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ABSTRACT Power scheduling of domestic appliances is a vital preference for bridging the gap between
demand and generation of electricity in a microgrid. For a stable microgrid, an acceptable mechanism must
reduce the peak to average ratio (PAR) of power demand with supplementary benefits for consumers as
reduced electricity charges. Recent studies have focused on PAR and cost reduction for a small consumer
population. Furthermore, researchers have mainly considered homogeneous consumer loads. This study
focuses on residential power scheduling for electricity cost reduction for consumers and load profile PAR
curtailment for a relatively large consumer population with non-homogeneous loads. A sample population
of 1000 consumers from various classes of society is considered. The proposed dynamic clustered com-
munity home energy management system (DCCHEMS) allows the clustering of appliances based on time
overlap criteria. Comparatively flatter power demand is attained by utilizing the clustered appliances in
conjunction with particle swarm optimization under the influence of user-defined constraints. Modified
inclined block rates with real-time electricity pricing strategies are deployed to minimize the electricity
costs. DCCHEMS achieved higher efficiency rates in contrast to the traditional non-clustering and static
clustering optimization schemes. An improvement of 21% in peak to average ratio, 4% in cost reduction,
and 19% in variance to mean ratio is obtained.

INDEX TERMS Smart grid, dynamic clustering, home energy management system, demand response,
optimization, controllable appliances, microgrid.

I. INTRODUCTION
Ever since the deregulation of the electric power industry,
smart grids have been envisioned to achieve effective electric-
ity distribution and utilization [1], [2]. The smart grid frame-
work encompasses all the smart appliances that generate and
store electricity, thus allowing the consumer to participate and
fulfill energy demands [3]. Demand response (DR) strategy
is one such way that allows potential residential customers
to minimize electrical costs by diverting their power usage
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preferences from a peak to an off-peak period. The reliability
of the smart grid is attributed to the efficiency of this load
shifting criteria which in turn contributes to shrinking the
peak to the average power.

Microgrid (MG) is an emerging concept in smart grids that
enhances the effectiveness and resiliency of power systems
by allowing smart control of consumer’s power consumption
while integrating distributed generation resources such as PV
and wind [4]. A home energy management system (HEMS)
warrants the steadiness and consistency ofmicrogrids [5]. It is
commonly referred to as the technique attributing to the use
of home appliances by domestic users. HEMS plays a vital
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role in a smart grid control system due to the widespread
demand for electricity in the domestic sector [6]. It works by
allowing variations in the demand curve according to each
profile of a user. The variation occurs due to the partaking
of a user in the electric power market. The whole process
makes use of intelligent sensors that are located at the soft-
ware running the database. The sensors help save the user’s
profile at various points of consumption. More specifically,
an advanced metering infrastructure (AMI) or smart meter
serves as a connecting junction between the electrical grid
and appliances to enable the power supply. HEMS prioritizes
this load consumption that concerns cost and energy [7].

Today, the integration of HEMS in an MG is an essential
part of smart grid control as domestic consumers substantially
contribute to the total electricity consumption. Also, there
is a need to improve the existing conservative HEMS tech-
niques to shrink the peak to the average power demand of
smart grids. This would fulfill the increasing energy demand
and overcome power deficit conditions in underdeveloped
countries [8]. The grid generates a controlling signal known
as demand response (DR) that reflects altered electricity
prices during peak hours. HEMS responds to DRwhile main-
taining a balance between power generation and electricity
consumption across the entire grid. It reshapes the power
usage pattern (PUP) by rescheduling load on the consumer
end (demand-side management). The DR process generally
comprises three pricing schemes; time of use pricing (TOUP),
critical peak pricing (CPP), and real-time electricity pricing
(RTEP). TOUP and CPP enable electricity price (EP) calcu-
lation in advance. The price calculation process can be per-
formed quarterly in both the schemes. Due to hourly updates
in the price, flexibility in RTEP can mirror load profiles or the
generation costs. But using RTEP for consumer’s electricity
cost (EC) reduction may increase PAR during low price time
slots. This is because the peak values in PUP will move
to low EP slots [9]. Hu et al. have proposed a DR-based
energy consumption scheduling scheme [10]. Price reduc-
tion is achieved but the customer’s comfort is compromised
with chances of peak load emergence in low price hours.
Du et al. suggest an electricity reduction-based optimiza-
tion model [11] that combines the two schemes of RTEP
and inclined block rate (IBR). Despite achieving significant
improvement in cost reduction, the scheme only operates for
limited time span of one day or one-month. Also, the sample
data set is small i.e. one household. Imran et al. propose
a heuristic computation-based load scheduling mechanism.
The main objective of the proposed approach is to improve
PAR, minimize electricity bills, reduce carbon emissions, and
increase user comfort [12]. But the simulations are presented
for a small data set of a single house for a day only.

Many studies addressing various energy parameters have
been conducted. The parameters studied include the daily
energy cost, allowable home temperature ranges, energy
usage, peak hours’ energy usage, and consumer’s com-
fort [13]–[15]. The effects and analysis of usage plans such
as fixed pricing, time-of-use pricing and real-time pricing

have also been studied. To meet energy demand in real
time, Homod et al. proposed the Takagi-Sugeno fuzzy based
method. This energy based operational model was developed
for heating, ventilation and air conditioning (HVAC) sys-
tems that used distributed energy resources, non-controllable
appliances (NCAs) and battery storage systems. Clustering
used by output variables made different groups of tempera-
ture average data for the entire year. The method was opti-
mized for HVAC systems but it did not consider rest of
the commonly used residential loads [16]. The authors have
suggested performance improvements for HVAC systems
[17]. Recent studies show the application of cluster-based
optimization strategies at theMG level [18], [19]. Yet they fail
to consider consumer’s preferences at appliance level. Also,
the algorithms have limitations in handling a large data set
with variations in the types of communities.

Some proposed models use game theory [20] and fuzzy
logic-based models [21] to solve energy management prob-
lems of residential buildings. But, these models are based
on a very small data set of a day, a limited number of
houses, and appliances that do not depict practical scenarios.
Waseem et al. uses Grey Wolf and Crow Search Optimiza-
tion (GWCSO) algorithm to reduce PAR and EC [22]. But
the proposed technique considers only the HVAC loads for
scheduling which limits the scope of GWCSO algorithm.
Kim suggests a heuristic computation-based binary back-
tracking search algorithm to optimize the energy usage of
controllable appliances. In comparison with particle swarm
optimization (PSO), the algorithm shows higher energy effi-
ciency. But it does not consider EC and PAR [23]. Dong
reformulated the economic dispatch problem using data-
driven energy management [24]. The model used an optimal
algorithm at 30 minutes sampling time and did not consider
PAR in the proposed algorithm. Javaid et al. and Hafeez et al.
proposed heuristic algorithm-based optimization models for
household load scheduling to reduce overall electricity bill
and PAR [25]–[27]. But the models performed well for only
small data sizes. The performance lowered as the size of the
data increased. The models suggested no mechanism to han-
dle large data. Hafeez et al. proposed an optimization scheme
exploiting mixed-integer linear programming (MILP), binary
backtracking search algorithm (BBSA), and artificial neural
network (ANN) [28]. Although the objective of electricity bill
reduction and PAR alleviation was attained but at the cost of
increased system’s complexity and execution time.

Jiang proposes an approach based on genetic algorithms
to improve EC and PAR under step tariffs in a power
system [29]. The simulation results shown depict a very
small data set of three houses. Hussain suggests a genetic
harmony-based search scheme to analyze the single-user and
the multi-user but with a small population size of 30 [30].
A one-hour sampling time was used. The small data set can-
not properly reflect the real-time operation of the appliances.
The sampling time used is one hour that cannot reflect proper
real time operation of the appliances. Paudyal suggests a load
profile’s peak reduction using a linear model [31]. But model
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FIGURE 1. Community based HEMS framework (a) and energy management system architecture for home (b).

uses a population of only 25 houses. Aziz et al. presents a
power scheduling methodology for a large population [32],
[33]. However, the technique is based on the assumption of
homogeneous consumption. This means that all appliances
in the entire population have the same properties and belong
to a similar class of consumers.

The literature review suggests that the majority of power
scheduling strategies focus on a small population sample size,
thus leaving the investigation of their behavior under a larger
population size unexplored. In this paper, a dynamic clustered
community-based home energymanagement system has been
proposed. The system achieves improved performance for a
large population set. The proposed load scheduling scheme
decreases consumer EC and PAR of load profile for a large
population. Consumers from different classes form commu-
nities and their appliances are gathered as clusters. Each
cluster undergoes particle swarm optimization, and an opti-
mum starting time is allocated to the appliances. To avoid
unwanted peaks during any time slot, the fitness function
of PSO also incorporates a modified IBR. PAR is reduced
when appliances’ overlapping time slots are tailored with
IBR. Results of the proposed system are compared with the
static clustering techniques suggested by Aziz et al.
The work contributes an efficient dynamic clus-

tered community-based home energy management system
(DCCHEMS). The model exhibits the following features;
• To make the model meaningful, realistic and practical,
it uses a large data set of 1000 houses for three months.
It implements a demand response-based strategy based
on consumers’ preferences for load scheduling of con-
trollable appliances. Also, it considers the various types
of consumable appliances that are commonly used in
households.

• The model uses four classes of consumers i.e., lower
class, middle class, upper-middle-class and higher class.
Due to the non-identical properties of consumer appli-

ances and distinct user preferences from different
classes, the load is non-homogeneous.

• The proposed model overcomes the underperformance
of static clustering-based techniques. The proposed
DCCHEMS algorithm significantly reduces the PAR
and cost of electricity.

The paper is organized as follows. Section-II presents the
structural design of EMS, Section-III presents the models and
their equations, Section-IV presents the proposed approach
of DCCHEMS, Section-V presents the simulation results and
Section-VI is the conclusion.

A brief summary of a few papers from heuristic computa-
tion techniques is summarized in Table 1.

II. STRUCTURAL DESIGN OF ENERGY MANAGEMENT
SYSTEM IN A HOME AREA NETWORK
The aim of an energy management system (EMS) is to limit
electricity expenses and reduce PAR. It does so by scheduling
power consumption in response to priority settled electricity
prices. Such energy management systems warrant the stabil-
ity and reliability of the power system. So, the main goal of
any DR-based scheme is to reduce PAR and EC that profits
utility as well as the consumer. An EMS consists of AMI,
home gateway (HG), energy management controller (EMC),
home appliances, and in-home display (IHD) appliances.

This paper proposes a community-based system architec-
ture that is compatible with MGs. The proposed system is
applicable for a community within an MG where several
MGs are assumed to be connected to the grid. These MGs
behave as substations that convey DR to users in the com-
munity center as per their proportion. The structure of the
community-based scheme for HEMS utilization in smart grid
is shown in Fig.1a. The proposed scheme can apply in a power
system that has multiple MGs, where each MG consists of
communities. And there are houses in each community.
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TABLE 1. Summary of comparison with existing heuristic computation based techniques.

The entire architecture of EMS with the help of a wireless
home area network (HAN) is shown in Fig.1b. AMI is the
most essential part of a smart grid. It connects the smart
metering system to the utility of two-way communication
and autonomous operations [34]. AMI is also responsible
for collecting and transmitting real-time smart meter con-
sumption data details and provides them to the utility. It also
communicates DR pricing signals back to the smart meter
after receiving from utility [35]. A smart meter is usually
mounted outside of residential homes. It establishes a connec-
tion between EMC and AMI by receiving EMC consumption
data and transmitting it to the utility. It also sends DR signals
to EMC for further analysis.

This paper addresses two types of appliances; controllable
appliances (CA) and non-controllable appliances (NCA).
CA can run on their own and do not need any manual inter-
ruptions e.g. washing machines, dishwashers, clothes dryers,
or air conditioners. The appliances can further be catego-
rized into interruptible (clothes dryer) and non-interruptible
(rice cooker) classes [36]. The NCA is consumer dependent
and can be operated during use, e.g., Television, computer,
and lawnmower. So CA can only be scheduled while NCA
requires manual interference. Furthermore, the CA consid-
ered in this paper are assumed to be smart home appliances.
In the architecture presented here, CAs do not have any
interaction with each other, but only with HG. The HGwould
have scheduled all the CAs connected in the residential home
at the start of the day.

Various wireless options are available to establish com-
munication between the smart meter and HG. Possibilities
includeWi-Fi, Z-Wave, Zig-Bee, or a wired (home plug) pro-
tocol [37]. HG via HAN can transmit an optimal power usage
schedule to each CA. IHD or remote-controlled appliances
such as laptops, mobile phones, etc., can be used to monitor
the scheduling process.

The proposed technology assumes that smart meter and
HG are merged as EMC that receives RTEP data from utility.

FIGURE 2. Appliance’s parameter constraint.

III. SYSTEM MODEL AND PROBLEM FORMULATION
This section presents a load scheduling optimal approach for
all CAs in the house. It exploits RTEP and modified IBR
pricing schemes.

A. HOME ELECTRIC APPLIANCES USAGE PATTERN
The EMC can make decisions for appliances load scheduling
once the utility sends DR information and RTEP profile to
the HG. Consumers generally prefer to avoid peak hours and
require certain tasks to be completed before some specific
time slots. Some tasks, e.g., washing machines, can operate
during the night when EP is low as the residents are sleeping
at that time. So, consumers must set time parameters for
each CA. Time parameters include activation time slot (ATS)
tak , appliance operation time start (AOTS) αak , appliance
operation time end (AOTE) βak , appliance operation time
length (AOTL) lak , appliance operation time interval (AOTI)[
αak , βak

]
during which the appliance is valid to be scheduled

and appliance rating xak as depicted in Fig.2. The IHD appli-
ance takes these parameters’ information and transmits it to
EMC via HG.

The proposed scheme only schedules CAs and does not
schedule NCAs. However, the simulation results reflect that
the scheme is still effective if NCAs are involved. The power
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scheduling of CAs follows a specific pattern that is presented
in the following section.

B. FINAL OBJECTIVE OF PROPOSED APPROACH
In an RTEP setup, EP rates are varied on an hourly basis. If the
CAs are scheduled as per RTEP’s hourly basis then the degree
of freedom for optimization of activation time slot (ATS) is
reduced. Conversely, if a very short time slot is considered,
heuristic optimization techniques, such as, PSO may have
convergence issues due to large possibilities of optimization
parameters. Therefore, the idea is to divide the time duration
of 1 hour into 6 time slots i.e., 10 minutes length of each slot.
Consequently, a day has 144 time slots denoted by the symbol
τ ε T defined as {1, 2, 3 . . . 144} [42]. PSO-based optimiza-
tion problem becomes computationally efficient when a day
is divided into 144 time slots. Therefore, 10 minutes time
interval is selected to be the shortest operation time of any
appliance. The operation times should be the numbers that
denote integer multiples of 10.
A is used to denote CAs. We assume that each appliance

ak ε A has the power consumption profile as,

Pak , [pak (1) , pak (2) , · · · . . . , pak (144)] (1)

where pak (τ ) represents power consumption value for ath

appliance of k th house, during τ th time slot, and the unit
is kWh. Since, there are 16 appliances considered for each
house; a ε {1, 2, . . . .., 16}. We assume that power consump-
tion value for each appliance is fixed per hour as there exists
a certain specification of each appliance, as shown in Fig. 8.

When the power consumption value per hour for appliance
ak is denoted by xak , then the corresponding power consump-
tion during τ th time slot is

pak (τ ) =
xak
6

(2)

Here, xak is the ath appliance power rating for k th house.
The power vector Pak will be scheduled for the a

th appliance
of k th house. This information is to be transmitted to the ath

appliance by HG through a suitable wireless connection.
As mentioned before, user preferences parameters are

taken from consumers for each CA. Toward this aim,
we assume αak and βak ε U

(
αak < βak

)
, as the indexes of

the start and the end time slots, respectively. The power con-
sumption of appliances is assumed to be valid for appropriate
scheduling within this operation time interval. Let lak be the
AOTL, i.e., required time slots for appliance operation. The
above-mentioned parameters are decided based on user pref-
erences received through IHD and are transmitted to EMC
later. In addition, βak - αak should be either equal to or greater
than lak . For example, if the washing machine needs one
hour to finish its work, then the value of βak - αak could be
any numbers that are greater than or equal to 6, and in the
meantime less than or equal to 144. The greater the value of
βak - αak is, the more possibilities for load scheduling there
would be.

FIGURE 3. Examples showing the relationships among appliances
parameters.

Wedefine a variable tak as the activation time slot (ATS) for
the ath appliance of k th house. Since, αak , βak , lak and xak are
all known already, the power consumption scheduling vector
of an appliance ’a’ can only be determined once tak is known.
Fig. 3 represents these relationships of the above-mentioned
parameters for four different kinds of CAs for k th house.

Now for each appliance akε A, there exists a group of
parameters comprising of AOTS αak , AOTE βak , AOTI[
αak , βak

]
, AOTL lak and power consumption value per hour

xak . In addition, we also set ATS tak as a variable. Having
αak , βak , and lak known already, tak should be greater than
or equal to αak , and less than or equal to βak − lak . In other
words, the adjustable parameter tak is denoted as

tak ε
[
αak , βak − lak

]
(3)

The range of tak , as an example for ath appliance of
fourth house, is shown in Fig. 4. For ATS of ath appliance
and kth house, we need to find its optimum value for every
CA subject to the constraint given in (3). A variable vector[
ta1 , ta2 , . . . tak

]
is constructed that consists of ATS for all the

CAs. Therefore, a load profile based on power consumption
scheduling matrix P for all CAs is defined as

P =

{
p | pak (τ ) =

xak
6
, ∀ak ε A, τ ε

[
tak , tak + lak

]
pak (τ ) = 0, ∀ak ε A, τ /∈

[
tak , tak + lak

] (4)

where P denotes a matrix, each row of which carries power
scheduling pattern of a certain appliance and variable τ repre-
sents the index of column. The term τ /∈

[
tak , tak + lak

]
indi-

cates that τ belongs to T excluding the range
[
tak , tak + lak

]
.

By summing up all the values of each column vector in the
power consumption scheduling matrix, a total power con-
sumption scheduling vector Pscd would be determined as

Pscd =

{
pscd | pscd (τ ) =

∑
P (τ ) ,∀τε T

}
(5)

In Eq. (5), P (τ ) stands for the τ th column in the power
consumption scheduling matrix.

The objective function of the power consumption schedul-
ing problem defined for a single house can be presented as
the following optimization problem

minimize EC (Pscd)

s.t. tak ε
[
αak , βak − lak

]
(6)
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FIGURE 4. AOTS range illustration for home appliance ’a’: (a) the earliest
starting time and (b) the latest starting time.

where

EC (Pscd) =

144∑
τ=1

rtep(τ ). pscd (τ ) (7)

In Eq. (7), rtep denotes the EC at the τ th time slot. The EP
presented in (7) can be minimized through an optimization
technique.

C. SELECTED PRICING SCHEME AND MODIFIED
INCLINED BLOCK RATE
RTEP being superior in flexibility as compared to both TOUP
and CPP, but has the drawback of concentrating many appli-
ances at low EP areas. Considering this constraint, the pro-
posed system combines IBR with RTEP which can vary EP
rates in the low EP time slot based on the power consumption
of the appliances [38]. This prevents another peak that can
occur in low EP time slots.

Application of IBR pricing scheme affects RTEP rates by
multiplying it with a factor λ > 1. This occurs whenever the
PUP of any house goes beyond a predefined threshold range
at any time slot. Otherwise, RTEP remains unaffected. IBR
operates as a monitoring term to keep the scheduling algo-
rithm from inducing sharp peaks in PUP. Undesired power
peaks can occur in response to the scheduling algorithm
optimization. This may occur when several appliances of a
house operate with overlapping αak and βak . They may get
scheduled to identical time slots where RTEP is offering low
electricity prices. Thus, undesired power peaks get created.
Occurrences of these undesired peaks increase the PAR of
PUP. IBR controls such a situation by involving the penalty
term and prevents the scheduling algorithm from creating
power peak patterns. In the proposed approach, IBR is modi-
fied to reflect the penalty term which applies only when PUP
crosses a γc scaled threshold i.e. the number of houses lying
under the current community. Two EP levels are considered
and there is a change in EP every hour. Modified IBR control
is incorporated into the RTEP formulated as:

rteppc (τ ) =
{
rtep(τ ) if pc ≤ th× γc
rtep(τ )× λ if pc > th× γc

}
(8)

where,

pc =
∑
∀aεCc

∑
∀kεCh

pak (τ ) (9)

FIGURE 5. RTEP on 9th July 2015 [41].

Here rtep (τ ) is the real-time EP received from electricity
supply company for time slot τ , rteppc (τ ) is the EP based on
the power consumption pc of the community being optimized,
th is the threshold set to 2 kWh, and γc is the count of houses
under current community. Ch represents a set of houses in the
current community of consumers and Cc refers to the current
cluster of CAs.

Though it seems impractical to propose EP ahead of a day,
several price prediction schemes have been presented in the
literature [39], [40]. The electricity pricing data: RTEP for 9th
July 2015, accessed from Illinois is shown in Fig. 5 [41].

IV. PROPOSED PARTICLE SWARM OPTIMIZATION
BASED APPROACH FOR MANAGEMENT OF ENERGY
CONSUMPTION
A. PARTICLE SWARM OPTIMIZATION (PSO)
The PSO is an iterative method, proposed by Kennedy and
Eberhart [43] is based on the concept of population of par-
ticles. The optimization is initiated by assigning initial val-
ues to position and velocities of the particles. PSO allows
the candidate solutions; particles, to gather up around the
optimum solution space. Particle best solution and the local
best position are defined by global best (gbest) and particle
best (pbest), respectively, to monitor the flight curves of the
particles.

In our problem, EC is reduced using PSO for optimumATS
allocation of each house in the community. Optimization is
aimed to work within the constraint of keeping AOTL within
the range of AOTS and AOTE as given in (3). Here, AOTS
is used as the initial value for optimization which is the user
preference provided by the consumers. Then the cost function
is saved that minimizes EC as shown in (7) and adjusts pbest
location. This process continues until terminated due to the
termination condition.

The velocity of particle i is updated as it moves around
the search space as per (10). Suppose x ti denotes the position
vector of particle i in the multidimensional search space
(i.e Rn) at the time step t then the position of each particle
is updated in the search space by (11)

V t+1
ij = ωV t

ij + c1r1
(
pbest tij-x

t
ij

)
+ c2r2

(
gbest tj -x

t
ij

)
(10)

VOLUME 9, 2021 142281



A. Abbasi et al.: Novel Dynamic Appliance Clustering Scheme in Community HEMS

FIGURE 6. Flow chart for PSO.

x t+1ij = x tij + v
t+1
ij (11)

V t
ij and x

t
ij are the velocity and position vectors of particle

i in dimension j at time t. pbest tij is the personal best position
of particle i in dimension j found from initialization through
time t. Similarly, gbest tj is the global best in dimension j
found from initialization through time t.Uniformly generated
random numbers in the interval [0, 1] are represented by
r1 and r2, respectively. The particle weight is represented
by the coefficients ω, momentum of pbest by c1 and pull
towards gbest is represented by c2, respectively. The con-
straint defined in (3) is used for random initialization of veloc-
ities and particles. The same initially generated population
is expected to improve upon each iteration. Each particle
improves its own version by keeping a check on pbest. If a
newer version of pbest is better than the previous then it is
replaced with the improved one. Also, if pbest better than
gbest, it replaces gbest as well. The gbest is returned as the
final solution when the process is completed after fulfilling
any of the termination criteria as shown in Fig. 6.

B. FORMULATION OF DCCHEMS
The IBR has been used as a pricing scheme from a long time
by many companies like California Edison & Pacific Gas &
Electric [44], [45]. PAR is reduced by the application of IBR
which can control the power demand of one appliance by
implying its penalty factor. But if many appliances appear
in the same time slot then the PUP of the whole power
grid will rise enormously. This scenario can be explained
with the help of Fig. 7. For simplicity, we have considered
only one appliance per house for a community of m houses.

FIGURE 7. Example of appliance’s cluster generating power peaks.

The considered appliances are assumed to have their αak
around a time slot which has the lowest EP than its successor
slots. In such a situation, the application of any scheduling
algorithm in conjunction with the IBRwill tend to settle down
tak of all houses towards the slot of lowest EP. Despite the
fact, IBR succeeds to limit the PUP of each house under
the desired threshold. But the constellation of appliances tak
scheduled around the lowest EP will produce a PUP peak
in the overall community. Ultimately it occurs for the entire
power grid. If we consider the RTEP in Fig. 5, EP is the lowest
around hour 5 of the day, and the appliances of Fig. 7 will
tend to be scheduled around hour 5 resulting in a higher peak.
This situation demands for a power scheduling methodology
that can look around in the neighborhood while optimizing
ATS for all the appliances. Therefore, the proposed algorithm
handles the situation as follows.

It is assumed that grid or electricity supply company
communicates DR-related tasks to the substations. And they
further communicate it to the respective communities. For
incorporating analysis of non-homogeneous loads, the entire
population of 1000 houses is divided into four types of
community classes; lower-class (LC), middle class (MC),
upper-middle-class (UMC), and higher class (HC). These
classes consist of equal number of houses. All these four
classes have their own user preferences as per their daily
routines. For example, HC, usually the business class, has
late-night routines as their morning chores start around noon.
Their houses usually have heavy-duty loads, e.g., 2 to 5 tons
ACs, automatic washing machines requiring plenty of water
that enables longer water pump operation, generally enabled
with automatic water heating. All these appliances are high-
powered as compared to other classes of community types.
In comparison, MC makes it a bit earlier with somewhat
reduced power-rated appliances connected at their homes.
For example, appliances like automatic washing machines
and dishwashers are installed without electric water heating.
So they use lesser power for their operation as compared to
HC or UMC [46]. Power ratings used for CAs of all four
classes are shown in Fig. 8. As a general trend, LC starts the
day at 4 a.m. and ends up with all the chores around 9 p.m.
These details for all four classes are reflected in Table 2.
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TABLE 2. Typical usage parameters for CAs [33].

FIGURE 8. Power rating in kWh for appliances of non homogeneous load
i.e. for all four classes.

We have assumed different percentages of CAs in each class.
LC community is assumed to have 20% of CA, 40% for MC,
60% for UMC, and HC is assumed to have 80% of CA.

A randomly generated one-day load profile is subjected to
PSO to find the best clustering set among all possible clus-
tering combinations of C1, C2, and C3 as presented in Fig. 9.
The C3 is varied from 2 to 7 clusters per community with both
uniform and unequal cluster sizes [33]. Based on PARR best
clustering combination is employed in randomly generated
population load profile for 90 days as presented in simula-
tions Section-V. The entire population of each class having
250 houses, is divided into their respective communities of
size C1, the appliances within the communities are sorted as
per C2 and then grouped into C3 clusters. Each community
consists of 50 houses as per C1 optimum value. AOTE is

FIGURE 9. DCCHEMS parameters for clustering.

selected to be the sorting criterion under C2. The number of
clusters of appliances in each community denoted by C3 is
selected to be 5 as per the optimum value.

The developed algorithm broadly consists of two steps.
First, a dynamic clustering based pre-processing stage for the
data formulation. Second, dynamic clustering is employed on
the formulated data for load scheduling of the CAs.

Pre-processing stage is highlighted in Fig. 10 that involves
sorting of all houses before making sets of communities
according to C1. The selection of houses into communities is
dynamic as it is based on average PAR of each cluster. There
are 16 appliances in each house. These 16 appliances per
house are divided into 5 clusters as per their AOTS andAOTE.
PAR is calculated for 5 clusters and all houses are sorted in
ascending order based on maximum PAR. Secondly, entire
population of 1000 houses is divided into 5 sets of 200 houses
each. And all sets are sorted according to their second maxi-
mum PAR. Thirdly, the 10 sets of 100 houses each are sorted
according to third maximum PAR. In order to bring variations
of data under one community, every 21st house is picked
out of the sorted list. Selection of houses at turns of 20 s is
carried out in order to populate each community with a good
diversity based on PARs. It facilitates the dynamic clustering
due to availability of houses with diversified PAR values.
Since the size of one community is 50 houses, therefore, the
LC consists of 5 communities of 250 houses. Similarly, each
of the other three classes consists of 250 houses. Therefore,
the 5 communities belong to each class. One community
of 50 houses has a total of 800 appliances, i.e 50× 16.
These appliances of each community are further divided

into 5 clusters of various configurations as per criterion C3.
Borders of cluster with highest average PAR is varied with
even multiple of integer interval [−3, +3]. The combination
resulting in lowest PAR is selected.

Following steps are followed by DCCHEMS:
Step 1: Entire population is divided into equal sized

classes; lower class, middle class, upper-middle-class and
higher class.

Step 2:C2 is used for sorting the appliances of each house.
Step 3: C3 decides a number of clusters of appliances in

each house.
Step 4: For the entire population, sorting population with a

staggered set of houses having to descend PARs in respective
clusters.
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FIGURE 10. Flowchart for the proposed DCCHEMS method.

Step 5: Selection of optimum clustering criterion.
Step 6: C2 is used for sorting appliances under each com-

munity.
Step 7: C3 decides a number of clusters of appliances in

each community.
Step 8: The parameters tak belongs to the current cluster

within the range
[
αak , βak − lak

]
are initialized and Step 6

till end is repeated until all clusters done. Sets of tak are used
as particles.

Step 9: Eq. (12) is used to calculate fitness for each cluster
by evaluating Pcc and EC.
Step 10: The pbest is updated in case the new particle’s

fitness is better than that of the previous pbest. In case later
is better, update gbest with pbest.

Step 11: Update velocities and positions of particles
according to (10) and (11).

Step 12: Go to Step 6 if the termination criterion is not
reached.

Step 13: Repeat Step 8 to Step 11 until all communities
scheduled.

Step 14:Terminate once the entire population is scheduled.

FIGURE 11. Power usage pattern (PUP) at 45th day.

The steps followed by the algorithm are shown in the flow
diagram of Fig. 10. Overall power scheduling objective can
be summarized as follows:

minimize EC (Pcc)

s.t. tak ε
[
αak , βak − lak

]
(12)

EC(Pcc)=
∑
∀kεCh

∑
∀aεCc

144∑
τ=1

rteppc (τ ) . pak (τ ) (13)

Here EC(Pcc) is the total EC based on PUP. The PUP for
the cluster of the community being scheduled is denoted by
Pcc, rteppc (τ ) represents electricity rate for the τ th time slot
according to (8). pak (τ ) is the power rating of CA for k th

house and ath appliance. The houses in the current community
are represented by Ch. Current cluster is denoted by Cc.
Therefore, the objective function of our proposed algorithm
is to minimize overall consumer EC of power consumption.
IBR is applied on the entire community to keep the PAR
under control, as the population is divided into several smaller
communities.

V. SIMULATION RESULTS
This section describes the simulation results of our energy
management system. We have used PSO that exploits tested
parameters for a randomly generated house population
of 1000 houses for 90 days. Out of these 1000 houses, each
class of community consists of 250 houses. The clustering
parameters are tuned for one day’s load profile as proposed
by Aziz et al. [33]. This section presents the results and sim-
ulation outcomes for the proposed algorithm. Results reflect
improvement in PAR of PUP and EC as compared to existing
techniques in the literature. To present the comparison with
the existing techniques, three performance metrics have been
used; cost reduction percentage (CRP), PAR reduction per-
centage (PARR), and PUP variance to mean ratio (PVMR).
These metrics are calculated as:

CRP =
EC-PSEC

EC
× 100 (14)

PARR =
PAR-PARPS

PAR
× 100 (15)
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PVMR =

(∑∑144
τ=1 (PUP(τ )-µPUP)

2

144

)
×

1
µPUP

(16)

Here, EC and PSEC are the electricity costs before and
after power scheduling, PAR and PARPS are peak to aver-
age ratios before and after power scheduling, µPUP reflects
mean PUP. The percentage improvements in the proposed
technique as compared to reference techniques for these three
performance metrics are shown in Table 3. For simulation
purposes, maximum 16 and minimum of 8 appliances are
considered for population load profile generation.

Some appliances can operate more than once a day accord-
ing to the daily routines of the users. Table 2 represents the
possible time slots utilized for power consumption of CAs.
MATLAB is used for all the simulations carried out in this
study. As per optimization algorithm requirements, PSO uses
parameters as swarm size of 100, 0.25 as a neighborminimum
fraction, variable count 16, relative change tolerance value as
10-16 and the iteration terminates at 3200.

The best clustering set among all possible combinations of
the clustering parameters as presented in Fig. 9 is generated
using PSOwhen applied on a randomly generated load profile
for a day. To achieve both uniform and unequal cluster sizes,
C3 can achieve values ranging from 2 to 7 clusters per com-
munity. Results presented here are generated for 50 houses
for each community for all four types of community classes.
Home appliances are sorted based on AOTE. The number
of clusters is decided to be 5. The selected parameters are
claimed to be the best clustering combination for randomly
generated load profiles for a period of 90 days [33].

In this study, following four types of profiles are gener-
ated. Profile for unoptimized data, profile with IBR included
with PSO for load scheduling [33], profile with CCHEMS
based appliance clustering [33] and profile with the proposed
dynamic appliance clustering. Note that the electricity pricing
data is taken from Ameren Illinois Power Company (2015)
for the duration of 11th April 2015 to 9th July 2015.

An optimization for the 45th day PUP against time slots
(TS), is shown in Fig. 11 which shows that proposed algo-
rithm improves on PAR significantly as compared to static
clustering-based approaches. The peak of 215 kW/TS in
CCHEMS at TS 109 is reduced down to 168 kW/TS at the
TS of 87 in DCCHEMS. The difference can be observed
with an unoptimized and PSO-IBR techniques where sharp
power consumption peaks are replaced by either no or very
low power consumption peaks. The algorithm shifts the con-
sumers’ load from peak hours to off peak hours while prevent-
ing building up of new peaks. This witnesses the benefit of
combining IBR with RTEP as claimed in the pricing scheme
Section-IV-B. Once dynamic clustering applied, the diversity
factor of the load curve improves. The load varies smoothly
which leads to peak shaving and desert filling. In contrast
to the static clustering-based approach, significant improve-
ment in PAR is observed for the proposed technique as
presented in Fig. 12(b) where mean PAR for unoptimized
technique, optimized with PSO and IBR, CCHEMS and

FIGURE 12. Simulation results for 90 days with PSO: (a) Electricity cost,
(b) PAR and (c) variance to mean ratio of PUP.

DCCHEMS are 3.78, 3.65, 2.51, and 1.71, respectively,
as shown in Fig. 12(b). The EC reduction for the reference
and proposed technique in $/Day for a period of 90 days is
presented in Fig 12(a). Mean EC for unoptimized technique,
optimized with PSO and IBR, CCHEMS and DCCHEMS
are 844.82 $/Day, 461.46 $/Day, 379.13 $/Day and 344.35
$/Day, respectively. Mean EC reduction with non-dynamic
clustering is about 4.12% as compared to dynamic clustering.

The PAR effects are presented in Fig. 12(b). Non-dynamic
clustering reduces PAR by 33.49%, whereas dynamic clus-
tering reduces PAR by 54.75%. The proposed DCCHEMS
is 4.11% better than non-dynamic optimization in terms of
cost reduction capability. Results are more encouraging when
the PAR reduction is considered with DCCHEMS where an
improvement of 21.26% as compared to the non-dynamic
optimization is achieved. Considering the improvement of
PAR and cost reduction, utility is encouraged to offer more
incentives to the consumers for taking part in DR events.
The last parameter PUP variance to mean ratio (PVMR)
reveals that DCCHEMS is 19% superior to non-dynamic
optimization in the smoothness of PUP. Therefore, our pro-
posed DCCHEMS enables PUP smoothness as reflected
in Fig. 12(c). Ideally, zero PVMR leads to a flat PUP and
DCCHEMS brings PVMR further down to 0.11 from 0.3 in
the case of CCHEMS, which was reduced only up to 0.85 on
average for non-dynamic clustering. Stability and reliability
of the entire system are ensured by smooth PUP and reduced
PAR. Averaged results for 90 days of PSO optimization are
shown in Table 3.
This significant reduction in PAR and EC with the pro-

posed technique is due to two design improvements. Firstly,
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TABLE 3. Summary of results.

the segregation of consumers into various types of com-
munities. Secondly, by further dividing the clusters of the
appliances into various sets based on their operating time
overlap and respective PAR values. The reduction in PAR
ensures improvement in demand and supply balance which
must be obtained for an MG to work resiliently [47].

VI. CONCLUSION
In this paper, a dynamic clustered community HEMS-based
strategy is proposed to perform efficient energy management
of residential consumers by involving demand response and
user preferences. The proposed technique results in incen-
tivized consumer and utility companies by exploiting the dif-
ference in user preferences and load consumption behaviors
of various classes in society. Consumers relish the benefit of
reduced EC and electricity supply company benefits through
efficiently trimmed PAR augmenting reliability and stability
inMGs. For performance validation, simulations were carried
out and results of the proposed framework of DCCHEMS
were compared with CCHEMS based strategy and PSO-
IBR-based optimization. The proposed DCCHEMS based
technique improves PAR by 21.26% and EC is improved by
4.11%. Variance to mean ratio is also improved by 19%.

NOMENCLATURE
ABBREVIATIONS
AMI Advanced metering infrastructure.
AOTE Appliance operation time end.
AOTL Appliance operation time length.
AOTS Appliance operation time start.
ATS Activation time slot.
CA Controllable appliance.
CCHEMS Clustered community home energymanage-

ment system.
CPP Critical peak pricing.
CRP Cost reduction percentage.
DCCHEMS Dynamic clustered community-based home

energy management system.
DR Demand response.
EC Electricity cost.
EP Electricity price.
HAN Home area network.
HC Higher class.
HEMS Home energy management system.
HG Home gateway.
IBR Inclined block rate.

IHD In-home display.
LC Lower class.
MC Middle class.
MG Microgrid.
NCA Non-controllable appliance.
PAR Peak to average ratio.
PARR PAR reduction percentage.
PSEC Power scheduled electricity cost.
PSO Particle swarm optimization.
PUP Power usage pattern.
PV Photovoltaic.
PVMR PUP variance to mean ratio.
RTEP Real time electricity pricing.
TOUP Time of use pricing.
UMC Upper middle class.

SYMBOLS
αak AOTL for appliance a of house k .
βak AOTE for appliance a of house k .
P Power consumption scheduling matrix of

size 800*144.
Pscd Power consumption scheduling vector.
Pcc PUP for cluster of community.
γc A threshold based on count of houses under

current community.
λ Penalty factor.
gbest tj Global best in dimension j found from ini-

tialization through time t.
pbest tij Personal best position of particle i in dimen-

sion j found from initialization through time
t.

rteppc (τ ) Real time electricity price of pc.
µPUP Mean PUP.
ω Particle weight.
τ Time slot.
Ak Set of CAs of k th house.
c1 Momentum of pbest.
c2 Pull towards gbest.
Cc Current cluster of CAs.
Ch Set of houses in current community.
lak AOTL for appliance a of house k .
Pak Power consumption profile for appliance a

of house k .
pak (τ ) Power consumption value for ath appliance

of k th house, during τ th time slot.
pc Power consumption of community being

optimized.
r1, r2 Random number in the interval [0, 1].
tak ATS for appliance a of house k .
th Threshold set for PUP at 2 kWh.
V t
ij Velocity vectors of particle i in dimension j

at time t.
x tij Position vectors of particle i in dimension j

at time t.
xak Appliance rating for appliance a of house k .
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