
Received October 1, 2021, accepted October 8, 2021, date of publication October 13, 2021, date of current version October 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119655

Plant Disease Detection in Imbalanced Datasets
Using Efficient Convolutional Neural Networks
With Stepwise Transfer Learning
MOBEEN AHMAD , MUHAMMAD ABDULLAH , HYEONJOON MOON ,
AND DONGIL HAN , (Member, IEEE)
Department of Computer Engineering, Sejong University, Seoul 05006, South Korea

Corresponding author: Dongil Han (dihan@sejong.ac.kr)

This work was support in part by the Cooperative Research Program for Agriculture Science and Technology Development through the
Rural Development Administration, Republic of Korea under Project PJ015686, and in part by the National Research Foundation of
Korea (NRF) Grant funded by the Korean Government [Ministry of Science and ICT (MSIT)] under Grant 2021R1F1A106168711.

ABSTRACT Convolutional neural networks have demonstrated state-of-the-art performance in image
classification and various other computer vision tasks. Plant disease detection is an important area of deep
learning which has been addressed by many recent methods. However, there is a dire need to optimize
these solutions for resource-constrained portable devices such as smartphones. This is a challenging problem
because deep learning models are resource extensive in nature. This paper proposes an efficient method to
systematically classify plant disease symptoms using convolutional neural networks. These networks are
memory efficient and when coupled with the proposed training configuration it enables rapid development
of industrial applications by reducing the training times. Another critical problem arises with the improper
distribution of samples among classes known as the class imbalance problem, which is addressed by
employing a simple statistical methodology. Transfer learning is a known technique for training small
datasets which transfers pre-trained weights learned on a large dataset. However, during transfer learning,
negative transfer learning is a common problem. Therefore, a stepwise transfer learning approach is proposed
which can help in fast convergence, while reducing overfitting and preventing negative transfer learning
during knowledge transfer across domains. The system is trained and evaluated on two plant disease datasets
i.e., PlantVillage (a publicly available dataset) and pepper disease dataset provided by the National Institute
of Horticultural and Herbal Science, Republic of Korea. The pepper dataset is particularly challenging as it
contains images from different parts of the plant such as the leaf, pulp, and stem. The proposed system has
dominated the previous works on the PlantVillage dataset and achieved 99% and 99.69% accuracy on the
Pepper dataset and PlantVillage datasets, respectively.

INDEX TERMS Disease detection, convolutional neural networks, image classification, MobileNet,
Internet-of-Things, transfer learning.

I. INTRODUCTION
Agricultural yield is vulnerable to various biotic stresses
which incur significant losses in terms of reduced produc-
tion. Food safety, nutrition, and agricultural economy are
interlinked in a vicious cycle [1], which poorly affects the
developing and underdeveloped countries and leads to health
and economic problems. In many under-developed countries,
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major crop yield is produced by small farmers for example,
only in Africa, 80% of crops are produced by small farm-
ers [2]. It is an alarming situation as lesser resources are avail-
able for smallholder farmers, which implies that the majority
of agricultural production of under-developed countries is in
danger. To properly manage a disease, early action is required
which necessitates an early-stage disease diagnosis [3]. How-
ever, it is quite challenging due to the unavailability of expert
opinion which usually delays the preliminary steps to miti-
gate the disease at earlier stages [3]. This delay is responsible
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for significant damage to the crops every year. According
to [4], worldwide annual crop losses due to plant diseases are
estimated to be $60 billion.

Plant diseases are diagnosed based on their visual symp-
toms which usually appear on different regions of the plant
such as leaf, stem, and pulp. However, expert knowledge is
required to correctly diagnose disease classes. It is difficult
to reach out the rural areas especially in underdeveloped
countries where most of the crop is produced by smallholder
farmers. With the use of advanced technology, it is possible
to get an expert-level diagnosis. For instance, smartphones
are now vastly available at affordable prices; this along with
widespread coverage of the internet can be a suitable plat-
form for a smartphone-based service for disease diagnosis.
As crop diseases are diagnosable based on visual symptoms
that might appear at different parts, a farmer can take a picture
of the part of the plant, and the mobile disease detection
system will identify and label the disease. This can help
reduce the crop losses by minimizing the involved steps in a
usual diagnostic process which involves an expert visiting the
farm. Furthermore, the scope of the proposed system can be
extended beyond the correct identification of plant disease by
suggesting possible remedies as well as serve advertisements
from various agricultural product vendors.

In the past various machine learning, and advanced deep
learning techniques have been applied to the problem of
plant disease detection. Some work [5] is done in the
domain of plant disease detection, [6] and [7] address this
problem by applying step-by-step image processing tech-
niques such as image acquisition, image pre-processing,
image segmentation, feature extraction, and classification.
Most of these methods utilized hand-crafted features and
conventional machine learning techniques. The hand-crafted
features such as SIFT, HoG, color, and shape-based feature
extraction are used to extract discriminant information from
images which is then fed to a classifier. The classifier is
then trained to learn the discriminant features by learning
a complex distribution which can differentiate among dif-
ferent classes. Sannakki et al. [8] used K-Means clustering
to extract color features to diagnose disease in pomegranate
leaves. Patil and SZambre [9] extracted shape and color-based
features which were then classified using Support Vector
Machine (SVM). Conventional methods often involve exten-
sive image preprocessing which poses an overhead as
compared to the advanced deep learning approaches. Such
preprocessing includes image resizing, denoising by applying
Gaussian or some smoothing filter, etc. These preprocessing
steps induce an overhead in the disease detection pipeline.

Conventional methods are still relevant where the data
is sparser, and features are well-defined. However, if data
availability is not a problem, advanced deep learningmethods
tend to surpass conventional hand-crafted feature methods
because Convolutional Neural Networks (CNN) can extract
themost discriminant features from the images. CNNs extract
information from image pixels at different levels, starting

from very basic color, shape information to very high-level
information such as texture, object shapes, curves, etc. Fur-
thermore, the preprocessing steps such as noise removal are
also not required. The recent advent of deep learning [10]
has helped the disease detection problem and advanced
deep learning-based solutions [11], [12], and [13] have
been proposed in the domain of plant disease detection.
To name a few [14]–[16], [12] have shown good perfor-
mance on public datasets and private datasets. In [17], the
authors used two popular CNN architectures, GoogleNet [18]
and AlexNet [19] to classify disease on leaf images and
report results on a publicly available PlantVillage [20]
dataset. In [21], the authors used apple leaf images from
the PlantVillage dataset and achieved 90.4% accuracy for
black rot and healthy leaf classification. In [16], the authors
tested on a preliminary version of the PlantVillage dataset and
achieved 99.53% accuracy.

However, the majority of the work is done on datasets
with limited samples which pose a risk of poor performance
in a real-world scenario. Apart from that, some datasets
such as PlantVillage are focused on images taken in a lab
environment which may not be the accurate representation
of real-world data. The real-world scenario is comparatively
challenging, due to an immense number of varying factors
that can interfere with the image capturing process. For exam-
ple, illumination, the direction of the incident light, occlu-
sion from other leaves, and shadows caused by other leaves
may result in an image with varying illumination at different
regions. All these factors are responsible for the degradation
of plant disease detection systems. Furthermore, most of the
recent work is specific to leaf images, stem images, or fruit
images. A unified deep learning system is required for ease
of use in practical application.

Class imbalances play a major role in the degradation of
the training phase [22]. In the case of plant disease detec-
tion, most of the available datasets suffer from class imbal-
ance. For instance, PlantVillage [20] contains 54,309 images.
39,218 images belong to 5 major classes of diseases e.g.,
fungi, mold, virus, and mite, whereas 15,085 images belong
to healthy plant images. As seen in figure 1 (a), a clear class
imbalance can be seen among several PlantVillage classes.
Similarly, an imbalance can be observed among samples that
belong to various classes of plants as seen in figure 1 (b).

Therefore, a system needs to be developed that can accom-
modate real-world factors such as poor lighting, background
noise, class imbalance, as well as challenges posed by hard-
ware limitations of hand-held devices. Moreover, the lack of
enough training data needs to be compensated by employing
data augmentation methods. The impact of such technologies
is so immense that it will not only help to increase the overall
yield by small farms, but it will allow governments and large
corporations to scale farming at a larger level while working
with a smaller number of experts and lower cost of human
resource. The above-mentioned issues are addressed in this
paper with the following contributions:
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1. An efficient CNN-based plant-disease detection method
is proposed which can diagnose diseases in plants in an
uncontrolled environment.

2. A statistical class-balancing method is proposed which
can balance the class frequencies in an imbalanced dataset.

3. The stepwise transfer learning method is used to effi-
ciently train CNNs on small datasets by enabling the rapid
development of industrial applications.

4. A MobileNet based method is proposed which can be
deployed on hand-held devices due to reduced hardware
resource requirements because, it does not have a dense
layer, which makes it suitable for hand-held devices.

5. A stepwise transfer learning approach is proposed which
can help to reduce the convergence time of anyCNN archi-
tecture. It is observed that it can help reduce overfitting as
well as negative transfer learning.

6. Finally, the proposed model has achieved accuracy com-
parable to state-of-the-art methods with less resource
requirement.

The rest of the paper is organized as follows. Description
of our proposed method is provided in section II with its
experimental validation in section III. Finally, we discuss the
proposed methods in section IV and conclude the paper in
section V with key findings and potential future directions.

II. METHODOLOGY
The purpose of this work is to allow computer vision
technologies to help address common problems faced in
classifying plant disease symptoms. The techniques proposed
are not only applicable for plant disease detection problems
but can be utilized for most industrial applications where
rapid development of machine learning algorithms is desired.
In the past advanced convolutional neural networks have per-
formed well on such tasks given that, enough data is available
for training. However, it is not always possible to get huge
amounts of images for a specific crop disease pair. This data
shortage problem and class imbalance problem are addressed
by using data augmentation techniques which can make
CNNs able to learn representative features of disease classes.
Moreover, the data collected in the wild may suffer from
various deficiencies like bad lighting, low image quality, and
confusing symptoms which result in misclassifications. Also,
the typical CNNs are not well-suited for resource-constrained
hand-held devices due to their higher computational costs,
large model size, and higher running time. In this paper,
we carefully designed the experimental setup to analyze the
effect of these conditions and try to overcome these chal-
lenges in our proposed method. To reduce the model size,
a CNN is used without a dense layer that eliminates a large
number of add-multiplication operations resulting in fast and
small model size. In upcoming sections, we will first discuss
the datasets and their challenging characteristics as well as
the approaches we utilized to enhance the performance of our
proposed system.

FIGURE 1. (a) Sample frequencies in PlantVillage dataset per disease
category. (b) Sample frequencies in Plant Village dataset by plant classes.

A. DATASET DESCRIPTION
For experiments, we have used two datasets. The first dataset
is provided by the National Institute of Horticultural and
Herbal Science, Republic of Korea, while the other one is
publicly available as PlantVillage [20] dataset.

1) PEPPER DATASET
This dataset is built to assist the training for the visual
symptoms of the described diseases which pose vulnerability
towards pepper plants. It includes a total of 99,507 images
belonging to 24 classes of diseases precisely annotated with
the help of experts and the support provided by the National
Institute of Horticultural and Herbal Science, Republic of
Korea. Since the application is targeted at common users and
handheld devices, the images are captured using common
digital cameras under varying daylight conditions. The
dataset covers the scope of plant diseases more comprehen-
sively as it features diseases on the different parts of the
plants, e.g., stem, leaf, and pulp. Among 24 categories, 6
diseases are related to the pulp, 6 are related to stem, 9 are

VOLUME 9, 2021 140567



M. Ahmad et al.: Plant Disease Detection in Imbalanced Datasets Using Efficient Convolutional Neural Networks

FIGURE 2. Some sample images from our pepper dataset.
(a) Phytophthora blight (pulp), (b) Biter rot (pulp), (c) Gray mold (pulp),
(d) Moth damage (pulp), (e) Tomato spotted wilt virus (pulp), (f) Tomato
spotted wilt virus (stem), (g) Gray mold (stem), (h) Bacterial wilt (stem),
(i) Bacterial leaf spot, (j) Damping off (leaf), (k) Tomato spotted wilt virus
(leaf), (l) Gray mold (leaf).

FIGURE 3. Some of the diseases show similar symptoms which makes
them difficult to differentiate. (a) Bacterial spot (b) Bitter rot (c) Gray
mold.

related to leaf, 2 are larva based, and 1 class combines
healthy plant images from all three parts i.e., leaf, pulp, and
stem. Some sample images from the said dataset can be seen
in figure 2.

Dataset is challenging particularly because of two con-
trasting reasons: (i) Visually identifiable symptoms of some
diseases are significantly like those of other diseases. For
instance, bacterial spot, bitter rot, and gray mold show very
similar visual symptoms on the leaf as shown in figure 3.
On the contrary, (ii) Some diseases show very diverse visual
symptoms which can be sometimes challenging to classify as
the same class. For example, the disease southern blight tends
to show diverse symptoms as shown in figure 4. Furthermore,
detection of larvae-based diseases also poses a challenging
task due to significant similarities among them as shown
in figure 5.

2) PLANTVILLAGE DATASET
PlantVillage [20] dataset is a public dataset containing
38 crop disease pairs. In total there are 14 crops with 26
disease classes and 14 healthy plant classes. However, some
plants do not have disease classes. The purpose of using

FIGURE 4. Some of the diseases show varying symptoms which makes it
challenging to detect. Both (a) and (b) represent southern blight in leaf,
hence pose a challenging problem for disease detection system.

FIGURE 5. Some of the larvae-based diseases are also very challenging
due to significant resemblance. (a) Spodoptera exigua larva
(b) Spodoptera litura larva.

FIGURE 6. Some sample images from PlantVillage dataset. (a) Pepper
bell – bacterial spot, (b) Pepper bell – healthy, (c) Potato – Early blight,
(d) Potato – healthy, (e) Potato – late blight, (f) Tomato – target spot,
(g) Tomato – tomato mosaic virus, (h) Tomato – tomato yellow leaf curl
virus, (i) Tomato – bacterial spot, (j) Tomato – early blight, (k) Tomato –
healthy, (l) Tomato – late blight.

a publicly available dataset was to evaluate our system for
comparative analysis with other existing methods. Sample
images are shown in figure 6.

B. OVERVIEW OF CLASSIFICATION PROCESS
A sophisticated methodology is proposed by incorporating
various established processes to facilitate the process of
classification and identification of diseases in crops. The
classification pipeline consists of various steps as shown
in figure 7, which is initiated by first manually analyzing
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FIGURE 7. An overview of proposed methodology.

the dataset for class imbalances. Class imbalance occurs
when some classes are under-represented as compared to
others. This can cause the model to predict biased results.
This problem is eradicated by employing data augmentation
techniques for under-represented classes as well as remov-
ing some samples from the over-represented classes. After
class-balancing next crucial step is model selection. Due
to rapid advancement in machine learning, several state-of-
the-art Convolutional Neural Networks (CNNs) are available
which make it difficult to choose the most appropriate model
for the problem at hand. We selected three different types of
CNNswhich are known to performwell on the ImageNet [23]
dataset and benchmarked them on plant disease datasets. This
waymodel selection step can be systemized instead of the hit-
and-trial method. After the initial benchmarking and model
selection, we train our dataset from scratch i.e., without using
transfer learning techniques to realize the model capacity as
compared to the given data. A balance between the capacity
of the CNN model being used and the complexity of training
data is important. Any imbalance can lead to the overfitting or
underfitting of a model. Later, the underlying representations

FIGURE 8. An original image is cropped such that the background
information is neglected, and the symptoms are brought into focus.
Furthermore, these cropped images are then rotated, flipped, applied
different illumination variations for data augmentation.

learned from ImageNet [23] dataset are hierarchically trans-
ferred to our model. The transfer learning experiments are
further explained in the experiment section. An overview of
the classification pipeline can be seen in figure 7.

1) DATA PREPARATION
The original image resolution is 1600 × 1200 for the pep-
per dataset, which is quite large as shown in figure 8(a).
Therefore, the images were first cropped to remove the back-
ground and focus mostly on the diseased area as shown
in figure 8(b). These crops were then randomly split into
three portions, for training, validation, and testing. Finally,
data augmentation is done to increase the sample size of
the dataset. The augmentation techniques included, rotation,
flipping, cropping, saturation fluctuation, and illumination as
shown in figure 8(c). It is to be noted that the final results
were also evaluated on 5-fold cross-validation to eliminate
any skewness that might occur due to data preparation steps
such as augmentation.

2) CLASS BALANCING
As discussed in section I, a class imbalance can lead to
biased training, so the input dataset is analyzed for class
imbalances. Any imbalances in class distribution can make
the model 6 biased towards a specific class which can pose
a deficiency in model accuracies and hence, degrading the
overall performance of the model. For example, in the case
of our Pepper crop dataset; phytophthora blight, damping
off, bacterial wilt, and southern blight are under-represented
as compared to other classes as shown in figure 10, so it
is natural for the trained model to get biased towards other
classes.

We can balance the dataset based on the sample frequencies
by over-sampling the minority class by employing some
data synthesis and augmentation methods and for the class
with a large number of samples we under-sample it by

VOLUME 9, 2021 140569



M. Ahmad et al.: Plant Disease Detection in Imbalanced Datasets Using Efficient Convolutional Neural Networks

deleting some samples. In the case of over-sampling for
under-represented classes, we need some image genera-
tion techniques. Two approaches are used to oversample
the data: Adaptive synthetic sampling approach for imbal-
anced learning [24] and the SyntheticMinority Oversampling
Technique [25] which involves over-sampling the minority
class and under-sampling of the majority class to get the best
results. Another technique that can be used for balancing the
data is using Generative Adversarial Networks (GAN) for
data augmentation [26]. Since, GAN-based augmentation is
an overhead for a simple classification task, a more traditional
methodology was used. Finally, we merge the results and
do some further data augmentation to increase the overall
number of training data, and then this balanced data is used
for the model design phase as shown in figure 8.

3) DATA AUGMENTATION
Besides using more advanced techniques for data augmen-
tation, some basic augmentation techniques were applied to
all the classes to increase the number of samples and robust-
ness towards unseen data. Images were scaled to incorporate
the symptoms in different resolutions. Further augmentation
steps include flipping, rotation, translation, adding noise,
changing lighting conditions as shown in figure 8(c).

4) BENCHMARKING AND MODEL SELECTION
In this era of highly advanced deep learning technologywhich
is aided by a huge number of powerful architectures, it is
quite difficult to select one appropriate model that suites the
dataset and target application best. Most of the advanced deep
learning models are designed to exploit the huge computa-
tional power of modern hardware therefore they are resource-
intensive. Handheld devices and various embedded systems
in IoT environments still suffer from a lack of computational
power and storage space, therefore, it is essential to perform
initial benchmarking on mobile versions of deep learning
models as well as large deep learning architectures. Initial
benchmarking was done on the input dataset by employ-
ing multiple models with different levels of computational
complexities trained with different configurations. The con-
figurations include training from scratch, transfer learning,
transfer learning with frozen layers, fine-tuning, and transfer
learning for feature extraction. The experiments performed
are shown in table 1. Among these models, we selected three
models for further experiments. i.e., VGG-16 [27], Inception
V3 [18], and different versions of MobileNet [28]. A summa-
rized architecture of basic MobileNet is shown in figure 12.
The results are analyzed to measure the extent to which
the high-end model is overfitting, and the basic model is
underfitting. Performance of selected benchmark models was
also observed on the ImageNet dataset as presented in table 2.
It can be seen that models with varying complexities are
included in this study. The complexity is based on a total
number of multiply-addition operations and a total number
of trainable parameters as shown in table 2. It is to be noted

FIGURE 9. Flowchart representing class balancing algorithm where data
augmentation is employed to oversample the minority class whereas
majority class is under-sampled by simple sample removal procedure.

FIGURE 10. The number of images per class in the Pepper dataset before
and after class balancing.

that the results of random initialization and initialization with
ImageNet weights do not have a significant difference.

This suggests that generic datasets such as ImageNet are
not suitable to be used as a feature extractor for specific
domain applications such as plant disease detection. For
initial benchmarking on the pepper dataset, these models
were trained for 32 epochs as shown in figure 11. VGG-19
being the most computationally expensive model to train
achieved 71% training accuracy but got only 54.9% vali-
dation accuracy. Inception V3 has a significantly smaller
number of parameters as compared to VGG-16. Due to
very deep architecture, it was able to achieve a very high
training accuracy of 93.5%, however, the validation accu-
racy was very low. This demonstrates that this network is
prone to overfitting as our dataset is not large enough to
train a deep architecture. Finally, MobileNet was trained,
and it achieved mediocre training accuracy of 55.68% and a
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TABLE 1. Models benchmarked on the PlantVillage dataset during the initial model selection stage. All the experiments reported were conducted on a
single GTX 1080 Ti GPU except Inception-V3, GoogleNet, and VGG-16_bn. Random initialization: the network was trained from scratch without freezing
any layers. Finetuning (TL): the network was initialized with pre-trained weights and conventional transfer learning was used. Feature extraction
(random): the network was initialized with random weights, and all the layers were frozen. Feature extraction (TL) states that the network was initialized
with trained weights, all the layers remained frozen throughout the experiment and the network was simply used as a feature extractor.
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TABLE 2. Comparison of selected benchmarked models on ImageNet
dataset.

FIGURE 11. Benchmark comparison of (a) training and (b) validation
accuracies using different models on Pepper disease recognition dataset.

validation accuracy of 54.76%. It is comparable to the valida-
tion accuracy of VGG-19, which is 33 times larger in terms of
the number of parameters and has 27 times more multiplica-
tion and addition operations. In the light of benchmarking
results shown in figure 11, we design a model based on
MobileNet_V3_Large to maintain a balance between model
complexity and dataset complexity. MobileNet architecture
can be seen in figure 12. Such a model may efficiently learn
the features in our data and achieve good classification results
due to its unique structure and deep architecture while having

FIGURE 12. Basic MobileNet architecture.

a small number of trainable parameters. Having a smaller
number of parameters makes a model less prone to overfit-
ting, which is a major concern while learning representations
on small-scale datasets.

5) TRANSFER LEARNING
Transfer learning [29] is a technique used for transferring
pre-trained weights from a source domain to a target domain.
Source domain is usually a large dataset used for initially
training the model. The target domain is the dataset on which
it is desired to apply that model. The intuition behind using
transfer learning is that the basic features extracted from data
are similar even in different domains given the data type
is the same across domains. Disregarding the diversity of
images from different domains, the basic low-level features
extracted at initial layers are essentially similar. Moreover,
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FIGURE 13. A schematic diagram representing the proposed stepwise transfer learning approach. (a) Model trained on source domain i.e., ImageNet.
(b) Replaced the Softmax layer to match the target domain’s classes and trained only the classifier while keeping the feature extraction layers frozen.
(c) Unfroze the high-level feature layers and trained the model to adapt with the target domain. (d) Unfroze rest of the layers and trained for a few
epochs for further fine-tuning.

in most cases there are not enough samples available to train
a high-complexity model from scratch, hence, it is likely to
overfit the training data.

In transfer learning there are three main research issues:
1) What to transfer, 2) How to transfer, and 3) When to
transfer [29]. The key to address these issues is based upon
the extent to which the source and target domains are similar.
If the domain and target classes are very similar, then the
complete model can be transferred by replacing the classi-
fication head having the number of classes respective to the
target domain. However, if the domains are not that similar
then a lesser number of layers can be transferred successfully.
Hence, the similarity between domains is the key indicator of
when and how to transfer. In the case of transferring from
ImageNet to Plant disease dataset, the visual similarity in
high-level features is very low. The results of only changing
the classifier can be seen in benchmark experimentation in
section II.B.4. Based on these results, it is crucial to find the
right strategy for transfer learning.

6) STEPWISE TRANSFER LEARNING
Brock et al. [30] proposed the Freezeout method, where they
progressively freeze the layers once a layer’s learning rate
has reached zero. The main idea behind their approach is to
exclude the layers from backpropagation which will result in
a faster convergence time. In this study, a similar approach is
proposed, however, the intuition behind both methodologies
is contrasting. Instead of starting with all the layers set to
trainable as in Freezeout, we start training with frozen layers
except the classifier layers. Another distinguishing factor is
that this study focuses on finding an optimal method for trans-
ferring knowledge from the source domain whereas, Freeze-
out is focused on faster training. In contrast, we propose an
automatic algorithmic technique (stepwise transfer learning)
which is a very different approach as compared to freezeout
as it unfreezes the layers once the loss saturates for a specific

number of epochs. Several experiments have shown that step-
wise transfer learning has achieved faster training time and
accumulative trainable parameters are lower than freezeout.
The accumulative trainable parameters can be computed by
summing up the trainable parameters at all steps divided
by total steps during training. Freezeout focuses mainly on
training from scratch. It cannot be applied during transfer
learning because it starts training by updating weights for all
the layers, which will overwrite all the weights copied from
the pre-trained model. However, stepwise transfer learning
will preserve the pre-trained weights by freezing the layers
from the beginning and only unfreeze when the current model
capacity is unable to learn further features.

The proposed transfer learning is divided into three stages.
In the first step, weights are transferred from the source
domain and are frozen except the classifier is replaced as
shown in figure 13 (b). This helps the classifier to learn some
mappings from features to labels. In the next step, the loss is
computed after every training iteration. If the loss computed
has not decreased in the last 10 epochs, another layer block
is unfrozen as shown in figure 13 (c). The stepwise transfer
learning algorithm is triggered every time the loss is not
decreased for the last 10 epochs. Finally, all the layers are
unfrozen if they are left frozen due to a continuous decrease
in loss as shown in figure 13 (d). This allows for minor
fine-tuning towards the end of the training. This was done for
the last 5 epochs of training. The complete stepwise transfer
learning algorithm is described in table 3.

When the layers are unfrozen prematurely, there is a
tendency to overly modifying the weights, especially the
low-level features. The preservation of low-level features
is important because they form the basis of high-level fea-
tures. Subsequently, mid-to-high level features need to be
more domain-specific as opposed to low-level features. The
unfreezing of top layers allows learning the domain-specific
features. If the weights from the source are not tweaked, it can
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cause negative transfer learning. Negative transfer learning is
caused when transfer learning degrades model performance
because of a mismatch between underlying features of source
and target domains. Finally, in the last few epochs, we drop
the learning rate which restricts the gradient to take big
steps. In this stage, it is safe to unfreeze all the layers and
helps us fine-tune the model for the target domain as shown
in figure 13(c). This last step has shown a 1 to 2

III. EXPERIMENTATION AND RESULTS
This section provides details about the experimental setup,
statistics of datasets, evaluation metrics used in this study fol-
lowed by several experiments and their results conducted in
this study. Finally, a comparative analysis with other methods
is detailed.

A. EXPERIMENTAL SETUP AND DATA STATISTICS
All the experiments were performed using the PyTorch
framework with a single NVIDIA 1080 Ti GPU. We used an
80%-10%-10% data split for all our experiments. 80 percent
of data is used for training, 10 percent is used for vali-
dation, and the remaining 10 percent is used for testing.
Table 4 summarizes the statistics of the training, validation,
and test splits of the PlantVillage and Pepper Disease dataset.
It is to be noted that the experiments performed during initial
benchmarkingwere trained and tested on imbalanced datasets
and without tweaking i.e., all the models were used in their
original form with original tuning parameters and losses.

Experiments performed in this study can be catego-
rized roughly into three categories for ease of readability.
Experiments were conducted on the pepper dataset, exper-
iments conducted on the PlantVillage dataset, and finally
transfer-learning experiments. To analyze the performance of
the proposed method and comparison with other methods,
evaluation strategies are briefly explained in the next section.

B. EVALUATION STRATEGIES AND METRICS
The performance of deep learning-based classification sys-
tems is usually assessed based on the model’s training and
validation accuracy. Training accuracy is the accuracy we
get when the model is applied to training data while vali-
dation accuracy is the one, we get after applying the model
to validation data. Validation accuracy is one of the most
commonly used performance metrics. Validation accuracy
gives us accuracy on the subset of the dataset which is
excluded from the training data and is unseen by the model.
Although, this metric is reasonable in many scenarios and
very common to use in classification systems. Yet, it fails
to evaluate a lot about a model, for example, a model can
have very high accuracy yet underperforming on some spe-
cific classes, especially in the case of imbalanced datasets.
Validation loss is also an important metric to evaluate a
model’s performance as it accumulates all the losses incurred
on each example in the validation set. The problem with
validation accuracy is that some underperforming classes
might be disregarded, so more metrics should be considered.

Another problem In this study precision, recall, and F1-score
per class were recorded. Per-class measurement reflects the
true performance of a model and can provide insights into the
underperforming classes. These metrics will not only reflect
the overall performance but will give a more in-depth view of
the quality of the model’s performance.

C. TRAINING CONFIGURATION
The training configurations employed for the experiments
conducted in this study are explained in this section. The
training strategy involves several components such as loading
pre-trained weights, freezing layers, scheduling learning rate,
employing stepwise transfer learning algorithm, and finally
validation on unseen data.

The pre-trained weights can be used in various settings to
achieve different results. For instance, these weights can be
used to jump-start the training process as it eliminates the
need for learning all the basic features from scratch. These
weights can also be used to extract features, therefore can be
used as a feature extractor, where these features are simply
used as input for some classifier or as a backbone for other
complex applications, for instance, object detection, semantic
segmentation, and instance segmentation.

In our case, the pre-trained weights were used for two
purposes for the sake of comparisons. Firstly, the weights
were used as a feature extractor to generate the results of the
baseline. These results were used to evaluate the performance
gains achieved from employing different training optimiza-
tion methods such as freezeout, and our proposed stepwise
transfer learning method.

Then the freezing layers is a very common and known
procedure, it prevents the gradients for that specific layer
to be computed, hence the weights for that particular layer
remain unchanged. Different techniques have been proposed
to utilize this method for better training performance. The
most common usage of freezing layers is when they are used
in combination with pre-trained weights loaded during the
initialization stage. After the weights are loaded, all the layers
are frozen, essentially stopping the model to learn anything
new. Then there are more sophisticated approaches pro-
posed which freeze layers to achieve their respective goals.
Brock et al. [30] proposed a method to progressively freeze
the layers as the training continues. They used decaying
learning rates which is a common technique for better conver-
gence. As soon as a layer’s learning rate approaches zero, that
layer’s gradients are not computed in further training steps.

On the other hand, in this study the layers are frozen at the
initialization stage as in the case of feature extractor, however,
as the training loss starts to saturate, a layer is unfrozen,
and the training continues until the loss keeps on decreasing.
This process is repeated until 60 % of layers remain frozen.
This percentage was achieved by running randomized trials.
These trials included different configurations. First, the mod-
els were allowed to train until all the layers are frozen, second,
the training was stopped at different percentages of frozen
layers. The best results were achieved at 60% frozen layers.
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The Adam optimizer was used to reduce the cross-entropy
loss in all the experiments. The starting learning rate was
set to 10−4. The learning rate was scheduled to decay per
20 training steps. The gamma or decay rate of 0.1 was used
throughout. Experiments were conducted with a step size of 7
but that achieved inferior results as compared to a step size of
20. The learning rate was scheduled for all the experiments
using the same scheduling algorithm because the scope of this
study is to find the optimal method for training large networks
with minimum computational resources in as little time as
possible for the rapid development of real-world applications.

Finally, stepwise transfer learning as described in
section II.6. was performed on all the models which show
superior results in comparison with the conventional transfer
learning methods as shown in table 3.

D. TRANSFER LEARNING EXPERIMENTS
After initial benchmarking, we selected MobileNet_V3_
Large for further experiments due to factors such as less
overfitting, a smaller number of multiply-addition operations,
and a smaller number of trainable parameters. As discussed in
section II.B.4, none of the models performed satisfactorily as
shown in figure 11. However, MobileNet_V3_Large seems
promising due to less overfitting given the model size and
efficiency. Therefore, MobileNet_V3_Large was selected for
further experiments with transfer learning (TL) as it is prac-
tically inefficient to train a CNN from scratch on small
datasets.

As mentioned before, the results presented in table 1
are from 4 training configurations which can be broadly
categorized into two i.e., 1) random initialization, and 2) ini-
tialization with pre-trained weights from ImageNet. Further,
each configuration was coupled with a feature extraction flag
which controls whether the gradients for the model will be
computed or not. It is interesting to note that the ImageNet
weights have little impact on the overall performance when
compared against random initialization. It can be concluded
that the weights learned on ImageNet are not better than the
random initialization for the specific case of plant disease
detection due to significant differences across the source and
target domains.

To benefit from transfer learning, there should be a high
resemblance between both domains, therefore the models
trained on the PlantVillage dataset are used as pre-trained
weights for training pepper dataset which tends to be com-
paratively challenging as the benchmarking results on pep-
per (figure 11) are poor in comparison with PlantVillage
dataset (table 1).

1) STEPWISE TRANSFER LEARNING
First of all, we attempted to use the weights of the ImageNet
as a starting point of our training, hence using ImageNet as the
source domain and plant disease classification as the target
domain in the transfer learning process. To use pre-trained
weights, the classification layer of 1000 classes was replaced
with the classification layer of 24 classes for the pepper

TABLE 3. Pseudocode of stepwise transfer learning algorithm.

dataset, while keeping the rest of the layers of our model
identical to that of a MobileNet_V3_Large model. This was
achievable to copy the weights for each layer from the pre-
trained MobileNet_V3_Large model.

After copying the weights, the layers for which the weights
are copied are frozen so that the network can take the advan-
tage of already learned feature representations as used by
ImageNet. This step of freezing the layers eliminates the
risk of forgetting the learned features. At the beginning of
training, the gradient takes big steps which can easily change
or overwrite the pre-trained weights. Therefore, it is vital to
keep those layers frozen during the initial epochs. This step
trains the classification layer to use the feature representation
as provided by pre-trained weights for target domain data.
ImageNet is a huge dataset, therefore, there is no need to
extensively learn low-level basic features again for the plant
disease dataset. The pre-trained weights are slightly opti-
mized to classify plants and disease symptoms along with
hundreds of other classes.

However, the model can be further fine-tuned, if it discards
the unnecessary information about other classes, and use
additional parameters to learn domain (plant diseases) related
features. To achieve this, the last few layers up until block
12 (onwards last zero-padding layer as shown in figure 12)
were unfrozen and trained for a longer period until training
accuracy stopped improving. This way model is optimized to
learn high-level features that are specific to the target while
keeping the low-level features intact.

Apart from MobileNet_V3_Large, other models used in
benchmarking were also trained with stepwise TL. This com-
parison validates the process of stepwise transfer learning
as the accuracy of VGG-16 and Inception-V3 with stepwise
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FIGURE 14. (a) Training and (b)) validation accuracies measured in three
experiments with MobileNet_V3_Large (with and without Transfer
learning (TL) on Pepper disease dataset and comparison with
VGG-16 with TL.

TL also improved significantly. It is discussed in detail in
section IV. The results showed the significance of the pro-
posed transfer learning method. Hence, this approach can be
used with any type of model.

E. RESULTS
In this section, we present the results of our proposed method
on the Pepper disease dataset and PlantVillage dataset. The
proposed model was trained using three different configura-
tions. Firstly, the model was trained from scratch i.e., without
transfer learning. Then the model was trained with simple
transfer learning and finally, the model was trained in step-
wise transfer learning configuration.

A slow convergence rate was observed during training
without transfer learning configuration compared to other
configurations. Surprisingly, VGG-16 with TL showed fast
convergence as compared to MobileNet_V3_Large with-
out TL. However, after approximately 30 epochs both the
models converged to almost the same accuracies. Then,
MobileNet_V3_Large was trained with TL which showed
a significant improvement over the previous configuration
as shown in figure 14(a). Finally, MobileNet_V3_Large
was trained using a third configuration where the weights
were transferred in a stepwise manner. As can be seen
in figure 14(a), the training accuracy converged sur-
prisingly fast. We argue that the stepwise transfer of
pre-trained weights has helped in training the models faster.
We hypothesize that due to frozen layers, all the gradients
were backpropagated to higher layers which helped in learn-
ing plant or disease-specific features in an efficient manner
instead of wasting epochs on learning basic features from
scratch. Furthermore, the improvement observed from simple
TL to stepwise TL is surprisingly significant. To our under-
standing, this is caused by the unfreezing of the lower layers
in later epochs which helps in fine-tuning the basic features.
As the network has already learned plant or disease-specific
high-level features, it is now less prone to overwriting the
low-level features, instead of at this stage, the low-level fea-
tures are further tweaked according to the specific domain.
The models were evaluated using validation accuracy as
shown in figure 14(b) and three other evaluation metrics
mentioned in section III.B.

Apart from training and validation accuracy, we present
results using precision, recall, and F1-score for the pepper
disease dataset in table 5.

These results show excellent performance on the dataset.
However, these metrics lack the insight, so detailed results
are also reported in which all the metrics per disease class
are provided as shown in table 5. This can help in enhanc-
ing the model performance as individual class performance
can be analyzed. It is helpful especially in the case of a
class-imbalance problem.

The same experiments were performed on the PlantVillage
dataset to evaluate our method on a public dataset. The com-
parative training accuracies are shown in figure 15(a). The
trend is almost identical to that of the pepper disease dataset.
The validation accuracies can be seen in figure 15(b). Per
class, analysis is also provided as shown in table 8. A compar-
ison of some evaluation metrics is provided in table 6. This
shows that the proposed method has dominated the previous
methods for the PlantVillage dataset. Further experiments
could be done on other public datasets, but unfortunately,
there are not enough datasets available to test on public
datasets.

IV. DISCUSSION
In this paper, the chosen base architecture is MobileNet_V3_
small. Other architectures may also be employed for this
purpose. However, our goal is to make this system viable
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TABLE 4. Statistics of training and testing data used in this study.

TABLE 5. Comparison of our method with previous methods on the
pepper disease dataset.

TABLE 6. Comparison of our method with previous methods on
PlantVillage dataset.

to be used on hand-held devices, its selection compared
to other implementations of deep CNN for recognition is
the trade-off between accuracy and memory efficiency. For
instance, architectures such as VGG and Inception-V3 have
a large model capacity, but they tend to overfit small datasets.
The motivation behind the selected model is to make this
system able to perform well in resource-constrained envi-
ronments such as hand-held devices so that it can empower
the common farmer and help increase the overall crop
production.

Furthermore, experiments were conducted to analyze the
performance of the proposed stepwise transfer learning (TL)
method. We used the two models from the benchmarking
stage i.e., VGG-16 and Inception-V3. During simple train-
ing of Inception-V3 on our dataset, extreme overfitting was

TABLE 7. Per class precision, recall, and F1-score with a total number of
samples (support) on the pepper disease dataset using our proposed
model.

TABLE 8. Per class precision, recall, and F1-score with a total number of
samples (support) on PlantVillage dataset using our proposed model.

observed, however, the same model was trained in stepwise
TL configuration. The model tends to overfit during the
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FIGURE 15. (a) Training and (b)) validation accuracies measured in three
experiments with MobileNet_V3_Large (with and without Transfer
learning (TL) on PlantVillage dataset and comparison with VGG-16 with TL.

initial epochs but if we train long enough after unfreezing the
initial layers model starts learning. Training and validation
accuracies are provided in figure 16 for both VGG-16 and
Inception-V3 trained with stepwise transfer learning. Further
comparison is among different transfer learning approaches is
provided in table 9. All three methods i.e., Stepwise transfer
learning, FreezeOut, and simple transfer learning are also
evaluated on a held-out test set as shown in table 9. Moreover,
it is important to have an explanation regarding the model’s
performance. In some scenarios, model accuracy is satis-
factory but that might be caused by irrelevant features, for
example, in some cases, models are trained on some recurring
background features. Therefore, visualization of activations
is generated using Grad-cam [31] in figure 17, which has
shown that the models are focusing on the right regions. In the
horizontal axis, the target category is mentioned, onwhich the

FIGURE 16. (a) Training and (b) Validation accuracies of benchmark
models not selected for the next stage. However, when trained with
stepwise transfer learning, they have achieved improved validation
accuracy and overfitting is reduced to significantly.

model is conditioned to predict. This results in regions that are
activated for that specific target category

Another perspective to understand the intuition behind the
success of the proposed method could be that the stepwise
transfer learning algorithm simplifies the problem for the
gradient descent algorithm. During the initialization, due to
frozen layers, there are a reduced number of trainable param-
eters, which is much easier to optimize if compared with a
large number of parameters. As it is commonly known that
it is easier to train shallower networks (fewer parameters) as
compared to deeper networks (a large number of parameters)
due to gradient vanishing and other problems. An analogy can
be drawn from this fact to understand the effect of stepwise
transfer learning as it is essentially reducing the depth of a
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TABLE 9. Comparison of Stepwise transfer learning, Freezeout, and conventional transfer learning with MobileNet_V3_Large model on Pepper dataset.

FIGURE 17. Activation maps generated by using Grad-CAM.
(a) MobileNet_V3_Large and (b) MobileNet_V3_Large trained with
proposed training configuration (stepwise transfer learning). The highest
activations were found to be relevant with the ground truth. Where
ground truth and target category were mismatched, most of the
activations were found in non-leaf regions such as background.

CNNmodel in the initial iterations and training a very shallow
network.

V. CONCLUSION
In this paper, an efficient deep learning-based approach
is presented to classify plant diseases in an uncontrolled

environment. The dataset is first analyzed for class imbal-
ances which are known to be a deterrent in achieving good
classification results. A careful analysis of the dataset has
played a key role in improving the overall performance of the
system by the class-balancing method. The stepwise transfer
learning has helped in reducing the convergence time of
CNNs. It has worked not only the proposed model but two
other models are also trained with stepwise transfer learn-
ing configuration and have shown significant improvement.
This is observed that stepwise transfer learning has not only
helped in faster convergence but also in reducing negative
learning. A plant disease classification system is proposed
keeping in view the challenges specific to the plant disease
detection problem particularly keeping in view, the feasibility
of deploying the classifier on hand-held devices for a prac-
tical solution. Such devices still lack high-end hardware so,
it is important to design efficient solutions. The proposed
classification system is evaluated on the Pepper crop dataset
as well as a publicly available dataset PlantVillage dataset.
This work can be further extended to other crops and diseases
as well as more advanced deep learning techniques can be
employed for practical applications. CNN-based computer
vision tasks have no doubt achieved a milestone in terms of
high accuracies however, there is a need to focus on practical
solutions so that industry and consumers both benefit from
cutting-edge research. This system if deployed properly can
help mitigate losses to small farms and eventually play an
important role in increasing crop yield. Finally, this technique
can also be used in several industrial applications where rapid
development of machine learning algorithms is desired.
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