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ABSTRACT Synthetic data generation is critical in machine and deep learning research to overcome the
shortage of samples or dataset sizes. Various algorithms, including the generative adversarial network and
autoencoder models, have been applied to generate artificial datasets in previous studies. In this study,
we propose a synthetic data generation framework for a tabular dataset collected from cognitive psychology
behavioral experiments based on deep learning algorithms. Tabular datasets for the Stroop task were used
to develop our framework. On account of the relatively small sample size (N=102) of the dataset used in
our study, we used a pre-trained generative adversarial network model to complement the size of the dataset.
Furthermore, we proposed and applied five evaluation methods with statistical tests (overlapped sample
test, constraint reflection test, correlation reflection test, distribution distance test, and feature distance test)
to validate generation performance based on internal levels of table structure (instance level, feature level,
and whole-set level evaluations). The proposed framework with a fine-tuned generative adversarial network
algorithm was compared with a random generation method to verify generation performance, including the
representation of the statistical characteristics of the original datasets. We found that the generated datasets
from the proposed framework exhibited more similar statistical characteristics with the original dataset than
the randomly generated datasets based on five evaluation methods. The results of this study provide not only
generation algorithms for cognitive psychological datasets with tabular type but also a solution to the sample
size issue for researchers.

INDEX TERMS Behavioral experimental dataset, cognitive psychology, data augmentation, generative
adversarial network, tabular dataset, synthetic data generation.

I. INTRODUCTION
Sample or dataset size is considered a critical factor for
various data analysis methodologies, including statistical
and machine learning methods [1]–[4]. In terms of sta-
tistical analysis, many statistical tests require an appropri-
ate sample size to verify the power or reliability of the
results [5], [6]. For example, Lachin suggested the impor-
tance of sample size determination and power analysis in
clinical trials [7]. Additionally, Maccallum et al. introduced a
framework to determine the minimum sample size for power
in empirical behavioral research [8]. In previous studies,
many researchers applied formulas for sample size calcula-
tion to support the verification of their research questions
or hypotheses [9]–[11]. Moreover, an adequate dataset size
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is essential for machine and deep learning methodologies.
Ajiboye et al. emphasized the size of a dataset to construct
supervised learning algorithms [12]. Among the three dif-
ferent sizes of datasets, large datasets showed lower per-
formance errors (mean absolute errors) than other datasets.
Furthermore, Sun et al. suggested a relationship between
dataset size and model performance in visual deep learning
models [13].

However, there are several reasons for the shortage of
datasets in research practice. First, in the case of structured
data, including survey results, lack of follow-up or nonre-
sponse by participants can result in missing data [14], [15].
Second, in terms of unstructured data (e.g., actigraphy or
electrocardiogram as a time-series), issues of devices collect-
ing data or participants’ mistakes can influence missing or
blanked data [16], [17]. For instance, Brick et al. attempted
to handle missing data due to nonresponses in a survey
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dataset [18]. Further, Schlomer et al. suggested three handling
methods for data missing from participants in counseling
psychology research [19]. Angerer et al. replaced missing
data owing to the removal of devices from the body with a
median value in the analysis of circadian rhythms in patients
with brain injuries [20].

Researchers have attempted a statistical approach to over-
come the causes of data insufficiency [21]–[24]. Imputation
methods, including both single statistics (e.g., median or
mean value) and integration of multiple candidate datasets
(i.e., multiple imputation) were applied to treat missing
data [25]–[28]. Similarly, bootstrap methods have been uti-
lized to reduce estimation errors in the imputation pro-
cess [29]. In previous studies that used machine learning or
deep learning methodologies, various methods were applied
to manage missing datasets. Saqib et al. resampled variables,
includingmissing values, in the analysis of electronicmedical
records (EMRs) to predict sepsis [30]. Furthermore, Perez
and Jason suggested the effectiveness of data augmenta-
tion methods in image classification using a deep learning
model [31].

In behavioral science fields, such as experimental psychol-
ogy, sample size is also considered an important factor for
data analysis [32]–[35]. Schweizer et al. focused on sample
size in sports psychology research [36]. They emphasized the
disadvantage small sample sizes had in improving confidence
in analysis results. Furthermore, Sassenberg et al. compared
trends in social psychology research from 2011 to 2016 [37].
In Sassenberg’s research, the sample size used in the study
gradually increased to complement the statistical power.

In particular, large-scale datasets are considered a promis-
ing factor in the field of cognitive psychology. Peterson et al.
suggested that large-scale datasets and machine learning
algorithms can be used to identify new cognitive or behavioral
phenomena [38]. They focused on risky choices and exten-
sively studied issues in decision theory [39], [40]. In addition,
Agrawal et al. proposed methodologies for building mod-
els and identifying novel phenomena in large datasets [41].
To overcome noise artifacts included in the datasets,
they utilized sufficiently large datasets with data-driven
models.

However, some challenges remain regarding the collection
of large datasets through experimental research. First, in the
case of repetitive and difficult tasks, participants can select
extreme or incompatible answers. Inconsistent responses or
outliers in the experimental results affect the overall sample
size and analysis results [42], [43]. Second, negative changes
in the environment, including the Covid-19 pandemic, can
affect the recruitment of study participants. Suspension of
follow-up for specific groups or experiments also influences
the overall study [44]. Although researchers can use alter-
native tools, such as Amazon’s Mechanical Turk (MTurk),
these have potential limitations regarding research materials
and conditions [45]. Consequently, several methodologies for
data augmentation or resampling need to be considered to
increase sample size.

In the case of tabular datasets collected in behavioral
experiments in cognitive psychology studies, several char-
acteristics can limit the application of data augmentation
methodologies proposed in previous studies. First, individual
variables within a dataset are deeply associated with each
other [46], [47]. For example, in the popular Stroop test,
the reaction time of participants refers to the reaction of
participants through cognition about the proposed material,
including words and colors. It indicates that the variables of
reaction time and material (e.g., words, objects, and colors)
are not independent. Second, different types of variables are
included in the datasets [48]–[50] that consist of categorical
and countable variables, not just continuous variables. For
example, datasets can include age or reaction time variables
as continuous variables and specific groups and levels as
categorical variables. Consequently, many characteristics of
the behavioral experiment dataset face challenges in applying
the proposed augmentation methods (e.g., extracting, trans-
forming, and random sampling).

In many studies, machine and deep learning methods have
been applied to propose imputation or augmentation method-
ologies. Lashgari et al. introduced a data augmentation
method based on a deep learning model for electroen-
cephalography (EEG) [51]. Jang et al. suggested a deep-
learning-based imputation methodology for missing intervals
in actigraphy data [52]. In addition, Rizos et al. proposed
a deep learning method for short-text data augmentation in
speech classification [53].

Based on diverse methods with machine and deep learning
models, we attempted to suggest a data generation frame-
work for synthetic behavioral datasets with deep learning
models. Various algorithms have been used to propose data
generation frameworks in previous studies. Semeniuta et al.
utilized convolutional variational autoencoder algorithms to
generate text datasets [54]. Similarly, Guan et al. suggested
a generation method for electronic medical record datasets
using generative adversarial network (GAN) algorithms [55].

In our study, we applied GAN algorithms to generate
a behavioral experiment dataset with a tabular structure.
To improve the performance of the framework, pre-trained
GAN algorithms for tabular datasets were applied [56].
We fine-tuned a pre-trained algorithm using an open-source
psychology behavioral experiment dataset with a Stroop task
collected from 102 participants [57], [58]. We generated
1000 datasets by applying both deep learning algorithms and
random generation and compared the results to evaluate the
performance of our framework. Moreover, we proposed five
evaluation tests using an internal dataset level. First, an over-
lapped sample test was applied to evaluate whether the deep
learning model simply copied the data. Second, the constraint
reflection test evaluated the reflection of the range of individ-
ual variables (minimum,median, andmaximumvalues) in the
generated dataset with the original range. The first and second
methods checked differences with the original dataset at the
instance and row levels (i.e., instance level evaluation). Third,
the correlation between the variables in the generated dataset
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was examined using the correlation reflection test. Fourth,
the distances of variables between the original and gener-
ated datasets were evaluated using the distribution distance
test. In the third and fourth tests, we investigated statistical
characteristics in terms of variable and feature levels (i.e.,
feature-level evaluation). Finally, in the feature distance test,
we compared the feature distance with the extracted latent
features using a pre-trained AlexNet model. In the last test,
latent features inherent in the dataset were compared using
Euclidean andManhattan distances (i.e., whole-set level eval-
uation). Based on the five aforementioned tests, we examined
whether the generated dataset had statistical characteristics
similar to those of the original dataset.

The objective of this study was to develop a synthetic
behavioral experiment dataset generation framework based
on open-source Stroop task data using GAN algorithms. The
major contributions of this study are as follows:

(1) We proposed a GAN-based data generation framework
for a behavioral experiment dataset in the field of cognitive
psychology based on an open-source Stroop task dataset.
In addition, we applied a relatively large dataset (N=102) to
reflect the statistical characteristics of Stroop tasks. We also
evaluated the generation performance of the framework com-
pared to a randomly generated dataset.

(2) Advancing from generating a synthetic tabular dataset
of behavioral experiment data, we proposed five individ-
ual tests based on statistical tests (overlapped sample test,
constraint reflection test, correlation reflection test, distri-
bution distance test, and feature distance test) to examine
various characteristics in the generated dataset. Furthermore,
we compared the generation performances at three levels for
the tabular dataset (instance level, feature level, andwhole-set
level evaluation) based on the five tests.

(3) Based on the synthetic dataset with similar statistical
characteristics, our framework can help overcome a shortage
in sample size. In addition, environmental restrictions, includ-
ing the Covid19 pandemic, on conducting experimental stud-
ies can be overcome with artificial datasets. Furthermore,
the fatigue or physical burden of participants can be reduced
by complementing with generated datasets.

The remainder of the paper is structured as fol-
lows: Section II includes a detailed description of the
methodologies and Stroop task dataset used in the study.
In Section III, the generation performance of the proposed
deep learning-based framework is described. In Section IV,
we discuss the results of the experiments and their imple-
mentation. Finally, conclusions and a summary of our study
are presented in Section V.

II. METHODS
A. OVERVIEW
This study consisted of four phases. First, we collected
behavioral experimental datasets from cognitive psychology
research. Second, the pre-trained GAN algorithm was fine-
tuned using the datasets collected in the first phase. Third,
we generated 1000 datasets with the same sample size using

FIGURE 1. Schematic overview of this study.

a fine-tuned GAN model and random generation methods.
Finally, five evaluation tests were conducted to examine
the generated datasets. The detailed procedure is shown
in Figure 1.

B. DATA SOURCES
In this study, we used the open-source cognitive psychol-
ogy dataset released by the Leibniz Institute for Psychol-
ogy (ZPID) in Germany [57]. Several psychological datasets,
one based on a Stroop task that is well-known as an exper-
imental design in cognitive psychology, were selected for
our experiment, collected from 102 participants (54 females
and 48 males) to examine associative and affective congru-
ency effects. Two words (priming and target words) were
successively shown to evaluate the priming effect of words.
After being shown the priming words, the participants were
instructed to choose the terms associated with the words
shown earlier. Their responses were collected vocally using a
microphone. The reaction time of the participants regarding
selection was recorded to evaluate the priming effects. To pre-
cisely measure their responses, several variables related to the
response were stored in the dataset files. This dataset consists
of 21 columns, and the descriptions of each column are listed
in Table 1.
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TABLE 1. Descriptions of variables in used dataset.

Additionally, the dataset consists of two sub-datasets
of experiments with different objectives. In the first sub-
dataset, category-specific priming effects were examined
using relatedwords and reaction times. The priming effect is a
phenomenon that affects reaction through exposure to certain
stimuli (e.g., words or colored objects) [59].

In the case of category-specific priming effects, researchers
wanted to confirm the effect by showing words belonging
to a similar semantic category and examining participants’
responses to them.

In the second sub-dataset, the color condition was added
to the task design of the first sub-dataset. The dimensions
of the first sub-dataset were (5184, 21) (number of rows and
columns), and the second sub-dataset were (9216, 21).

C. DATA PREPROCESSING
1) SELECT VARIABLES FROM DATASET FOR EXPERIMENTS
To apply the appropriate characteristics of the Stroop task
dataset, we extracted only eight variables (VPID, MAT_GR,
M_W, ALTER, TARG, PRIM, RT1, and RT2) from 21.
We selected variables based on the need for data anal-
ysis because of the practical applicability of the gener-
ated datasets. First, demographic information (M_W and
ALTER) was needed to consider differences in age and sex
in the behavioral results. Second, three variables (MAT_GR,

TARG, and PRIM) for the experimental material were
selected to check the words shown to the participants. Third,
reaction time variables (RT1 and RT2) were selected to eval-
uate the effects of priming and target words. After selecting
these variables, the dimensions of the dataset were changed
from (5184, 21) and (9216, 21) to (5184, 8) and (9216, 8),
respectively.

2) REMOVE MISSING OR EXTREME SAMPLES IN DATASET
In the Stroop task dataset, missing or extreme values in the
reaction time of participants were coded with ‘9999’ values.
We confirmed the distributions of the three continuous vari-
ables (ALTER, RT1, and RT2) to check the overall distri-
bution. Based on this confirmation, we established that the
RT1 and RT2 variables in the Stroop 1 sub-dataset included
extreme samples. After removing rows with extreme RT1 and
RT2 values, the Stroop 1 sub-dataset had dimensions of
(5180, 8) without missing or extreme samples. In the case of
the Stroop 2 sub-dataset, extreme samples were not included
in the dataset. Therefore, the dimensions of the Stroop 2 sub-
dataset did not change. Histograms of the distribution of
variables are shown in Figure 2.

D. PRE-TRAINED GAN MODEL FOR TABULAR DATASET
In this study, we attempted to generate a behavioral experi-
mental dataset. The Stroop task dataset was relatively small to
train and evaluate deep learning algorithms from scratch and
achieve high performance. To complement the sample size,
transfer learning and fine-tuning of a pre-trained algorithm
were applied. To improve the performance of our framework,
pre-trained conditional GAN models with tabular datasets
were used in our study [56]. This model, similar to other
general GAN algorithms, consists of two sub-modules (i.e.,
generator and discriminator). To generate tabular datasets
with data distributions, conditional vectors were concatenated
in the calculation process of the generators. In addition, nor-
malization was applied to each feature to deal with compli-
cated distributions. The authors named the generator module
containing the conditional vector the ‘‘conditional genera-
tor.’’ A total of ten fully connected layers constructed condi-
tional generators. Except for the input and output layers, three
hidden layers in the front were composed of 256 neurons,
and the five hidden layers in the back were composed of 512
neurons. ReLU activation functions and batch normalization
were applied to each layer.

The discriminator module (i.e., Critics) in this model con-
sisted of five fully connected layers. A discriminator module
was constructed with 256 hidden layers. Leaky ReLU activa-
tion functions and dropout with a 0.2 ratio were used for four
hidden layers without the input and output layers. For model
training, the Adam optimizer and a 2 × 10−4 learning rate
were used. The detailed parameters of the model are listed
in Table 2.

These algorithms were validated with Census Income,
KDD Cup 1999 Data, and the Online News Popularity
dataset, which consists of tabular structures.
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TABLE 2. Parameters of pre-trained ct-gan model.

We selected and applied pre-trained conditional GAN algo-
rithms because the size of our dataset was relatively insuffi-
cient for building a model; the pre-trained GAN algorithms
were also trained with similar types of tabular datasets.
To increase the usability of the proposed framework in terms
of reproducibility, we used the same parameters (e.g., model
architecture) and hyperparameters (e.g., optimizer or learning
rate) of the pre-trained model for fine-tuning. Consequently,
for fine-tuning the pre-trained algorithm, Adam optimizer,
2 × 10−4 learning rate, and 300 epochs were used as training
hyperparameters.

E. GENERATED TABULAR DATASET BY PRE-TRAINED GAN
MODEL
After fine-tuning the pre-trained conditional GAN model,
we generated 1000 datasets with the same sample size as
the original datasets to evaluate the generation performance
of the framework. For example, in the case of the Stroop
1 sub-dataset, 1000 different datasets with dimensions (5180,
8) were generated. The Stroop 2 sub-dataset was applied to
generate 1000 datasets with dimensions (9216, 8).

F. RANDOMIZE GENERATED DATASET
To evaluate the generation performance with fine-tuned GAN
algorithms with a Stroop task dataset, we randomly generated
1000 datasets with the same sample size. Instances in the
generated datasets were selected from the column values of

the original dataset. For example, ALTER column values in
the generated dataset were randomly selected within values
of the same variable from the original datasets.

Based on this process, we generated 1000 datasets
for the Stroop 1 and Stroop 2 sub-datasets. The dimensions
of the randomly generated datasets were the same as those of
the original dataset.

G. EVALUATION METHODS BY LEVEL OF DATASET
In our study, we proposed a deep-learning-based generation
framework for a synthetic behavior experiment dataset. For
a detailed evaluation of the framework, we considered the
inherent levels of the tabular dataset. A total of three stan-
dards were applied. First, instance and row-level evaluations
were considered. An overlapped sample was checked for
an instance and row in the dataset. Second, variable and
feature levels were applied. The distribution and character-
istics of the variables were confirmed. Finally, a whole-set
level evaluation was performed. In the case of the whole-
set level, the overall characteristics and latent features of
the dataset were compared. Detailed descriptions of each
evaluation method are provided in the following subsections.

1) INSTANCE LEVEL EVALUATION
a: OVERLAPPED SAMPLE TEST
In this test, we attempted to confirm the overlapped samples
using the original dataset. If there is an overlapped sample in
the generated datasets, it is considered a copy rather than a
generation. To verify the duplicated samples, we organized a
test in four steps. First, both RT1 and RT2 values for the same
word pair were extracted from the generated datasets based on
the TARG and PRIM words in the original dataset. Second,
a one-sample t-test was applied to examine the difference
between the RT1 and RT2 values in the original and the
generated datasets.

The null hypothesis of the test was that the RT1 and
RT2 values in the generated dataset were the same as the
original values. Third, the number of word pairs (TARG and
PRIM) was statistically significant. Finally, the test index was
calculated as the ratio of the number of statistically significant
results among all the results.

An example of the calculation in the test is depicted
in Figure 3.

b: CONSTRAINT REFLECTION TEST
Each variable had a range of values that required verification
of whether the generated values in the row were included in
the range of the original variables. We attempted to confirm
the reflection of ranges from the minimum, median, and
maximum values. This test consisted of three steps. First,
we calculated the minimum, median, and maximum values
of the continuous variables (ALTER, RT1, and RT2) in the
original dataset. Second, the same values were calculated
from the generated datasets. Finally, the absolute differences
between the original and generated datasets were calculated
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FIGURE 2. Distributions of continuous variables (ALTER, RT1, RT2). Distributions of (a) ALTER variable, (c) RT1 variable, and
(g) RT2 variable in Stroop 1 sub-dataset. (b) Distributions of ALTER variable, (d) RT1 variable, and (h) RT2 variable in
Stroop 2 sub-dataset. I Distributions of RT1 variables after removing extreme samples, (f) RT2 variable after removing extreme samples
in Stroop 1 sub-dataset.

to evaluate the reflection status of the generated datasets.
An example of the test application is shown in Figure 4.

2) FEATURE LEVEL EVALUATION
a: CORRELATION REFLECTION TEST
In the Stroop task dataset used in this study, the dataset
showed a correlation between each variable.We examined the
correlation reflections in the generated dataset. This test was
conducted in three steps. First, we calculated the correlation
coefficients for both the original and generated datasets. Sec-
ond, the averaged coefficients of the variables from the gener-
ation methods were compared with the coefficients from the
original dataset using absolute differences. Finally, we eval-
uated the reflection status of the generation methodologies
by comparing the differences. An example of this test is
presented in Figure 5.

b: DISTRIBUTION DISTANCE TEST
Through the preprocessing step, we confirmed that each
variable in the dataset has its own distribution (Figure 2).
In this test, we compared the distributions of the original and
generated values of the variables. In the Stroop task dataset,
five categorical variables (MAT_GR, M_W, TARG, PRIM,
and ERR) and three continuous variables (ALTER, RT1,
and RT2) were included. We applied the Hamming distance
metric to compare the categorical variables. The Hamming
distance indicates the quantified differences between two
data vectors consisting of categorical data [60]. A 2-sample
Kolmogorov-Smirnov (KS) test was used to compare the
continuous variables.

We checked whether the two compared distributions were
drowned out with the same distribution [61]. The statisti-
cal significance of the test results (p < 0.05) indicates that
the two are drawn from the same distribution. Furthermore,
KS statistics represent the quantified distance of the empir-
ical and cumulative distribution functions between the two

variables. After applying metrics for the variables, we com-
pared the average distance values between the generated
datasets. Figure 6 presents an outline of the distribution dis-
tance test.

3) WHOLE-SET LEVEL EVALUATION
a: FEATURE DISTANCE TEST
In the previous four evaluation tests, we verified the differ-
ences in fragmentary characteristics (instance and feature lev-
els) in the dataset. Furthermore, we attempted to evaluate the
inherent characteristics of the datasets using latent features.
A pre-trained AlexNet model was applied to extract the latent
features. Before applying the dataset to a pre-trained model,
the TARG and PRIM variables were converted from word to
categorical dummy values. Three conditions of the features
(3, 5, and 7 feature lengths) were extracted to evaluate them.

After extracting the features, we applied the Minkowski
distance metric, which indicates the generalized version of
the Euclidean and Manhattan distances. The Minkowski dis-
tance was calculated using (1) [62]:

D (X ,Y ) =

(
n∑
i=1

|xi − yi|p
)1/p

(1)

In (1), if the value of p (power) is 1, it is the same as
the Manhattan distance, which is the L1 norm. In addition,
when the value of p is 2, it indicates that distance has the
same meaning as Euclidean distance, which is the L2 norm.
In our study, both cases, where pwas 1 and 2, were evaluated.
An outline of the feature distance test is shown in Figure 7.

H. STATISTICAL VERIFICATION
After we received the results of applying the five evaluation
methods, we compared the characteristics and distance of
the generated dataset between the fine-tuned GAN algorithm
and randomized generation. To identify the differences more
clearly, we used statistical tests for the evaluation results. For
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FIGURE 3. Outline of overlapped sample test.

example, we found differences in the averaged distance val-
ues between datasets from the GAN and random generation.

To confirm the differences between the two values, we used
a two-sample t-test to calculate the distances. Owing to the
different methodologies used for data generation, we hypoth-
esized the independence of the two distances. The null
hypothesis of the test was that the difference in the average
distance values between the GAN and random generation
was 0.

I. TOOLS
All code for the deep learning model and data preprocessing
were written using Python (version 3.6.0) and Pytorch frame-
work (version 10.0.1). Statistical figures are depicted using R
(version 4.0.3).

III. RESULTS
We evaluated the generation performance of the proposed
deep-learning-based framework using five test methods
divided by the internal levels of the dataset (instance level,
feature level, and whole-set level evaluation). In the case of
the overlapped sample test at the instance level evaluation,
we evaluated different samples in the generated dataset based
on one-sample t-test results. Then, the number of samples
that were validated from the p-value were calculated as a
ratio of the total number of results. In the Stroop 1 sub-
dataset, the GAN-based model showed 68.17% and random
generation showed 57.92% of significantly different samples
for the RT1 variables. Additionally, 67.47% and 65.15%were

confirmed by the GAN-based and RT2 variables, respec-
tively. In the Stroop 2 sub-dataset, we found 90.62% for the
GAN-based model and 79.86% for the random generation in
the RT1 variable.

For the RT2 variable, 80.38% and 84.72% were found in
the GAN-based and random generation models, respectively.
Table 3 lists the detailed results of the overlapped sample
tests.

Additionally, in the constraint reflection test in instance
level evaluation, the reflection of the range of each vari-
able with minimum, median, and maximum values was
compared. The differences between the three range values
(minimum, median, and maximum) were compared with
the original dataset values to evaluate the reflection sta-
tus. In the Stroop 1 sub-dataset, the GAN-based model
showed 2.00 (ALTER: median-minimum), 2.00 (ALTER:
maximum-median), 90.31 (RT1: median-minimum), 89.93
(RT1: maximum-median), 263.66 (RT2: median-minimum),
and 147.06 (RT2: maximum-median) as averaged differ-
ences. Also, we found 1.89 (ALTER: median-minimum),
1.69 (ALTER: maximum-median), 141.95 (RT1: median-
minimum), 1599.38 (RT1: maximum-median), 159.41 (RT2:
median-minimum), and 1711.59 (RT2: maximum-median)
in randomly generated datasets. Moreover, in the case of
the Stroop 2 sub-dataset, we found 0 (ALTER: median-
minimum), 2.53 (ALTER: maximum-median), 133.34 (RT1:
median-minimum), 200.09 (RT1: maximum-median), 313.63
(RT2: median-minimum), and 415.36 (RT2: maximum-
median) in the GAN-based model. In random generation,
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FIGURE 4. Examples of constraint reflection test (RT2 variable).

3.49 (ALTER: median-minimum), 3.49 (ALTER: maximum-
median), 199.99 (RT1: median-minimum), 2064.44 (RT1:
maximum-median), 415.42 (RT2: median-min), and 1928.64
(RT2: maximum-median) were checked as averaged differ-
ences. The detailed results and statistical test results are
listed in Tables 4 and 5. Second, for feature level evaluation,
we compared the absolute differences of the averaged correla-
tion coefficients between the original and generated datasets
using the correlation reflection test.

In the Stroop 1 sub-dataset, the GAN-based model con-
dition showed a difference of 0.101 from the correlation
coefficients of the original to the coefficients of the generated
datasets by the GAN-based model.

In addition, 0.138 was observed under the random gen-
eration conditions. In the Stroop 2 sub-dataset, we checked
0.071 in the GAN-based model conditions and 0.108 in the
random generation condition. The results of the correlation
reflection test, statistical test, and absolute correlation coeffi-
cient value list are shown in Tables 6, 7, and 8, respectively.

Furthermore, the distances of variables’ distribution were
identified using the distribution distance test. In the Stroop
1 sub-dataset, the GAN-based model showed values of
0.6664 (MAT_GR), 0.4928 (M_W), 0.9964 (TARG), 0.9971
(PRIM), and 0.0809 (ERR) as a Hamming distance value.

TABLE 3. Results of overlapped sample test.

The GAN-based model also showed values of 0.6669
(MAT_GR), 0.5004 (M_W), 0.9965 (TARG), 0.9974
(PRIM), and 0.5002 (ERR) for categorical variables as Ham-
ming distance values. Additionally, 0.1765 (ALTER), 0.0647
(RT1), and 0.0508 (RT2) were found in the GAN-based
models as KS statistics. Under random generation conditions,
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FIGURE 5. Outline of correlation reflection test (RT2 variables).

0.2274 (ALTER), 0.2717 (RT1), and 0.2705 (RT2) were
checked. In the Stroop 2 sub-dataset, for categorical variables,
0.4998 (MAT_GR), 0.4999 (M_W), 0.9948 (TARG), 0.9967
(PRIM), and 0.4941 (ERR) were identified in the GAN-
based model conditions; 0.5000 (MAT_GR), 0.5000 (M_W),
0.9947 (TARG), 0.9964 (PRIM), and 0.7998 (ERR) were
confirmed under random generation conditions.

For continuous variables, 0.1576 (ALTER), 0.0573 (RT1),
and 0.0474 (RT2) were found in the GAN-based model.
In random generation conditions, 0.3125 (ALTER), 0.2934
(RT1), and 0.2934 (RT2) were checked as KS statistics.
Detailed results of the distribution distance test and sta-
tistical test are listed in Tables 9 and 10, respectively.
Finally, we examined the feature distance test to com-
pare the distances of latent features between the original
and generated datasets to evaluate the generated dataset
at the whole-set level. Three, five, and seven length
feature conditions were evaluated. In the Stroop 1 sub-
dataset, in the case of seven length features, the GAN-
based model showed an average distance of 34901.9;
83229.6 and 102138.0 were checked for five and three length
features.

Furthermore, 73728.9, 115097.1, and 123034.9 were con-
firmed as averaged distance values for seven, five, and three
length features, respectively.

In the Stroop 2 sub-dataset, 230547.1, 194275.8, and
190009.5 were found for seven, five, and three length feature
conditions, respectively, from the GAN-basedmodel. In addi-
tion, 348281.5, 293877.7, and 250526.9 were checked for
random generation. The detailed results and statistical test
results are listed in Tables 11–14.

IV. DISCUSSION
In our study, we attempted to generate a behavior experiment
dataset with a tabular structure collected from cognitive psy-
chology research and based on fine-tuned GAN algorithms.
The Stroop tasks dataset was applied to verify our research
agenda: artificial dataset generation for the behavioral exper-
iment dataset using a deep learning algorithm.

To provide reasonable evidence, we reviewed several stud-
ies using ‘‘data generation’’ and ‘‘deep learning methods’’
as keywords. First, in relation to synthetic data generation,
Pargas et al. [63] proposed data generation methods based
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TABLE 4. Results of constraint reflection test.

on genetic algorithms with a population dataset. They sug-
gested the advantages of test data generation in related stud-
ies. In addition, Tracey et al. [64] suggested an automatic
data generation framework for structural datasets; thus, they
applied dynamic optimization-based search methods to the
framework. Furthermore, they demonstrated the efficiency
and effectiveness of the test data generation by compar-
ing various experimental conditions. Brissette et al. [65]
attempted to generate synthetic weather datasets based on
stochastic methods. Methodologies using theWilks approach
were used in this study to generate weather information
from multiple sites. Advantages, including simplicity and
complements to climate research, have been emphasized by

TABLE 5. Statistical test results of constraint reflection test.

TABLE 6. Results of correlation reflection test.

TABLE 7. Statistical test results of correlation reflection test.

the authors. Jones et al. [66] attempted to generate mutation
data from protein sequences using raw mutation frequency
matrices to generate and evaluate datasets. In addition,
the generated datasets were validated using the SWISS-PROT
database. Their study proposed the benefits of dataset gener-
ation for associated research.
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FIGURE 6. Outline of distribution distance test.

TABLE 8. Comparison of correlation coefficients ranking.

Second, as mentioned above, methodologies with statisti-
cal or mathematical approaches have been applied to various
datasets (e.g., protein structure, climate dataset, and popula-
tion dataset) for synthetic data generation.

Similarly, in terms of machine and deep learning
algorithms, diverse algorithms have been utilized for data

TABLE 9. Results of distribution distance test.

generation. Guo and Herna [67] suggested boosting and
generation methodologies to complement imbalanced data
using boosting and ensemble-based learning algorithms.
Researchers have evaluated improvements in data generation
with respect to the prediction power of classification algo-
rithms using synthetic datasets. In Bloice et al. [68], aug-
mentation methods were based on machine-learning models
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TABLE 10. Statistical test results of distribution distance test.

for image datasets. In their methodologies, various tradi-
tional augmentation methods (e.g., rotation and resize) and
machine learning models have been used to generate aug-
mented image datasets. Ekbatani et al. [69] generated syn-
thetic images, including pedestrians and objects on a load,
using deep learning algorithms. Among various deep learning
models, convolutional neural networks (CNNs) have been
applied for image generation. Norgaard et al. [70] applied
supervised learning deep learning algorithms to generate
synthetic sensor datasets. GAN algorithms with supervised
learning characteristics were used in their research. The effec-
tiveness of the proposed framework was validated using a
human activity dataset with similar time-series characteris-
tics. Chen et al. [71] proposed a deep learning framework for
artificial CT image generation.

U-net, which is constructed using a symmetric convolu-
tional neural network, was applied to the generated image
datasets. The proposed framework was developed and eval-
uated using a Cone-beam computed tomography (CBCT)
image dataset. Based on studies, including those mentioned
above, we concluded that our research topic was well
founded.

TABLE 11. Results of feature distance test in stroop 1 sub-dataset.

Among the various algorithms used to generate synthetic
datasets, we applied GAN models to generate a behavior
experiment dataset with a tabular shape. Many researchers
used GAN algorithms to generate structured datasets, includ-
ing tabular datasets, and complement insufficiency within
datasets.

Zhou et al. [72] used GAN algorithms to efficiently deal
with an imbalanced dataset. To complement the imbalance in
the dataset, they improved the framework using two methods.
First, generated artificial samples were added to the minority
class to optimize the loss function of the algorithms.

Second, a fully connected network module was utilized
to improve the performance of the framework. After devel-
oping the two methods, we evaluated the framework using
two open-source structured datasets. First, the Alibaba-MIFD
dataset was tested using trained models. This dataset was
composed of 69 variables. including medical information
about people (e.g., cost of medicine and time of hospital
stay). Second, the JD-RPLI dataset was used to evaluate the
proposed framework. Information about the user (e.g., login
time and user account) was contained in this dataset. Both the
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FIGURE 7. Outline of feature distance test.

aforementioned datasets are tabular-type, and the proposed
framework performed better than the other algorithms in
these datasets. From this previous study, we confirmed that
GAN algorithms have the potential to handle tabular datasets
in addition to their usefulness in the analysis of an imbalanced
dataset with a shortage of class samples.

Yan et al. [73] used GAN algorithms to generate synthetic
electronic health record (EHR) datasets for sharing datasets
between research groups. To address the challenges of the
complexity of EHR dataset in GAN-based generative mod-
els, several modules were added to the framework. First,
the penalization module was applied to the learning process
of the algorithms. Based on this module, violated values
for the original values in the dataset were removed from
the generated datasets. Second, the modified generator and
discriminator models in the framework influenced both effi-
cient model training and the generation of artificial instances.
Third, several methods for generating datasets have been
proposed for performance evaluation. The EHR dataset used
in this study was composed of several variables (e.g., ICD
code, BMI index, and blood pressure) with a tabular structure.
The authors evaluated generation performance by comparing
the distribution and statistical characteristics (e.g., correlation
coefficient and Bernoulli success probabilities) of the original
and generated datasets.

Xu and Veeramachaneni [74] suggested a GAN model
to generate tabular datasets based on medical and educa-
tional datasets. In their framework, both discrete and con-
tinuous variables are considered in the training algorithms.

Researchers have used two methods to handle variables to
improve generation performance. First, in the case of numer-
ical variables, multimodal distributions were normalized to
improve the processing datasets. Normalized numerical vari-
ables showed values in the range of −1 to +1. Second,
the softmax function was used to smooth the distributions of
the categorical variables. In addition, one-hot encoding was
applied to categorical variables. A total of three open-source
datasets with tabular structures were used to evaluate the per-
formance of the framework. Moreover, the synthetic datasets
were evaluated using the original dataset through machine
learning classifiers.

Based on the aforementioned studies, we considered steps
similar to the experimental design in our study. First, the sta-
tistical characteristics of the dataset were confirmed before
developing the generation framework to handle the chal-
lenges related to training algorithms. Second, the GAN algo-
rithm was trained using a tabular dataset. Third, evaluation
methods were proposed for generation performance using
statistics from the generated dataset and the application of
machine learning tasks.

However, many researchers using the GAN model in
their work have pointed out the ambiguity of evaluation
methods for generated datasets [75]–[77]. Because of the
components of the algorithms (i.e., GAN models consist
of generator and discriminator models), we cannot con-
sider it the gold standard of evaluation, unlike other algo-
rithms [75]. For this reason, in the case of image generation
tasks, the generated dataset was evaluated based on human
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TABLE 12. Results of feature distance test in stroop 2 sub-dataset.

decisions and latent features extracted by pre-trained deep
learning models [78]–[80]. In addition, researchers have
evaluated performance with relative comparisons between
methodologies [81], [82].

To evaluate the generated tabular datasets more precisely,
we conducted an evaluation using the internal levels of the
table structure. First, we evaluated the generated dataset in
terms of instances and row levels. The existence of overlaps in
the generated dataset was verified using the original dataset.
To identify important elements in the Stroop task dataset,
the values of word-related variable (PRIM and TARG) and
reaction time variable (RT1 and RT2) pairs were compared.
Furthermore, a one-sample t-test was used to verify the differ-
ences in variable values between the original and generated
datasets. In this test, we considered that higher ratios of
statistically significant results indicated fewer overlaps with
values from the original dataset. Most of the significant result
ratios in the dataset generated by the GAN-based model were
higher than those of the randomly generated dataset.

In addition, the ranges of values for the variables were com-
pared with the original values. We calculated the minimum,

TABLE 13. Statistical test results of feature distance test in
stroop 1 sub-dataset.

median, and maximum values as constraints of continuous
variables. The absolute differences between the original and
generated constraints were compared. The difference values
of the GAN-based model conditions were generally lower
than those of the random generation condition. From these
results, we confirmed that the ranges for the GAN-based
model conditions were closer to the range of the actual data
than the random generation conditions.

Second, the variable and feature level characteristics of the
dataset were evaluated. Correlations between the variables
were confirmed from the generated datasets. We calculated
the absolute difference between the original and generated
values. We found that the absolute values of the GAN-based
model conditions were lower than those of the random gen-
eration conditions. In addition, the rank of the correlation
coefficients for the GAN-based model condition was com-
pared with that of the original dataset. We found that several
common elements were included in the coefficient list.

Additionally, the distances between the distributions were
evaluated for the datasets. For categorical variables, the Ham-
ming distances were calculated. Two-sample KS tests were
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TABLE 14. Statistical test results of feature distance test in
stroop 2 sub-dataset.

conducted for the continuous variables. In the GAN-based
model conditions, the absolute differences in distance values
were lower than those in random generation conditions. From
these results, we confirmed that the distributions of variables
generated by the GAN-basedmodels were more similar to the
original distribution than the randomly generated datasets.

Finally, the generated datasets were evaluated in terms
of whole-set levels. A total of three lengths (seven, five,
and three length features) of latent features were extracted
using a pre-trained AlexNet model. To compare the distances
between the extracted latent features, the Minkowski dis-
tance, including two distance metrics (Euclidean and Man-
hattan distance), was applied. Overall distance values in the
GAN-based model conditions were lower than those in the
random generation.

Based on the aforementioned experimental results, we con-
cluded that the statistical characteristics (e.g., similarity or
distances) of the generated datasets from the proposed frame-
works are closer to the original datasets than the characteris-
tics of randomly generated datasets.

V. CONCLUSION
In this study, we proposed a data generation framework
based on a deep learning model for a behavior experiment
dataset collected from cognitive psychology research. Based
on previous studies associated with tabular data generation,
we designed experiments using the development of algo-
rithms and evaluation methods. To complement the relatively
small sample size dataset used in our study, we used a pre-
trained GAN model for the framework. Furthermore, five
evaluation methods with internal tabular structure levels were
applied for a more detailed evaluation. In addition, a ran-
dom generation method was compared with the proposed
framework to evaluate its generation performance. Based on
the experimental results, we confirmed that the proposed
framework with GAN algorithms can generate statistically
similar synthetic datasets with the statistical characteristics
of the original dataset.

The first strength of this study is the application of a behav-
ior experiment dataset with a tabular structure from cognitive
psychology to a deep learning generation algorithm. Second,
we propose novel evaluation methods based on the tabular
structure levels. Third, we consider not only the generation
of structural characteristics, but also the reflection of the
statistical characteristics of the original dataset.

Furthermore, the proposed framework has advantages in
terms of data analysis and related research. First, the gen-
erated datasets can help reduce the sample size in related
experimental studies. Second, the synthetic dataset gener-
ation framework can overcome environmental restrictions
(e.g., the Covid-19 pandemic) in conducting experimental
research. Finally, a complement based on an artificial dataset
with similar statistical characteristics can reduce the burden
on participants.

Our study has some limitations. First, we compare only
random generation methods to evaluate our framework. How-
ever, we do evaluate the diverse aspects of the generated
dataset, which was advanced from previous studies. Second,
we only apply a Stroop task dataset from various task designs
in cognitive psychology research. Although a Stroop task
is one of the most established task designs used in related
studies, future studies should consider other tasks to gener-
alize this framework. In addition, for the utility of synthetic
datasets, validation studies need to be considered in future
studies.
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