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ABSTRACT Countless possibilities of recipe combinations challenge us to determine which additional
ingredient goes well with others. In this work, we propose RecipeBowl which is a cooking recommendation
system that takes a set of ingredients and cooking tags as input and suggests possible ingredient and recipe
choices. We formulate a recipe completion task to train RecipeBowl on our constructed dataset where the
model predicts a target ingredient previously eliminated from the original recipe. The RecipeBowl consists
of a set encoder and a 2-way decoder for prediction. For the set encoder, we utilize the Set Transformer
that builds meaningful set representations. Overall, our model builds a set representation of an leave-one-
out recipe and maps it to the ingredient and recipe embedding space. Experimental results demonstrate
the effectiveness of our approach. Furthermore, analysis on model predictions and interpretations show
interesting insights related to cooking knowledge.

INDEX TERMS Food ingredient combination, food ingredient recommendation, food ingredient relations,
recipe context learning, recipe recommendation, set representation learning.

I. INTRODUCTION
Finding the right additional ingredients and sample recipes is
an essential, yet challenging task in the culinary world due to
vast cooking possibilities [1]. Previous works have attempted
to build food recommendation systems [2], [3] using small
recipe datasets and shallow data-driven approaches. Food
pairing tasks [4]–[6] have been proposed, but were limited to
one-to-one ingredient recommendation. With multiple ingre-
dients available, a system that is able to provide reasonable
ingredient and candidate recipe choices based on sophisti-
cated cooking knowledge may be desirable.

In this work, we propose RecipeBowl, a set-based model
that jointly recommends ingredients and recipes. For exam-
ple in Figure 1, given lime, chicken breasts, olive oil and
garlic as input set, the user desires to cook an ’easy’, ’main
dish’ grilled in an ’oven’ using ’chicken’. In this case, the
RecipeBowl suggests ingredients (e.g., balsamic vinegar,
cilantro, white wine, rosemary and so on) that are likely to go
well with the input set and satisfy the user’s needs. Moreover,
candidate recipes (e.g. Easy Garlic Chicken, Grilled Pesto
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FIGURE 1. Overview of RecipeBowl Cooking Recommender. RecipeBowl
takes two types of input then recommends additional ingredients and
sample recipes. The bold-faced ingredient (balsamic vinegar) and recipe
(Easy Garlic Chicken) are the targets selected from their original recipe.

Chicken and so on) are also provided to guide the user’s
decisions on cooking.

We formulated a recipe completion task where the model is
given a leave-one-out set of ingredients and tag information
to predict one target ingredient previously excluded from
the original set. We constructed a dataset based on a large
recipe corpus Recipe1M [7]–[9] where each instance consists
of an leave-one-out set as input and target ingredient as
output. We then trained the model in a supervised learning
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setting where it has to predict the target ingredient and its
corresponding recipe given the leave-one-out set. The main
objective is to simultaneously learn two different embedding
spaces and push its vector projections towards the actual
vector representations in each space. The trained model pro-
vides recommendations based on similarity-based rankings
calculated between its predicted ingredient/recipe with the
actual ones in each of their embedding spaces.

We performed quantitative and qualitative analysis on our
model’s recommendations to demonstrate the viability of our
approach. Experimental results show that our model suggests
reasonable ingredients that are relevant to recipe context.
Observations on the predicted embedding space in t-sne visu-
alizations, set context vectors in clustermaps and attention
weights in heatmaps provide insight of how RecipeBowl uti-
lizes recipe contextual knowledge and derives it from various
ingredient combinations.

The major contributions are summarized as follows.
• We formulate a recipe completion task that trains a
model on set-to-one prediction in a supervised learning
setting.

• We propose RecipeBowl, a two-way cooking recom-
mender model that adopts the Set Transformer [10]
framework for building representations of ingredient
sets .1

• We introduce a large-scale recipe completion dataset [8],
[9] using Tf-Idf scores for selecting optimal target
ingredients.

• Both quantitative and qualitative analysis show that
RecipeBowl suggests practical choices based on recipe
context and ingredient relations.

II. RELATED WORK
A. LEARNING RECIPE REPRESENTATIONS
Cross-modal features, namely text and image features have
been widely used for generating recipe representations [7],
[11], [12]. These methods require image data to conduct
recipe-related tasks. Recently, Li et al. has introduced Recip-
tor, a Set Transformer-based model [10] for learning recipe
representations in a unsupervised fashion [9]. The authors
pre-trained recipe representations from Recipe1M [8] using
two loss functions which are the cosine similarity loss and
the triplet loss. The authors of this work demonstrated the Set
Transformer’s effectiveness by using the pre-trained embed-
dings for food-related downstream tasks such as cuisine
classification.

B. RECOMMENDATION IN FOOD DOMAIN
1) RECOMMENDING INGREDIENTS AND FOOD PAIRINGS
Previous works related to food pairing discovery have been
introduced where ingredient-ingredient relations are repre-
sented as edges in a network and its nodes denote the ingre-
dients. Ahn et al. firstly proposed to define food pairings
based on the number of flavor compounds shared between

1The code for RecipeBowl is available in https://t.ly/rV8t

two ingredients [4]. Park et al. introduced Kitchenette,
a Siamese Neural Networks based model trained on a large-
scale dataset Recipe1M [8] to predict food pairing scores
and discover novel ingredient pairings [6]. Haussman et al.
incorporated semantic-driven knowledge graphs for food rec-
ommendation [13]. While the previously mentioned authors
either utilized chemical information in ingredients or a large
recipe corpus in food pairing related tasks, Park et al.
further proposed to incorporate both aspects to construct a
large scale ingredient-compound network called FlavorGraph
using metapaths [14].

Prior works on recommending ingredients have also been
proposed. Shino et al. used ingredient categories and co-
occurrence relations to suggest suitable alternative ingredient
for a given recipe [15]. Liu et al. extended this approach by
considering the diversity of ingredient categories and novelty
of ingredient combinations [16]. De Clercq et al. used non-
negative matrix factorization and number of shared flavor
compounds information to retrieve eliminated ingredients
from recipes [3].

2) RECOMMENDING RECIPES
Previous works have focused on personalized recommenda-
tion of recipes using various features and employing machine
learning-based approaches [17]–[20]. Ge et al. proposed to
incorporate users’ tags and ratings that indicate food pref-
erences in recommendation [17], we employed a similar
approach by utilizing recipe tag information such as main
dish, 5-minute-cooking. Other works have additionally taken
nutrition-related factors into account to provide healthy food
recommendations [21]–[24].

Perhaps one of the previous works that is closest to our
task formulation is Cueto et al. [25]. The authors of this work
employed memory-based collaborative filtering approaches
to recommend ingredients for a given partial recipe. However,
the dataset used in their work is small compared to our
work as we trained our deep learning-based model on
Recipe1M [8]. Moreover, while Cueto et al.’s model suggests
only additional ingredients, our model is trained both on
ingredient and recipe representations and provides each of
their recommendations.

III. DATASET
A. PREPROCESSING ORIGINAL DATASET
We built an extended version of the Reciptor [9]
dataset containing 507,834 recipes which is a subset of
Recipe1M [7], [8]. Each recipe instance in our preprocessed
dataset contains a list of ingredients, cooking instructions and
cooking tags (630 unique tags) that were previously extracted
from Recipe1M. Since the rich tag information (e.g., easy,
healthy, seasonal [preference], main-dish, desserts, fruit
[cuisine category], meat, vegetarian, low-calorie [diet infor-
mation], american, european, asian [regional category]) from
Reciptor would be helpful in our task [17], we crafted
a 630-dimensional tag information binary vector for each
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TABLE 1. Examples of recipe completion data for RecipeBowl. Lime juice (0.30) in Easy Garlic Chicken Breasts, pizza crust (0.22) in Garden Ranch Pizza,
and red wine vinegar (0.18) in Creamy French Dressing are selected as target ingredients.

recipe instance. We prepared 3,729 unique ingredients and a
80%/10%/10% randomly partitioned dataset. Prior to dataset
construction, we excluded recipes with few (4 or less)
ingredients from each of the partitioned dataset. Therefore,
the dataset has 373,760 training recipes, 47,104 validation
recipes and 47,104 test recipes.

B. SELECTING TARGET INGREDIENTS
We adopted De Clercq et al.’s recipe completion-based
approach for training RecipeBowl [3]. Themodel is trained to
predict a target ingredient x given a leave-one-out setX where
x was previously eliminated from a original set X ∪ {x} of
ingredients. Based on the above learning objective, we con-
structed a dataset for recipe completion where each instance
includes an leave-one-out ingredient set, target ingredient and
cooking tag information. Our main emphasis is to help the
model learn cooking context based on the combinatory nature
of various ingredients. In De Clercq et al.’s work, the target
ingredients were selected randomly [3]. Among the randomly
selected ingredients, commonly occurring ones such as salt
and butter may act as trivial targets. These ingredients may
render the model unable to differentiate the characteristics of
ingredient combinations.

To prevent this, we selected target ingredients based on
their Tf-Idf (Term Frequent-Inverse Document Frequency)
score where terms and documents are ingredients and recipes
respectively [26]. The Tf-Idf score indicates the relative
importance of an ingredient within the recipe based on its
occurrence in the whole corpus. We first calculated the Tf-Idf
scores based on all ingredients, and then normalized them
within each recipe where term frequency for each ingredient
is always 1 in each recipe. We selected an ingredient x with
the highest Tf-Idf score and eliminated it from each recipe.

Conclusively, the inputs for training RecipeBowl on recipe
completion is the leave-one-out set X while the target is x for
each recipe instance X ∪ {x}. Table 1. shows the examples
of our recipe completion dataset. In Table 1., the normalized
Tf-Idf scores in Creamy French Dressing are low (e.g. salt
(0.06), sugar (0.09), olive oil (0.10)). On the other hand, lime
juice (0.30) inEasyGarlic Chicken Breasts, pizza crust (0.22)

FIGURE 2. Analysis on Target Ingredient Selection.

inGarden Ranch Pizza and redwine vinegar (0.18) inCreamy
French Dressing have the highest normalized Tf-Idf scores.

We further justify our target selection approach by the
following analysis. Figure 2. shows two distributions of target
ingredients based on different selection options (Random
and Tf-Idf). The distribution based on random selection is
skewed where the highly frequent target ingredients based on
random selection are commonly used ingredients (e.g. salt,
butter and sugar) in most recipes. On the other hand, the
distribution based on Td-Idf selection is relatively uniform
which provides a better learning setting for RecipeBowl.

Along with recommending ingredients, RecipeBowl aims
to simultaneously suggest recipe candidates. We utilized the
pretrained recipe embeddings from Reciptor [9] as ground
truths for training the recipe inference task of our model.
Since the pretrained embedding vectors include sequential
recipe context, we expect RecipeBowl to suggest acceptable
recipe candidates and benefit ingredient recommendation.

IV. MODEL
A. OVERVIEW
RecipeBowl takes a set of ingredients as input and predicts
a corresponding target ingredient and recipe as output
(Figure 3.). The ingredients including the target are repre-
sented as continuous vectors retrieved from an embedding
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FIGURE 3. Overall Model Description for RecipeBowl: An example recipe Easy Garlic Chicken Breasts is shown on the left side. Top K additional
ingredient and candidate recipe recommendations are shown on the right side.

lookup table initialized by the ingredient node embed-
dings from FlavorGraph [14]. The target recipe vectors
are pretrained embeddings retrieved from Reciptor [9]. The
RecipeBowl consists of the Set Encoder and the 2-way
Decoder. The Set Encoder encodes a set of ingredient vectors
into a set context embedding space. The 2-way Decoder maps
the set context vector into two different embedding spaces of
different modality. The model is trained to approximate the
predicted vector to its target ingredient and recipe vector in
its corresponding embedding space and is trained in a multi-
task learning fashion.

B. SET ENCODER - LEARNING SET REPRESENTATIONS
We adapt the Set Transformer framework in our model as the
Set Encoder module to build latent representations for incom-
plete sets of ingredients using attention mechanism [10].
In this work, we constructed the Set Transformer as a stack of
components including Induced Set Attention Blocks (ISAB)
and a Multihead Attention based pooling (PMA) layer. The
ISAB is fed with a input set of vectors to calculate self-
attention weights between the elements where the final output
is also a set of equal size. The PMA layer aggregates the
element-wise features by calculating their attention weights
on a set of parameterized seed vectors. Both ISAB and PMA
layer use Multihead Attention Blocks (MAB) which are the
components of the Transformer model originally proposed by
Vaswani et al. [27]. The MAB computes the attention func-
tion with multiple projections of the input queries and key-
value pairs. Different from the Set Transformer in Li et al.’s
Reciptor [9], we constructed our version of Set Transformer
with one ISAB followed by one PMA layer.

1) MULTIHEAD ATTENTION
Given a set of n dq-dimensional query vectors Q ∈ Rn×d and
its corresponding key-value pairs K ∈ Rn×dk , V ∈ Rn×dv ,
an attention function takes Q as input and produces outputs

using K, V. In our model, d = dq = dk = dv for simplicity.

Attention(Q,K,V ) = φ(QK>)V (1)

where φ is scaled softmax φ(·) = softmax(·/
√
d). The

outputs of the above function are expressed as a weighted
sum of V where each value’s weight is determined by a dot
product scalar of its corresponding key and the query.

An extended version of this mechanism called Multihead
Attention was introduced by Vaswani et al. where multiple
projections are applied to the query and key-value vectors to
produce different attention-based outputs [27]. The k-head
attention function has k triplets of linear transformations
WQ
i ,W

K
i ,W

V
i (i ∈ {1, 2, . . . , k}) each applied to Q, K and V

respectively. The k projections are each then fed into the atten-
tion function to produced k different outputs which are con-
catenated k-wise and finally projected into a h-dimensional
space. The Multihead Attention is mathematically expressed
as follows,

Multihead(Q,K,V )= (O1 ⊕ . . .⊕ Oi ⊕ . . .⊕ Ok )WO (2)

Oi=Attention(QWQ
i ,KW

K
i ,VW

V
i ) (3)

whereWQ
i ,W

K
i ,W

V
i ∈ Rd×h,WO

i ∈ Rh·k×d .

2) MULTIHEAD ATTENTION BLOCK
While the query, key and value vectors involved in Multihead
Attention may be different, the key and value vectors in the
Multihead Attention Block are the same. Given two sets of
vectors X,Y ∈ Rn×d , the MAB is mathematically expressed
as follows,

MAB(X,Y ) = LayerNorm(H + RFF(H ))) (4)

H = LayerNorm(X +Multihead(X,Y ,Y )) (5)

where RFF is a row-wise feedforward layer and LayerNorm
is layer normalization ( [28]).
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3) SET ATTENTION BLOCK
The Set Attention Block was proposed by Lee et al. as an
extension of the Multihead Attention Block to calculate self-
attention weights between the vectors in a set [10]. The output
from the SAB contains element-to-element interactions of
the set. Higher order relations between the elements can be
modeled through a stack of SABs. Our approach focuses on
learning the combinatory nature of ingredients which pro-
vides a rationale for using SABs in the model architecture.
Given a set of vectors X ∈ Rn×d , the SAB is expressed as
follows,

SAB = MAB(X,X) (6)

4) INDUCED SET ATTENTION BLOCK
Another extension variant of the Multihead Attention Block
proposed by Lee et al. is the Induced Set Attention Block.
The ISAB contains trainable inducing vectors that are fed
with the element vectors into theMAB to compute the outputs
which are again fed into another MABwith the same element
vectors [10]. Given a set of input vectors X ∈ Rn×d and a
set of inducing vectors K ∈ Rk×d , the ISAB is expressed as
follows,

ISAB = MAB(X,H) (7)

where H = MAB(K,X).

5) MULTIHEAD ATTENTION BASED POOLING LAYER
One of the common permutation-invariant methods to
aggregate the element-wise representations is element-wise
summation [29], [30]. However, Lee et al. proposed aggre-
gating the representations by applying multihead attention on
another set of m parameterized seed vectors S ∈ Rm×d [10].
Given a set of n ingredient vectors refined by the previous
SAB or ISAB, Z ∈ Rn×d , pooling by Multihead Atten-
tion (PMA) is expressed as follows,

PMA = MAB(Z,RFF(S)) (8)

6) SET TRANSFORMER
Conclusively, given an input set of ingredient vectors I ∈
Rn×d the Set Transformer we employed in our work is math-
ematically expressed as follows,

S=LayerNorm(ReLU(PMA(I ′)Ws+bs))I ′= ISAB(I) (9)

where Ws ∈ Rd×h, bs ∈ Rh are the weights and biases
for the final nonlinear transformation in the Set Transformer
and S ∈ Rh is the final latent representation for the set of
ingredients. We denote this as the Set Encoder in our whole
model architecture as it encodes a set of ingredients into a
latent embedding space.

C. 2-WAY DECODER - PREDICTING INGREDIENTS AND
RECIPES
The 2-way Decoder takes the set context vector concatenated
with a 630-dimensional tag vector as input to generate the

d-dimensional target ingredient vector and r-dimensional tar-
get recipe vector. The tag vectors are constraints to guide the
model’s predictive space. Given the encoded set representa-
tion S ∈ Rd and the tag binary vector T ∈ {0, 1}630, the
predicted vectors for both the target ingredient ŷp ∈ Rd and
recipe ŷq ∈ Rr are mathematically expressed as follows,

ŷp = LayerNorm(ReLU((S⊕ T)W1 + b1))W2 + b2 (10)

ŷq = LayerNorm(ReLU((S⊕ T)W3 + b3))W4 + b4 (11)

where W1,W3 ∈ Rh×d ,W2,W4 ∈ Rd×d are trainable
weights and b1, b2, b3, b4 ∈ Rd are trainable biases.

D. LOSS OBJECTIVE FUNCTION AND OPTIMIZATION
Given a pair of predicted and its ground truth target vectors
(ŷp, yp), we employed a negative likelihood loss function
based on a softmax over negative Euclidean distances in the
ingredient embedding space [31], [32]. As we trained our
model using batch sampling, the softmax for the Euclidean
distance between the ith pair (ŷp(i), yp(i)) is calculated over
the batch of target ingredient vectors including yp(i). Given
a batch B and model parameters 2, the loss objective for
RecipeBowl is mathematically expressed as follows,

f(x, y) = −
√
|x−y|2 (12)

Lp
(
ŷp(i), yp(i),2

)
= − log

e
f(ŷp(i),yp(i))

τ∑B−1
k=0 e

f(ŷp(i),yp(k))
τ

(13)

where τ is a temperature scalar for controlling model opti-
mization [33]. The model is therefore is trained on a dis-
tance metric learning setting since the Euclidean distance
between the predicted ingredient and target ingredient is
minimized [31]. Given the ith target ingredient as thet posi-
tive sample, we adopted the idea of using all other B target
ingredients in a batch as negative samples for better opti-
mization [34]. We will denote this scheme as using in-batch
negatives.

For training the model on recipe prediction given the ith
pair (ŷq, yq) in the training batch, we employed the cosine
embedding loss defined as below,

cosine(x, y) =
x · y
‖x‖ ‖y‖

(14)

Lq
(
ŷq(i), yq(i),2

)
= 1− cosine( ˆyq(i), yq(i)) (15)

Finally, the multi-objective loss function for a batch of
quadruplets (ŷp, yp, ŷq, yq) is as below,

L
(
ŷp, yp, ŷq, yq,2

)
=

1
B

B−1∑
i=0

Lp(i)+
1
B

B−1∑
i=0

Lq(i) (16)

where Lp(i),Lq(i) are the simplified notations of the loss
function for ith sample in batch.

V. EXPERIMENTS
A. EXPERIMENTAL SETTING
We conducted experiments to evaluate and compare our pro-
posed RecipeBowl’s performance on recipe completion task

VOLUME 9, 2021 143627



M. Gim et al.: RecipeBowl: Cooking Recommender for Ingredients and Recipes

with other model options. We firstly performed a simple pre-
liminary experiment by giving each leave-one-out input set of
ingredients the same list of ingredients sorted by their occur-
rence as target ingredient in the whole dataset. We denote
this method as Popularity Choice. We selected traditional
machine learning approaches for our baseline experiments to
evaluate our proposed model architecture. We imported the
pre-trained FlavorGraph embeddings and summed each of the
input ingredients into a single 300-dimensional continuous
vector [14]. We then concatenated it with its corresponding
630-dimensional cooking tag vector. As a result, the dimen-
sion of each input vector is 930. The baseline models that
were used in this setting are Random Forest Classifier, Logis-
tic Regression andMLPClassifier andwere all imported from
the Scikit-learn Python package [35]. They are multi-class
classification models where the class labels are the 3,729
unique ingredients.

We additionally conducted baseline experiments on var-
ious types of Set Encoders to assess the use of our cus-
tom Set Transformer while retaining other model features
in RecipeBowl such as the Decoder and use of cooking tag
vectors. The baseline modules for the Set Encoders are the
following,
• Vanilla Sum: The ingredient vectors from the Flavor-
Graph embedding lookup table are summed into a single
set context vector for each recipe input. This resembles
the continuous bag-of-words model [36].

• Bidirectional LSTM: Previously used in recipe embed-
ding experiments by Li et al. [9], this module encodes
a sequence of ingredients in both directions into a set
context vector.

• Deep Sets: Introduced by Zaheer et al. and used in
Lee et al.’s baseline experiments [10], the Deep Sets
model is a permutation-invariant deep learning model
that builds deeper element-wise and set-wise represen-
tations through a stack of layers [30].

• Reciptor: Adopted from Li et al.’s [9], the Reciptor
model is a Set Transformer containing 2 ISABS, 1 PMA
and 1 SAB. All inherent MABs have 4 attention heads
while each ISAB has 16 trainable inducing vectors and
the PMA has 2 trainable seed vectors.

As our version of Set Transformer (1 ISAB, 1 PMA) is used
in the RecipeBowl architecture as the Set Encoder, we denote
other deep learning model variants by their corresponding Set
Encoder since the other components in the model architecture
are fixed.

1) MODEL TRAINING AND EVALUATION METRICS
We fit the traditional machine learning models into our large
training dataset and evaluated their performance based on
the predicted probabilities for each class (3,729 ingredients).
The predicted list of probabilities were sorted for evalua-
tive purposes. The deep learning architectures using various
Set Encoder modules including RecipeBowl and its ablated
versions were trained to the maximum of 60 epochs with

early stopping using the AdaBound optimizer [37]. All mod-
els were trained on the same training dataset and evaluated
on the same test dataset as well. The hyperparameters for
RecipeBowl that were estimated using the validation dataset
and are available in the anonymous code repository.

We retrieved the predicted ingredient vectors of test dataset
from the deep learning models including RecipeBowl, to gen-
erate ranking-based recommendation results. We then calcu-
lated a pairwise matrix of cosine similarity scores between
the vector predictions for the incomplete ingredient set in
test dataset and 3,729 actual ingredient vectors. We sorted
the similarity scores to obtain a ranked list of recom-
mended ingredients. Both lists are used for evaluation based
on multi-item recommendation. We used Mean Reciprocal
Rank (MRR) and Recall@K (K=1,5,10) to evaluate the rec-
ommendation results derived from the scores.

B. EXPERIMENTAL RESULTS
1) MODEL PERFORMANCE
We made 10 different 80%/10%/10% random splits of our
dataset to perform the main experiments on the recipe
completion task. In addition, the random initialization of
trainable parameters in deep learning models is different
according to each of the random split. For each model con-
figuration including the traditional machine learning models,
we calculated the mean and standard deviation of each eval-
uation metric MRR, Recall@1, Recall@5 and Recall@10.
We also conducted statistical tests to obtain p-values to prove
RecipeBowl’s statistical significance.

Table 2 shows the evaluation results of RecipeBowl
and other baseline models. Results show that RecipeBowl
achieved the highest performance in all metrics (MRR:
0.2261 (0.0020), Recall@1: 0.1358 (0.0020), Recall@5:
0.3166 (0.0021), Recall@10: 0.4072 (0.0023)). According to
the results, utilizing several model-related components and
additional features such as tag vectors helped RecipeBowl
outperform other model options. It is notable that our version
of the Set Transformer used in RecipeBowl has less model
complexity than Li et al.’s version used in Reciptor [9] which
led to better generalization results (MRR: 0.2103 (0.0011)).

2) ABLATION STUDY ON GENERAL MODEL ARCHITECTURE
Weperformed ablation tests to findwhether 1) utilizing recipe
context information, 2) employing a negative likelihood loss
function based on a softmax over euclidean distances with
in-batch negatives, 3) using the pre-trained FlavorGraph vec-
tors as initial embeddings for RecipeBowl and 4) adding
a Decoder before projecting the set context vectors into
another embedding space were effective or detrimental to
RecipeBowl’s training.

Table 3 shows the ablation results on RecipeBowl. All abla-
tion experiments were performed using the first random split
of our dataset. The ablation results illustrate the importance of
selecting the right loss criteria for training RecipeBowl. Com-
bining the effects of distance metric learning and in-batch
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TABLE 2. Evaluation results. Best results are in bold. All experiments were repeated 10 times with different splits. All results except Popularity Choice
have mean and standard deviation for each metric. All results compared to RecipeBowl have a p-value below 0.05 as result of significance test.

TABLE 3. Ablation test results. The best results are in bold. All results were obtained from experiments on the first random split of out dataset.

negatives randomly containing both easy and hard (highly
related to targets) ingredient negatives seemingly benefit
RecipeBowl’s performance.

In terms of model architecture, results show RecipeBowl’s
dependency on both the 2-way Decoder (MRR: 0.1343) and
tag vectors (MRR: 0.1463). Considering the risks of multi-
task learning, our ablation results show that recipe prediction
task does not negatively affect RecipeBowl but rather boosts
by a small amount (MRR: 0.2153). Though we imported
the pre-trained FlavorGraph embeddings from Park et al.’s
work, our ablation results show less difference in perfor-
mance (MRR: 0.2153) leaving room for further investigation.

VI. ANALYSIS
A. RecipeBowl RECOMMENDATIONS
The RecipeBowl accepts any ingredient sets and recommends
additional ingredients and candidate recipes which is illus-
trated in Figure 3. In Table 4, we show six different user
input examples with different cooking tags. Here, we recom-
mend top 10 ingredients and top 5 recipes. Our model made
accurate ingredient predictions (bold-faced) for the first four
examples. In addition, RecipeBowl provided relevant and
plausible alternatives other than the actual target ingredient
in those examples. Moreover, RecipeBowl served its purpose
as a 2-way recommender given the recommended recipe titles
that are relevant to both the user input and cooking tags.

For the last two examples in Table 4, although RecipeBowl
did not predict the correct target ingredients (bold-faced,
torillas, cooked white rice), there were still meaningful

suggestions. For the Mexican dish, our model recommended
tortilla chips at top 1 while tortillas are ranked third. For the
Rice dish, while our model did not predict perfectly (cooked
white rice, out of top 10), most of the recommendations are
still aligned with the target ingredient (e.g. wild rice, yellow
rice). We expect RecipeBowl’s flexibility and understanding
in cooking to be helpful in making cooking choices.

B. ANALYSIS ON PREDICTIONS IN EMBEDDING SPACE
Figure 4. shows the distribution of both target and predicted
embeddings vectors. While the predicted ingredients are
close to their corresponding targets, the embedding seemed to
be clustered into eight categories overall. This shows that the
RecipeBowl model learned not only the optimal ingredient
for the given set but also recipe categorical features.

Figure 5. shows the distribution of sixteen target embed-
dings and their corresponding predictions which is illus-
trated in the Embedding Space of Figure 3. In this analysis,
16 target ingredients were randomly selected according to
their ingredient categories along with their predictions in
the test dataset. Most of the predicted ingredients tended to
form clusters corresponding to the selected targets. More-
over, some target ingredients are centered in the prediction
clusters (e.g. mashed bananas, bread, chicken breasts). Inter-
estingly, clusters that belong to the same ingredient category
(e.g. pork chops, chicken wings, chicken breasts) tend to be
relatively close to each other. We also found target pairs
bread flour&yeast and cocoa&chocolate being close to each
other along with their prediction clusters. Bread flour and
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TABLE 4. RecipeBowl Recommendation Results. Examples of these six cases are all from the test set. For the first four examples, RecipeBowl model
accurately predicted the target ingredient (bold-faced), but the last two examples, it did not. However, the recommendations still seem reasonable.

FIGURE 4. Predicted ingredient vector embeddings. (10,000 sampled in
test).

yeast are known to be used together in most recipes while
cocoa is one of the materials for making chocolate chips.
These observations show that the RecipeBowl model learned
ingredient relationships during training.

C. ANALYSIS ON SET REPRESENTATION VECTORS
Figure 6. shows clustermaps of 150 randomly sampled set
context embedding vectors. The Set Context Embeddings
according to Figure 3 are the set-wise vectors from the Set

FIGURE 5. Predicted ingredient vector embeddings. (Sampled according
to 16 target ingredients).

Encoder, prior to being propagated to the 2-way Decoder.
We selected blueberries, apples, buttermilk and chocolate
chips from the previous list used in t-sne visualization
and extracted incomplete ingredient lists with equal size
of 150 containing each of them from the test dataset. We then
used the Set Encoder of RecipeBowl to generate 4 groups
of 150 set context vectors and visualized a clustermap for
each group. We selected blueberries and apples since both of
them are fruit ingredients used in a wide variety of dishes.
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FIGURE 6. Clustermaps of 150 set context vector embeddings for each target ingredient. The dimension size of each set context vector is 64. The recipe
names for each recipe cluster are representative examples.

FIGURE 7. Attention weights of ingredients for each set input. Bold-faced are target ingredients. The rest are input ingredients with attention values
transformed by min-max normalization for each recipe.

On the contrary, we additionally selected buttermilk and
chocolate chips that may be used in limited recipe cate-
gories such as bakery and desserts. The clustermaps shown in
Figure 6. seemed to show distinctive clusters which brought
interesting insight. For example, apples can be used in a wide
range of recipes such as sweet desserts (Caramel Apple),
bakery foods (Apple Maple Muffin) or as sauces in meat-
based dishes (Apple Pork Chops) [38], [39]. Buttermilk is
widely used in bakery products due to its nutritional value and
taste enhancement features [40]. We can observe that among
the sampled 150 set context vectors including buttermilk,
most of them were used in bakery recipes (Basic Chocolate
Cake). Overall, RecipeBowl can distinguish different types of
recipe context according to the uses of a particular ingredient.
The detailed clustermaps for these ingredients can be found
in the code repository.

D. ANALYSIS ON ATTENTION WEIGHTS IN SET ENCODER
Figure 7. shows attention weights of the input ingredients.
We extracted and aggregated the attention values computed
in the first MAB of the ISAB in RecipeBowl’s Set Encoder
in Figure 3 and normalized them with min-max scaling.
We studied the recommendation examples and observed
which ingredient seems to have high influence towards build-
ing the set context vector. For Spicy Tuna Salad Roll, nori
recieved the highest attention which helped RecipeBowl
understand the set input is mainly Japanese cuisine. For BBQ
Chicken Pizza, chicken breasts, fresh cilantro and red onions
were majorly attentive interestingly compared to mozzarella
cheese. Lastly, the input set for Casserole Quiche contained
ingredients mainly used in Mexican cuisine such as bell
peppers and chili peppers [41], [42]. In turn, we speculate that
RecipeBowl was able to predict tortilla chips based on highly

VOLUME 9, 2021 143631



M. Gim et al.: RecipeBowl: Cooking Recommender for Ingredients and Recipes

attentive values of the above ingredients as tortilla-related
ingredients are also commonly used in Mexican dishes.

VII. CONCLUSION AND FUTURE WORK
We introduce RecipeBowl, a set-based cooking recommender
for candidate ingredients and recipes. To train the model,
we formulate a supervised learning recipe completion setting
using an extended dataset from Reciptor [9]) and employing
the Set Transformer [10] framework to encode ingredients
into a set context representation. Based on the evaluation
results from the formulated recipe completion task, our
model showed best results among other set encoding varia-
tion baselines and traditional machine learning algorithms.
Recommendation results demonstrate RecipeBowl’s ability
to generate both plausible and diverse recommendations for
a given set of ingredient. We performed in-depth model anal-
ysis on RecipeBowl (illustrated in Figure 3) in a bottom-
to-top fashion starting from the predicted Embedding Space
where the vector embeddings formed meaningful clusters.
We also investigated the visualizations of the set context
vectors which are the direct outputs from the Set Encoder
and examined the attention weights extracted from the Set
Encoder itself and found them supportive to our model’s per-
formance. In sum, our formulated recipe completion task and
set representation approaches were proved to be beneficial in
suggesting ingredients and recipes.

For the future work, while RecipeBowl was able to sug-
gest both appropriate ingredients and recipe candidates for
a given set of other ingredients, some recipe candidates
seemed inconsistent with the suggested ingredients. We plan
to improve RecipeBowl by encouraging it to recommend
recipe candidates related to some of its suggested ingredi-
ents. Though our RecipeBowl exploited our custom-made Set
Transformer to be trained successfully on recipe completion,
we plan to improve the Set Encoder to extract richer cook-
ing knowledge and provide better interpretability. Since the
recipe completion task involves the input ingredient set hav-
ing only one ingredient removed as the prediction target for
each recipe, we acknowledge that the model may have limita-
tions in generating recommendations given a few ingredients.
We plan to address this issue in future work by formulating a
more suitable task setting. In addition, we plan to incorporate
nutritional features and consider dietary requirements during
recommendation. Lastly, we plan to release an applicable
version of RecipeBowl.

ACKNOWLEDGMENT
(Mogan Gim and Donghyeon Park contributed equally to this
work.)

REFERENCES
[1] W. Min, S. Jiang, and R. Jain, ‘‘Food recommendation: Framework, exist-

ing solutions, and challenges,’’ IEEE Trans. Multimedia, vol. 22, no. 10,
pp. 2659–2671, Oct. 2020.

[2] C.-Y. Teng, Y.-R. Lin, and L. A. Adamic, ‘‘Recipe recommendation
using ingredient networks,’’ in Proc. 3rd Annu. Web Sci. Conf., 2012,
pp. 298–307.

[3] M. De Clercq, M. Stock, B. De Baets, and W. Waegeman, ‘‘Data-driven
recipe completion using machine learning methods,’’ Trends Food Sci.
Technol., vol. 49, pp. 1–13, Mar. 2016.

[4] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabási, ‘‘Flavor network
and the principles of food pairing,’’ Sci. Rep., vol. 1, no. 1, Dec. 2011,
Art. no. 196.

[5] N. Garg, A. Sethupathy, R. Tuwani, R. Nk, S. Dokania, A. Iyer, A. Gupta,
S. Agrawal, N. Singh, S. Shukla, K. Kathuria, R. Badhwar, R. Kanji,
A. Jain, A. Kaur, R. Nagpal, and G. Bagler, ‘‘FlavorDB: A database of
flavor molecules,’’ Nucleic Acids Res., vol. 46, no. D1, pp. D1210–D1216,
Jan. 2018.

[6] D. Park, K. Kim, Y. Park, J. Shin, and J. Kang, ‘‘KitcheNette: Predicting
and ranking food ingredient pairings using Siamese neural network,’’ in
Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 1–7.

[7] A. Salvador, N. Hynes, Y. Aytar, J.Marin, F. Ofli, I.Weber, andA. Torralba,
‘‘Learning cross-modal embeddings for cooking recipes and food images,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 3020–3028.

[8] J. Marin, A. Biswas, F. Ofli, N. Hynes, A. Salvador, Y. Aytar, I. Weber, and
A. Torralba, ‘‘Recipe1M+: A dataset for learning cross-modal embeddings
for cooking recipes and food images,’’ 2018, arXiv:1810.06553. [Online].
Available: http://arxiv.org/abs/1810.06553

[9] D. Li and M. J. Zaki, ‘‘RECIPTOR: An effective pretrained model for
recipe representation learning,’’ in Proc. 26th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2020, pp. 1719–1727.

[10] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. WhyeTeh, ‘‘Set
transformer: A framework for attention-based permutation-invariant neural
networks,’’ in Proc. Int. Conf. Mach. Learn., 2019, pp. 3744–3753.

[11] J. Chen, L. Pang, and C.-W. Ngo, ‘‘Cross-modal recipe retrieval: How
to cook this dish?’’ in Proc. Int. Conf. Multimedia Modeling. Rekjavik,
Iceland: Springer, 2017, pp. 588–600.

[12] B. Zhu, C.-W. Ngo, J. Chen, and Y. Hao, ‘‘R2GAN: Cross-modal recipe
retrieval with generative adversarial network,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11477–11486.

[13] S. Haussmann, O. Seneviratne, Y. Chen, Y. Ne’eman, J. Codella,
C.-H. Chen, D. L. McGuinness, and M. J. Zaki, ‘‘FoodKG: A semantics-
driven knowledge graph for food recommendation,’’ in Proc. Int. Semantic
Web Conf. Auckland, New Zealand: Springer, 2019, pp. 146–162.

[14] D. Park, K. Kim, S. Kim, M. Spranger, and J. Kang, ‘‘FlavorGraph:
A large-scale food-chemical graph for generating food representations
and recommending food pairings,’’ Sci. Rep., vol. 11, Jan. 2021,
Art. no. 931.

[15] N. Shino, R. Yamanishi, and J. Fukumoto, ‘‘Recommendation system for
alternative-ingredients based on co-occurrence relation on recipe database
and the ingredient category,’’ in Proc. 5th IIAI Int. Congr. Adv. Appl.
Informat. (IIAI-AAI), 2016, pp. 173–178.

[16] K.-H. Liu, H.-C. Chen, K.-T. Lai, Y.-Y. Wu, and C.-P. Wei, ‘‘Alterna-
tive ingredient recommendation: A co-occurrence and ingredient category
importance based approach,’’ in Proc. PACIS, 2018, p. 298.

[17] M. Ge, M. Elahi, I. Fernaández-Tobías, F. Ricci, and D. Massimo, ‘‘Using
tags and latent factors in a food recommender system,’’ in Proc. 5th Int.
Conf. Digit. Health, May 2015, pp. 105–112.

[18] I. Adaji, C. Sharmaine, S. Debrowney, K. Oyibo, and J. Vassileva, ‘‘Person-
ality based recipe recommendation using recipe network graphs,’’ in Proc.
Int. Conf. Social Comput. Social Media. Las Vegas, NV, USA: Springer,
2018, pp. 161–170.

[19] T. Mokdara, P. Pusawiro, and J. Harnsomburana, ‘‘Personalized food rec-
ommendation using deep neural network,’’ in Proc. 7th ICT Int. Student
Project Conf. (ICT-ISPC), Jul. 2018, pp. 1–4.

[20] A. Nezis, H. Papageorgiou, P. Georgiadis, P. Jiskra, D. Pappas, and
M. Pontiki, ‘‘Towards a fully personalized food recommendation tool,’’ in
Proc. Int. Conf. Adv. Vis. Interface, May 2018, pp. 1–3.

[21] E. Gorbonos, Y. Liu, and C. T. Hoang, ‘‘NutRec: Nutrition oriented online
recipe recommender,’’ inProc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI),
Dec. 2018, pp. 25–32.

[22] W.Wang, L.-y. Duan, H. Jiang, P. Jing, X. Song, and L. Nie, ‘‘Market2Dish:
Health-aware food recommendation,’’ 2020, arXiv:2012.06416. [Online].
Available: http://arxiv.org/abs/2012.06416

[23] M. Chen, X. Jia, E. Gorbonos, C. T. Hoang, X. Yu, and Y. Liu, ‘‘Eating
healthier: Exploring nutrition information for healthier recipe recommen-
dation,’’ Inf. Process. Manage., vol. 57, no. 6, Nov. 2020, Art. no. 102051.

[24] J. M. Ordovas, L. R. Ferguson, E. S. Tai, and J. C. Mathers, ‘‘Personalised
nutrition and health,’’ BMJ, Jun. 2018, Art. no. bmj.k2173.

143632 VOLUME 9, 2021



M. Gim et al.: RecipeBowl: Cooking Recommender for Ingredients and Recipes

[25] P. Fermín Cueto, M. Roet, and A. Sáowik, ‘‘Completing partial
recipes using item-based collaborative filtering to recommend
ingredients,’’ 2019, arXiv:1907.12380. [Online]. Available: http://arxiv.
org/abs/1907.12380

[26] J. Ramos, ‘‘Using TF-IDF to determine word relevance in document
queries,’’ in Proc. 1st Instruct. Conf. Mach. Learn., 2003, vol. 242, no. 1,
pp. 29–48.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[28] J. Lei Ba, J. R. Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ 2016,
arXiv:1607.06450. [Online]. Available: http://arxiv.org/abs/1607.06450

[29] H. Edwards and A. Storkey, ‘‘Towards a neural statistician,’’ 2016,
arXiv:1606.02185. [Online]. Available: http://arxiv.org/abs/1606.02185

[30] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. RSalakhutdinov, and
A. J. Smola, ‘‘Deep sets,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 3391–3401.

[31] G. Jacob, R. Sam, H. Geoff, and S. Ruslan, ‘‘Neighbourhood Components
Analysis,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 17, 2004,
pp. 513–520.

[32] R. Salakhutdinov and G. Hinton, ‘‘Learning a nonlinear embedding by
preserving class neighbourhood structure,’’ in Proc. Artif. Intell. Statist.,
2007, pp. 412–419.

[33] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot,
C. Liu, and D. Krishnan, ‘‘Supervised contrastive learning,’’ 2020,
arXiv:2004.11362. [Online]. Available: http://arxiv.org/abs/2004.11362

[34] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, ‘‘Deep metric learning
via lifted structured feature embedding,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 4004–4012.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[36] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781. [Online].
Available: http://arxiv.org/abs/1301.3781

[37] L. Luo, Y. Xiong, Y. Liu, and X. Sun, ‘‘Adaptive gradient methods
with dynamic bound of learning rate,’’ 2019, arXiv:1902.09843. [Online].
Available: http://arxiv.org/abs/1902.09843

[38] J. Morgan, The New Book Apples. New York, NY, USA: Random House,
2013.

[39] K. R. Price, T. Prosser, A. M. F. Richetin, and M. J. C. Rhodes,
‘‘A comparison of the flavonol content and composition in dessert, cooking
and cider-making apples; distributionwithin the fruit and effect of juicing,’’
Food Chem., vol. 66, no. 4, pp. 489–494, Sep. 1999.

[40] A. H. Ali, ‘‘Current knowledge of buttermilk: Composition, applications
in the food industry, nutritional and beneficial health characteristics,’’ Int.
J. Dairy Technol., vol. 72, no. 2, pp. 169–182, May 2019.

[41] J. Pilcher, ‘‘The globalization of Mexican cuisine,’’ Hist. Compass, vol. 6,
no. 2, pp. 529–551, Mar. 2008.

[42] E. Rojas-Rivas, A. Rendón-Domínguez, J. A. Felipe-Salinas, and F. Cuffia,
‘‘What is gastronomy? An exploratory study of social representation of
gastronomy and Mexican cuisine among experts and consumers using
a qualitative approach,’’ Food Qual. Preference, vol. 83, Jul. 2020,
Art. no. 103930.

MOGAN GIM received the B.S. degree in com-
puter science from Korea University, South Korea,
in 2018, where he is currently pursuing the Ph.D.
degree in computer science. His current research
interests include developing effective data repre-
sentation methods and applying them to various
research domains, such as food science, material
science, and bio-informatics.

DONGHYEON PARK received the B.S. degree
in computer science, in 2015, the M.S. degree
in bioinformatics from Interdisciplinary Gradu-
ate Program, in 2017, and the Ph.D. degree in
computer science from Korea University, Seoul,
South Korea, in 2020. His current research inter-
ests include food-informatics and natural language
processing in general. He is specifically inter-
ested in personalized food-recipe recommendation
and nutrition precision with artificial intelligence
techniques.

MICHAEL SPRANGER (Member, IEEE) received
the Diploma degree in computer science from
Humboldt-Universität zu Berlin, Germany, in
2008, and the Ph.D. degree in computer sci-
ence from Vrije Universiteit Brussels, Belgium,
in 2011. He is currently the COO of Sony AI and
also a Senior Researcher at Sony CSL. His work
focuses on fundamentals of AI and intelligent
agents. His most recent work explores creativity
in science and gastronomy.

KANA MARUYAMA received the master’s degree
in computer science from Hokkaido University,
Japan. She is currently an AI Engineer at Sony
AI. In the past, she worked on developing camera
products, fusion of web technology and embedded
technology, causal analysis, and Japanese NLP
technologies. In Sony AI, she currently focuses
on developing AI technologies for enhancing the
creativity of chefs.

JAEWOO KANG received the B.S. degree in
computer science from Korea University, Seoul,
South Korea, in 1994, the M.S. degree in com-
puter science from the University of Colorado
Boulder, CO, USA, in 1996, and the Ph.D.
degree in computer science from the Univer-
sity of Wisconsin–Madison, WI, USA, in 2003.
From 1996 to 1997, he was a Technical StaffMem-
ber with AT&T Labs Research, Florham Park,
NJ, USA. From 1997 to 1998, he was a Tech-

nical Staff Member with Savera Systems Inc., Murray Hill, NJ, USA.
From 2000 to 2001, he was the CTO and a Co-Founder of WISEngine Inc.,
Santa Clara, CA, USA, and Seoul. From 2003 to 2006, he was an Assistant
Professor with the Department of Computer Science, North Carolina State
University, Raleigh, NC, USA. Since 2006, he has been a Professor with the
Department of Computer Science, Korea University. He also works as the
Department Head of Bioinformatics for Interdisciplinary Graduate Program
with Korea University.

VOLUME 9, 2021 143633


