infsof.2015.06.004.

[42] J. Robertson and S. Robertson, Volere Requirements Specification Tem-
plates, 2012. [Online]. Available: https://www.volere.com

[43] M. Kamal, M. Ahmed, and M. El-Attar, ‘‘Use case-based effort estimation
approaches: A comparison criteria,’’ in Proc. Int. Conf. Softw. Eng. Com-
put. Syst. Springer, 2011, pp. 735–754, doi: 10.1007/978-3-642-22203-
0_62.

[44] K. Cox and K. Phalp, ‘‘Exploiting use case descriptions for specification
and design an empirical study,’’ in Proc. 7th Int. Conf. Empirical Assess-
ment Softw. Eng., 2003, pp. 8–10.

[45] M. El-Attar and J. Miller, ‘‘A subject-based empirical evaluation of
SSUCD’s performance in reducing inconsistencies in use case models,’’
Empirical Softw. Eng., vol. 14, no. 5, pp. 477–512, Oct. 2009, doi:
10.1007/s10664-008-9101-9.

[46] C. B. Achour, C. Rolland, N. A. M. Maiden, and C. Souveyet, ‘‘Guid-
ing use case authoring: Results of an empirical study,’’ in Proc. IEEE
Int. Symp. Requirements Eng., Jun. 1999, pp. 36–43. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647646.731122

[47] J. C. S. do Prado Leite, G. D. S. Hadad, J. H. Doorn, and G. N. Kaplan,
‘‘A scenario construction process,’’ Requirements Eng., vol. 5, no. 1,
pp. 38–61, Jul. 2000, doi: 10.1007/PL00010342.

[48] A. H. Dutoit and B. Paech, ‘‘Rationale-based use case specifica-
tion,’’ Requirements Eng., vol. 7, no. 1, pp. 3–19, Apr. 2002, doi:
10.1007/s007660200001.

[49] D. Kulak and E. Guiney, Use Cases: Requirements in Context. Reading,
MA, USA: Addison-Wesley, 2012.

[50] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, ‘‘Easy approach to
requirements syntax (EARS),’’ in Proc. 17th IEEE Int. Requirements Eng.
Conf., Aug. 2009, pp. 317–322.

[51] Y.Wautelet, S. Heng,M.Kolp, and I.Mirbel, ‘‘Unifying and extending user
story models,’’ in Advanced Information Systems Engineering (Lecture
Notes in Computer Science), vol. 8484. Cham, Switzerland: Springer,
2014, pp. 211–225.

[52] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper,
‘‘Improving agile requirements: The quality user story framework and
tool,’’ Requirements Eng., vol. 21, no. 3, pp. 383–403, Sep. 2016, doi:
10.1007/s00766-016-0250-x.

[53] E.-M. Schön, D. Winter, M. J. Escalona, and J. Thomaschewski, ‘‘Key
challenges in agile requirements engineering,’’ in Proc. Int. Conf. Agile
Softw. Develop. (XP). Cham, Switzerland: Springer, 2017, pp. 37–51.

[54] Y.Wautelet, S. Heng, D. Hintea,M. Kolp, and S. Poelmans, ‘‘Bridging user
story sets with the use case model,’’ in Advances in Conceptual Modeling
(Lecture Notes in Computer Science), vol. 9975. Cham, Switzerland:
Springer, 2016, pp. 127–138, doi: 10.1007/978-3-319-47717-6_11.

[55] M. Elallaoui, K. Nafil, and R. Touahni, ‘‘Automatic transformation of user
stories intoUMLuse case diagrams usingNLP techniques,’’Proc. Comput.
Sci., vol. 130, pp. 42–49, Jan. 2018, doi: 10.1016/j.procs.2018.04.010.

[56] I. K. Raharjana, D. Siahaan, and C. Fatichah, ‘‘User stories and natural
language processing: A systematic literature review,’’ IEEE Access, vol. 9,
pp. 53811–53826, 2021.

[57] QRA Corp., ‘‘21 top engineering tips: How to write an exceptionally clear
requirements document,’’ Halifax, NS, USA, White Paper, 2018.

[58] A. A. Efremov and K. I. Gaydamaka, ‘‘INCOSE guide for writing Require-
ments. Translation experience, adaptation perspectives,’’ in Proc. CEUR
Workshop, 2019, pp. 164–178.

[59] QRA Corp., ‘‘Automating the INCOSE guide for writing requirements,’’
Halifax, NS, USA, White Paper, 2019.

[60] M. Arrabito, A. Fantechi, S. Gnesi, and L. Semini, ‘‘An experience with
the application of three NLP tools for the analysis of natural language
requirements,’’ in Proc. Int. Conf. Qual. Inf. Commun. Technol. Cham,
Switzerland: Springer, 2020, pp. 488–498.

[61] J. Nielsen and T. K. Landauer, ‘‘A mathematical model of the finding of
usability problems,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst.
(CHI), May 1993, pp. 24–29.

ALBERTO RODRIGUES DA SILVA received
a degree in informatics engineering from the
New University of Lisbon, in 1989, a M.S.
degree in electrical and computer engineering,
a Ph.D. degree in computer science and engi-
neering, and a Habilitation degree in computer
science and engineering from the Technical Uni-
versity of Lisbon, in 1992, 1999, and 2016,
respectively.

He is currently Associate Professor
(Habilitation) with the Instituto Superior Técnico, Universidade de Lisboa
(IST-UL), and Senior Researcher with INESC-IDLisboa. He has taughtmore
than 4000 students and supervised more than 10 Ph.D. students and 70M.Sc.
students. He has authored 6 technical books and more than 200 publications
in journals, conferences, and workshops with peer review, and has been
also editor of 5 scientific books. His research interests include information
systems, software engineering, model-driven engineering, requirements
engineering, document automation, and project management, and their
application in multiple domains.

Dr. Silva is a member of the OE, (Portuguese Chartered Engineers
Association), and the PMI (Project Management Institute). He is a Senior
Member of the Association of Computer Machinery (ACM). He received
awards and professional certifications such as JEEP, Scrum Master, PMP,
and IST Excellent Teaching.

143530 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.infsof.2015.06.004
http://dx.doi.org/10.1007/978-3-642-22203-0_62
http://dx.doi.org/10.1007/978-3-642-22203-0_62
http://dx.doi.org/10.1007/s10664-008-9101-9
http://dx.doi.org/10.1007/PL00010342
http://dx.doi.org/10.1007/s007660200001
http://dx.doi.org/10.1007/s00766-016-0250-x
http://dx.doi.org/10.1007/978-3-319-47717-6_11
http://dx.doi.org/10.1016/j.procs.2018.04.010

