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ABSTRACT Registering point clouds quickly and accurately has always been a challenging task. A lot
of research based on Gaussian mixture model is widely used in recent years. However, few people use
other models for point cloud matching. Therefore, this paper proposes a point cloud registration algorithm
based on the Laplace mixture model. In this paper, sampling variance is used to replace the variance of the
likelihood estimation to successfully overcome the nonlinear problem. In addition, the Laplace model has
strong robustness, which is very suitable for point cloud matching of 3D laser scanning. In the experiment,
compared with several other algorithms, proposed method quickly and accurately registers point clouds.

INDEX TERMS Laplace model, point cloud registration, rigid, affine.

I. INTRODUCTION
Point registration technology has been highly concerned
in many fields, such as computer vision, pattern recog-
nition, mobile robotics, machine learning, medical imag-
ing and geographic information system [1]–[8]. At present,
the point cloud registration methods are mainly focused on
two types: 1) the improved methods based on the Iterative
Close Point (ICP) algorithm [9]; 2) the probability-based
approaches. In this paper, our research mainly concentrates
on probability-based methods.

In the first category, ICP algorithm is a classic example that
uses directly point cloud coordinates and extracts descriptors
to assist matching and registration. Due to ICP algorithm is
only suitable for rigid registration, many researchers have
improved ICP algorithm in order to achieve more complex
point cloud registration. Ying et al. put forward the Scale-ICP
algorithm in [10], which introduces an affine factor, for a
total of 7 undetermined variables, to register point clouds
on different scales. The Scale-ICP algorithm has shown fast
convergence in experiments, but it can only be applied to
register point clouds transformed by a single scaling fac-
tor. In [11], Ho. J et al. proposed an algebraic approach
to affine registration of point sets, however, it is used to
register point clouds that are affine transformed in three fixed-
directions.Wang et al. [12] proposed a multidirectional affine
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registration (MDAR) algorithm, it solves the same problem
in [11]. Du et al. proposed a scaling ICP algorithm [13]
and improved upon scaling ICP algorithm in [14]. However,
the affine ICP algorithm [14] often shows poor registration
results on complex situation, due to the limitations of the
convergence domains. Yang et al. [15] put forward a method,
Go-ICP (the Globally Optimal ICP), which is based on
the well-established branch-and-bound (BnB) theory. These
ICP-based algorithms show good registration results on some
simple point registration. Feng et al. proposed the PCR-GW
algorithm [16], the algorithm is based on the gray wolf opti-
mizer to register point clouds, and it improves the registra-
tion speed and registration accuracy. Shu et al. proposed the
Whitening-ICP algorithm [17], the registration error of it was
small and it reduced the computational complexity of point
cloud affine registration. Nevertheless, it is difficult for them
to register more complex point clouds, such as arbitrary affine
deformations and complex non-rigid point clouds.

In the second category, this type of registration meth-
ods considers the alignment of two point sets as a prob-
ability density estimation problem. The feature of these
methods is the widespread use of Gaussian Mixture Mod-
els (GMMs). Among these methods, the representative and
widely used methods are GMMREG algorithm [18] and
coherent point drift (CPD) algorithm [19]. With the devel-
opment of GMM-based registration algorithms, many algo-
rithms of this type have been gradually proposed [20]–[25].
These algorithms avoid the iteration of the ICP and can be
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applied in rigid and non-rigid point set registration, but the
probability estimation algorithm usually relies on the EM
(Expectation maximization algorithm), which means they
consume more time. In addition, they also have exposed their
limitations when there are wrong correspondences in real-
world tasks, though they perform reasonably well when the
spatial transformation is not complex.

In this paper, we proposed a novel point cloud registra-
tion method which is based on Laplace Model. It is known
that Laplace model is not widely used in engineering but
the field of economics [26]. In addition, the error metric in
the proposed method strictly is minimizing the modulus of
the closest point residual vector, unlike calculating the L2
norm in GMM, which makes the point cloud less prone to
serious deformation in the process of registration. Extensive
experiments on simulation and measurement data sets reveal
the superiority of the proposed method over state-of-the-art
competitors.

II. POINT CLOUD REGISTRATION METHOD BASED ON
LAPLACE MIXTURE MODEL
A. LAPLACE MIXTURE MODEL
The density function of a multivariate Laplace distribution
can be described as
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where x ∈ RD, and ν = (2− D) /2;Kν is the modified Bessel
function,
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is a covariance matrix. Based on the kernel

density estimation strategy, the Laplace mixture model (2)
can be derived by (1).
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K is order in the model. However, in calculation, the Bessel
function is a complex transcendental function. In addition,
K1/2

(x) =
√
π
2x exp (−x), in non-parametric statistics, low-

dimensional kernel functions are often spheroidized into
high-dimensional kernel functions. So, in this paper, we use
a degradation model of (2) whose ν = 1

2 .
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where σ is the variance, µk is the mean of the k-th model
andC (D) is a Jacobian coefficient. The Jacobian coefficients
for (3) can be summarized as shown in Table 1.

TABLE 1. Jacobi an coefficient.

B. PROBABILISTIC MODEL OF REGISTRATION
We consider that the source point cloud and the target point
cloud XD×N = (x1, x2, . . . , xN )YD×M = (y1, y2, . . . , yM )
need to be registered. That is,M ,N are the number of points
in the point clouds, respectively. Let T (Y , θ) be the transform
operator for Y where θ represents all parameters. If the points
in the point cloud T (Y , θ) are used as the mean in the
model (3), then a probability density function of the error can
be described as

pL (xi) =
1

C (D)
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Furthermore, a log-likelihood function of the error proba-
bility can be obtained.
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N∑
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where constant coefficients are ignored. Clearly, accurate θ
maximizes l (θ). According to Jensen inequality,

l (θ, σ ) ≥ −ND ln σ −
N∑
i=1

M∑
k=1

αi,k
σ
‖xi − T (yk , θ)‖ (6)

Let the right side of the inequality be Q (θ, σ ). Clearly,

Q (θ, σ ) = −ND ln σ −
N∑
i=1

M∑
k=1

αi,k
σ
‖xi − T (yk , θ)‖ (7)

Based on the Minorize-Maximization algorithm, the max-
imized Q (θ, σ ) increases l (θ, σ ). In the nonlinear optimiza-
tion process, iterative operations have to be used. Because
the Laplace mixture model is essentially a stratified sampling
model, then

αi,k =
exp

(
−

1
σ
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M∑
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(
−

1
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Due to the lack of prior information, based on the Bayes
hypothesis, the no information prior distribution of αi,k is
αi,k =

1
M .

III. AFFINE REGISTRATION METHOD
The point cloud is inevitably affine transformed due to factors
such as shape differences or thermal expansion of the object
being scanned. That is,

T (yk , θ) = Ayk + t (9)

where A is affine matrix, t is translation vector.
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Then,

Q (A, t, σ ) = −ND ln σ −
1
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The Q function maximization problem can be divided into
two sub-problems:
σ = argmin
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Taking partial derivative of Q with σ and equate it to zero,
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According to the above formula, the first optimization
problem can be solved. However, the above formula calcu-
lation is difficult to calculate quickly. Fortunately, the sample
variance can be approximated to the variance. Hence

σ 2
≈ σ̂ 2
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On the other hand, the second optimization problem is
equivalent to

(A, t) = argmin
(A,t)

σ 2 (14)

Based on the relationship between sample variance and
variance, we can get

(A, t) = argmin
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Taking partial derivative of sample variance σ̂ 2 with
respect to t and equate it to zero, we can obtain:
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By (15) and (16), taking partial derivative of σ̂ 2 with
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Summarizing the above derivation, we can generalize the
entire registration algorithm to the LMM-Affine algorithm.
And, the algorithm flow is shown in the following table.

LMM-Affine Algorithm
Step 1: Target point cloud X and source point cloud Y , set

iter_max=100, allowable error ε =10−5;
Step 2: Initialize the affine matrix and the translation

vectorA = I , t = 0, αi,k = 1
M and calculate the

sample variance σ̂ 2 by (13);
Step 3: Update t and A by (17) and (18) respectively, calcu-

late Ŷ = AY + t and update αi,k by (8);
Step 4: Update the sample variance σ̂ 2 by (13);
Step 5: If ‖1(θ, σ )‖2 > ε, set iter = iter +1; if

iter>iter_max, set iter=1and go to step 3; until
‖1(θ, σ )‖2 < ε, the iteration ends.

IV. REGISTRATION TEST
To prove the effectiveness of the algorithm proposed in
this paper, bunny, face and elephant 3D point cloud data
provided by Stanford University were used for registration
verification. The simulation was based on MATLAB 2016a,
whose environment was configured for a 2.8 GHz CPU
with 4 GB RAM.

A. AFFINE REGISTRATION TEST
To test the performance of LMM algorithm, the point cloud is
affine transformed. Both Scale-ICP and GO-ICP are not suit-
able for registering point clouds that are affine transformed,
so they are not compared here. We compared the following
three methods Affine-ICP [14], MDAR [12], PCR-GW [16],
Whitening-ICP [17] and CPD [19]. The registration result is
shown in Fig. 1 and Table 2.

As can be seen from Fig.1, Affine-ICP algorithm has
poor registration results, due to the limitations of the con-
vergence domain. MDAR is just a multi-directional affine
algorithm, it allows the point cloud to expand and contract
in the three directions of X, Y, and Z. Therefore, its effect is
not stable during arbitrary affine registration, which depends
on the degree of affine deformation. From Fig.1, we also
can see that CPD, Whitening-ICP and LMM can register
point clouds that are affine transformed. However, it can be
seen from Table 2 that CPD demonstrates almost the same
accuracy effect to LMM in terms of RMSE, but it takes
significantly more time to perform. This means that during
the same time period, the RMSE of LMM can exceed that
of CPD. As for Whitening-ICP and PCR-GW, they take
less time to perform than LMM, but they perform worse in
terms of RMSE. Especially in many engineering applica-
tions, registration must achieve high accuracy in a short time.
Therefore, LMM algorithm provides more practical value in
engineering.

B. EXPERIMENTAL TEST
In this section, some experimental data was used to test the
algorithms. we use the portable laser scanner (HANDYSCAN
700TM portable laser scanner) that is shown in Fig. 2 to
collect data from objects. We scanned each actual object
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TABLE 2. Affine registration results on 50 trials for three point clouds.

FIGURE 1. Affine registration results of several algorithms.

FIGURE 2. Scanning process and HANDYSCAN 700TM portable laser
scanner.

twice to get two sets of point clouds. Considering the exis-
tence of the ground truth affine transformation, we first label
the object and then the object can be automatically located
by the scanner in the scanning process, so that the interfer-
ence of the ground and the background can be ignored. The
scanned point clouds are displayed on Meshlab, as shown
in Fig.3.

As shown in Fig. 3, the scanned objects are in the first
row and the point clouds reconstructed by software are in
the second row, respectively. In fact, because the objects
being scanned may be reflective, there are some areas that
cannot be scanned. Therefore, on the whole, the collected
point cloud distribution is relatively uniform and matching
these point clouds is a great challenge to these algorithms.
The registration results of several algorithms are shown in
Fig.4.

FIGURE 3. Scanned objects and software systems.

FIGURE 4. Experimental registration results of several algorithms.

Fig. 4 shows that the CPD algorithm, the Whitening-
ICP algorithm and the LMM algorithm have satisfactory
results; however, the results of the Scale-ICP algorithm are
not satisfactory. In fact, the initial registration algorithm in
the Scale-ICP algorithm always has an ambiguity in terms of
direction. Affine-ICP algorithm often has poor registration
results due to the limitations of the convergence domain.
MDAR has good registration effect in this section because
these actual objects have not undergone significant deforma-
tion during scanning. The LMM algorithm performs better
than PCR-GW and Whitening-ICP in terms of RMSE, which
is also shown in Table 3. The LMMalgorithm produces excel-
lent registration results and consumes less time compared to
CPD algorithm. This means that during the same time period,
the RMSE of LMM can exceed that of CPD. Especially
in many engineering applications, registration must achieve
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TABLE 3. Affine registration results on 50 trials for three point clouds.

FIGURE 5. Several algorithm iterative curves.

high accuracy in a short time. Therefore, LMM algorithm
provides more practical value in engineering.

Since different simulation platforms will produce different
time consumption, here are the convergence curves of several
iterative algorithms in Fig.5. As can be seen from Fig. 5,
LMM algorithm displays excellent convergence obviously.
It also shows that the LMM algorithm based on Laplace
kernel is easier to converge than the CPD based on Gauss
kernel.

V. CONCLUSION
In this paper, a point cloud registration algorithm based
on Laplace mixture model is proposed. Generally speaking,
it is more difficult to optimize this model than a Gaussian
mixture model. However, the derived nonlinear equations
are solved by a logarithm inequality. In addition, the cal-
culation structure of Laplace model is simple, and the uni-
form sampling strategy is quite successful in reducing the
computational complexity, which makes the algorithm very
efficient. In the test, LMM shows better efficiency and con-
vergence than the other algorithms. The algorithm perfor-
mance of LMM proves to be more valuable for the practical
application.
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