
Received September 8, 2021, accepted October 4, 2021, date of publication October 13, 2021, date of current version October 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119598

A Low-Complexity Shifting-Based Conflict-Free
Memory-Addressing Architecture for
Higher-Radix FFT
SUMIT AGARWAL , SHAIK RAFI AHAMED, ANUP KUMAR GOGOI,
AND GAURAV TRIVEDI , (Member, IEEE)
Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

Corresponding author: Shaik Rafi Ahamed (rafiahamed@iitg.ac.in)

ABSTRACT Conflict-free addressing (CFA) techniques are necessary for Fast Fourier Transform (FFT)
hardware. For low radices, well-proven XOR-based addressing architectures are available in the literature.
Applications such as wireless communication use higher FFT radices, more processing elements, and a
larger number of memory sets for a continuous flow of data. In the existing CFA techniques, the complexity
increases with increasing radices or memory sets. In the proposed technique, the higher number of memory
sets and radix are leveraged to advantage. A novel scheme is suggested to reduce the complexity using a
progressive shifting technique. The mathematical basis of the scheme is derived here and illustrated with
an example of 512-point radix-16 FFT. The proposed and existing CFA architectures are designed using
Verilog and implemented in the Semiconductor Laboratory, Chandigarh, 180 nm SCL library. The synthesis
results show that the proposed scheme achieves a 33% area reduction, 23% lower power consumption, and
39% improvement in execution time performance compared with the existing XOR based schemes. The area
reduction factor further improves with a higher number of FFT points.

INDEX TERMS Conflict free addressing, FFT, multiple memory, progressive shift.

I. INTRODUCTION
High-radix Fast Fourier Transform (FFT) processors are
in great demand today for handling high-speed systems
such as Orthogonal Frequency DivisionModulation (OFDM)
based communication standards, includingWireless Personal
Area Network (WPAN) (IEEE 802.15c) and Wireless High
Definition (HD) (IEEE 802.11ad, IEEE 802.11ay), vehicle
and military radars, and medical imaging such as Magnetic
Resonance Imaging (MRI). These processors are based on
different radices of the FFT algorithm, which are radix 2,
4, 8, 16, etc. Higher radices (greater than 4) are needed for
higher throughput, especially for FFT sizes of 512 points
and above. For example, realizing architectures for 512 point
FFT with higher radices (8 or 16) would only require two
or three stages compared to nine stages when using radix 2.
The existing XOR or modulo-addition schemes for accessing
multiple banks of memory in a conflict-free manner work
well for lower radices, but for higher radices, the complexity

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun Junwei .

and area consumed increase significantly. Continuous-flow
(CF) high-performance FFTs need at least two memories.
Additional memories are required to feed more processing
elements (PEs) to boost performance. Therefore, in high-
performance FFTs, the number of memories is usually two
or three or sometimes even more. A Conflict-Free Access
(CFA) [1] scheme has to be designed for each memory,
leading to a sizeable increase in area. In this paper, the higher
number of memories is used to an advantage. When higher
radices are used, the number of stages is also limited to
approximately 3 to 4. When the number of stages and
memories are in the same range, each memory will be tied
up with only one or two stages. In such a case, the XOR
or modulo addition logic can be replaced with our proposed
‘‘progressive shift’’ (PS) technique, which is much simpler.
The progressive shifting technique is not easy to apply in
architectures where one memory is used to supply data for
more than two stages of the system. In order to demonstrate
the advantages of the proposed technique, it is compared
with existing techniques, and the significant differences are
outlined in Table 1.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 140349

https://orcid.org/0000-0002-5747-4851
https://orcid.org/0000-0003-2189-3656
https://orcid.org/0000-0001-8518-5064


S. Agarwal et al.: Low-Complexity Shifting-Based Conflict-Free Memory-Addressing Architecture

TABLE 1. A comparison of various techniques of conflict free access in FFT algorithms.

The motivation and main contributions of this paper are
highlighted below:
• The progressive shift technique is proposed for FFT
architectures with multiple memories and fewer stages
serviced by a PE. Such types of FFT architectures
usually find application in high throughput FFT designs.
The main idea is to reduce the complexity of the CFA
circuits, which tend to occupy larger areas as the number
of memories increases to improve performance.

• A theoretical framework for the technique is also
formulated.

• Progressive shifting and modulo addition/XOR switch-
ing are embedded in a single mathematical framework.

• Simulation studies are carried out to show the superiority
of the proposed technique in terms of the usage of
hardware resources and plotted in the form of a graph.

• To validate the proposed architecture, a chip is fabri-
cated, and its layout is presented in Fig. 8.

The proposed architecture finds applications in OFDM based
MIMO communication systems that demand high throughput
and low area. The proposed multi-bank memory architecture
can be extended to implement 5G communication systems
and Internet of Things (IoT) architectures in the future.

II. CONFLICT FREE ADDRESSING
An FFT processor generally uses some form of the Cooley-
Tukey algorithm and a butterfly structure for processing
data using a PE. The PE needs r inputs and generates r
outputs in every clock cycle, where r is the radix of the FFT
algorithm. As per the usual requirement of FFT algorithms,
data have to be reordered before giving at the input of PE.
This reordering is commonly done by first storing the data in
a memory and then retrieving it using an address different
from the one used during storage. Since one memory can
only give one output, to fulfill the need for r simultaneous
outputs, r banks are required in a memory. Bank size is
taken as N/r so that the total storage in the memory is N ,
where N is the number of FFT points. The main challenge
is the distribution of data to the memory banks such that
data required simultaneously by the butterfly are stored in
different banks. This problem is called bank generation for
CFA and uses switching to reorder the data. The switching
circuit is called a forward commutator, which consists of a
circuit (BAGU) to generate the necessary bank number and
address, and a multiplexer array, which directs the incoming
data and address to that bank. Additionally, after the memory,
a realignment commutator is needed that realigns the data

FIGURE 1. A generalized structure for CFA showing switches before and
after the memory.

with the inputs of the PE. The commutators use a large
number of multiplexers to do this and hence consume a
significant area. Each memory will require its own switching
circuitry, as shown in Fig. 1. Thus, in FFTs that use multiple
memories for real-time continuous flow of data, the area
for conflict-free switching increases significantly. Hence,
developing a CFA scheme with a lower area is a challenging
task that needs to be addressed.

There have been two distinct approaches for CFA in
the literature. The first is based on finding the bits in the
data index, which would help in identifying a bank for
it [2], [3], [9]. However, all these schemes explored the
radix-2 architecture. To achieve higher throughputs, in [4],
a high radix scheme was proposed using parallel butterflies.
On similar lines, [10] derived schedules for CFA. The
scheme was elaborated for the case where multiple butterflies
operated in parallel in the same stage. It also took pipelining
delays into account to take care of folded or pipelined
butterflies and hence, different read and write times for a
set of data. In [11], the work of [4] was extended, and
CFA schemes for the cases of both prime factor FFT and
common factor FFT were presented. Various constraint sets
were derived and based on them, banks and addresses were
generated using XOR or modulo-r addition.

In all these cases, the bank number is generated using XOR
or modulo addition logic for a particular data index. It is
difficult to decipher any definite pattern. This randomness
necessitates movement of not only data but also ‘‘row
address’’ from some input port of a switch to some other
output port, resulting in a complex switching mechanism.
The other addressing scheme was designed by Reisis and
Vlassopoulos [7], where the concepts of forward permu-
tation and reverse permutation were proposed. However,
rules or guidelines for a hardware efficient permutation
were not discussed anywhere. Additionally, it assumed
an independent memory for each stage. It dealt with the

140350 VOLUME 9, 2021



S. Agarwal et al.: Low-Complexity Shifting-Based Conflict-Free Memory-Addressing Architecture

particular case of one memory per stage, and no solution
was provided for the case when a memory fed more stages.
Hence, this permutation technique has limited applications.
Hsiao and Lee [12] focused on modulo addition and
suggested a form of permutation but did not go into any study
on its applications or theory. Chen et al. [13] used a similar
technique for the output stage for the simple case of power-
of-two radix implementation, but they did not deal with other
stages. For real FFT realization, Ma in [14] suggested a
procedure to fill up the entire memory bank sequentially
rather than filling up multiple banks simultaneously. Memory
bandwidth usage was inefficient, as other banks were unused
during the input or output phases. This inefficiency was later
taken care of in [15] at the cost of extra exchange stages to
attain a bit-order as required for CF. The CFA scheme from
the classic work of Johnson [3] was used. Hence, these works
did not truly add anything new to CFA, although they came
up with a more efficient architecture for real valued FFTs.
In [16], an XOR based scheme was derived based on the
postulates and the basic principles as suggested by Johnson
with some modification. The design in [8] proposed a CFA
for real FFT. The scheme was explained for a 32-point FFT.
The derivation of the CFA scheme was not provided. The
implementation used counters to store data depending on
the count, but in effect, the switching complexities remained
similar. In [17], mixed radix algorithms were discussed.
The design considered only a single memory without banks.
Address generation was discussed to obtain the operands.
However, the architecture did not use parallelism and was a
low-throughput structure. Long [18] reduced the complexity
of the CFA circuits developed by [19], which in turn was
an improvement of [3]. The advantage of this design was
the lower complexity of implementation compared to [3].
However, the design was limited to radix-2 and radix-4;
additionally, the complexity increased when the number of
memories or PE was increased. The work in [20] was on
a flexible number of FFT points. They used a single PE
with 16-way parallelism. The CFA scheme was challenging,
as the PE had to cater to a large variety of points. The
number of memories used for CF was three. The presented
scheme was directly based on [12] and used a sophisticated
switching mechanism for data and addresses. In [6], a storage
pattern that initially looked similar to progressive shifting
was suggested. However, it was inefficient because it used
two multibank memories to realize CFA, whereas two
memories could be used to realize both CFA and CF
simultaneously [21]. In [22], Wang followed a new trend of
using single port memories. The CFA challenge increased
tremendously in this design, which was solved using modulo
addition techniques. Although the design saved a significant
area in memory by replacing the dual port with a single
port, the actual advantage was offset due to the use of more
complicated CFA circuits.

In order to overcome the above mentioned limitations,
in this paper, we propose a progressive shifting permutation,
which is applicable for cases where one or two stages are

TABLE 2. Mathematical symbols used in the paper.

fed by one memory set. The proposed technique avoids
the complicated XOR based switching mechanism presented
earlier. Moreover, as the shifting mechanism in progressive
shifting is regular, shifting of addresses is eliminated, thus
making the switch simpler. Hence, the proposed scheme is
more efficient. It may be extended by combining with the
recently proposed single port memories of [22] to further
improve chip efficiency.

III. PROPOSED BANK GENERATION SCHEME FOR CFA
USING PROGRESSIVE SHIFTS
Hsiao and Lee [12] outlined a procedure for bank generation
based on modulo addition of the characteristic variable
of each stage. Following a similar approach, a method is
proposed to determine bank generation with additional help
from Lemmas 1 and 2. For ease of reading, a table of
important symbols is provided in Table 2.

For a N point FFT, let the factors of N be as

N = N1N2N3 . . .NS (1)

where each factor defines a stage and S is the total number of
stages. We define the characteristic variable ni of each stage
i = 1, 2, . . . S:

n1 = 0 . . .N1 − 1, n2 = 0 . . .N2 − 1 etc. (2)

The input equation of an FFT algorithm is expressed as

n = Xn1 + Yn2 + Zn3 + . . . (3)

where the constants X , Y , Z , etc. are defined as

X = N2 N3 . . .NS
Y = N3 N4 . . .NS
Z = N4 N5 . . .NS

The last constant would be 1. This is the method of the
common factor algorithm. For the prime factor algorithm, it is
difficult to apply the progressive shifting method, as the flow
of data is complicated owing tomodulo operations [12], [23]).
Lemma 1: The input indices to a butterfly have a one-digit

difference among them. It is this digit that is used to decide
the banks. Here, the digits are n1, n2 . . . nS .

Proof: A stage of FFT is defined by the n′is. Hence, for
a particular stage, all other n′is will remain constant except
for the stage in question. Thus, the fundamental definition of
stage ensures that for each stage, the different digit is the one
that controls the stage. Furthermore, it seems logical to use
this digit to differentiate banks.

VOLUME 9, 2021 140351



S. Agarwal et al.: Low-Complexity Shifting-Based Conflict-Free Memory-Addressing Architecture

Lemma 2: If a memory is feeding several stages, all the
corresponding stage variables must be taken into account
while deciding the bank. If any variable is left out,
the corresponding stage cannot be fed by the memory in a
conflict-free manner.

Proof: Let only a single-stage variable be used to find
the bank. Then, Bank = n1 ensures that for the first stage,
the data are in conflict-free banks. For any other stage, there
will be at least one situation where all other n′is are the same,
and only the stage variable is different. However, since this
variable is not taken into account, the bank for those inputs
is guaranteed to be the same, leading to conflict. Hence, all
variables have to be considered while determining the banks
for a stage, as in (4).

Bank = f (n1, n2, . . . ns) (4)

Theorem 1 (Progressive Shifting): If only one of the n′is is
changed in the bank generation function, it will lead to the
CFA scheme of progressive shifting. This shall happen when
the function is addition, and it is conducted modulo B, where
B is the number of banks, as shown in (5).
It should be noted that usuallyB ≥ r , where r is the radix of

the FFT algorithm. In the case ofB > r , instead of continuous
progressive shifts, shifts may occur every other cycle or even
after more cycles.

Bank = (n1 + n2 + . . . ns)mod B (5)

When only one- or two-stage variables are changed,
the flow in which data have to be stored follows a simple
pattern leading to simplifications in switching commutators.
In (4), the digits n1, n2, etc. are added together to find the
banks. For a stage, only one digit is supposed to be different;
this ensures that the required inputs go to different banks.
In higher-radix algorithms, the banks are large in number,
while the number of stages comes down drastically. Hence,
the interaction among the stages does not severely affect the
flow of data. Additionally, in cases where each stage has
its own memory [7] for demanding throughputs or in input
or output memories [13], there is virtually no interaction
among the stages. Under such circumstances, the switching
complexity may be reduced considerably using progressive
shifts, as derived below.

The derivation of the technique is based on (5). If a
memory has to feed only one stage, only one stage variable
will increase by 1. Thus, the bank for data changes only
by 1 unit. This means that the data are stored in the
banks in a progressively shifting manner. The data required
simultaneously for a PE can be shown in a row of a table as
in Table 3. Thus, the progressive shift represents increasing
the shift amount by one for every consecutive or alternate
row. The modulo operation ensures that the data are shifted
circularly in a progressive fashion so that the required data
are directly stored in different columns, as shown in Table 3.
The corresponding hardware is proposed in section III-A.

TABLE 3. Progressive shifts (0, r , 2r . . . are the required data indices for
the first butterfly operation).

FIGURE 2. Progressive forward and reverse circular shift units.

A. HARDWARE FOR PROGRESSIVE SHIFTING
In this scheme, the banks to which the data are to be
shifted are known a priori. Hence, they can be stored in
a series of registers, and the permutations can be easily
derived by appropriately shifting the stored bank values.
Then, the registers can be hardwired to the bank selection
logic, as shown in Fig. 3. This design is more straightforward
than the other technique where the bank values have to be
made available at any of the multiplexers. The two main
components of the proposed architecture are the progressive
circular right shift unit (PCRSU) and progressive circular left
shift unit (PCLSU), as shown in Fig. 2. PCRSU is placed
before the memory bank. Its purpose is to increase the input
data shift right by 1 whenever a shift is required. A shift may
be required after every clock cycle, alternate cycles, or even
after a few more cycles. The maximum shift amount is r ,
assuming a radix r butterfly.

To achieve circular progressive switching, multiplexer
banks and a shift register array (SRA) of data-width D =
log2r and length r are used. The multiplexer bank consists
of r multiplexers, each with r data inputs of width d (d is
the width of the data) and a select input of size D. The r
data values from the previous stage are connected to each of
the r inputs of all the data multiplexers, as shown in Fig. 3.
The select logic is designed using SRA. It is preloaded with
values 0, 1, 2, . . . , r−1. The outputs of the r registers of SRA
are connected to the r select inputs of the data multiplexers.
On every clock cycle or as required, the data in SRA are
shifted by one register. At the start, the selected inputs of
data multiplexers are 0, 1, 2, . . . , r − 1. This leads to data
output without any shifts. Another clock edge now leads to
the shifting of addresses in the register array to the right in
a circular fashion. Hence the selected inputs now become
r − 1, 0, 1, 2, . . . , r − 2. Now, the data output of the PCRSU
is as if shifted right by one unit. The multiple clock cycle
logic for activating the shifting in the SRA can be realized
using a counter of an appropriate size. This is demonstrated
by considering a 3-bit address as an example. The shift in
the output of the multiplexers with respect to the change in
the addresses of the SRA is shown in Table 4. An example
of radix 4 continuous right progressive shifting for 32-point
FFT of [21] is shown in Tables 5 and 6. PCLSU is placed after

140352 VOLUME 9, 2021



S. Agarwal et al.: Low-Complexity Shifting-Based Conflict-Free Memory-Addressing Architecture

FIGURE 3. Right progressive shift unit.

TABLE 4. Output of the multiplexers with respect to the change in data of
the shift register unit.

the memory bank to align the right-shifted data in line with
the inputs of the PE. The design of this unit is similar to that
of the PCRSU. Only the direction of the shift is changed to
be left circular.

IV. BANK GENERATION USING XOR LOGIC
In [3], it is suggested that the banks for radix-2 FFT can
be differentiated on the basis of parity of the data indices.
A derivation is given based on the simultaneous solutions of
the conditions for in-place memory access. Here, the Bank is
derived with the help of equations formulated for progressive
shifting so as to show the relation between the two techniques.

For radix 2 decomposition, the digits ni’s of (5) can be
replaced by bits bi’s.

Bank = b1 + b2 + b3 . . .+ bS (6)

TABLE 5. Original digit-reversed output sequence for 32 point FFT if
stored serially [21].

TABLE 6. Shifted digit-reversed output data indices for the output bank
for 32 point FFT.

Single-bit addition is equivalent to an XOR operation. The
result of XOR defines the parity of the data index. It is
thus shown that the two methods are related by a common
mathematical framework. The differentiating factor is the
constraints imposed on the number of bi’s that are allowed
to change simultaneously.

V. A CASE STUDY: CFA FOR 512 POINT RADIX-16 FFT
A 512 point FFT chip was designed in Huang [5] using a
radix-16 algorithm. The architecture used two radix-16 stages
and a radix-2 stage. In our design, an additional PE is
introduced in the pipeline for stage 2 processing to double
the throughput. The new architecture is shown in Fig. 4. The
design is thus modified so that the input memory feeds only
PE1, and there is a second memory to feed PE2. An output
memory is finally used to obtain the outputs in the natural
order. This circuit is aptly suited for the progressive shifting
technique of CFA. The hardware for this design consists of
several subunits, as described in III-A. These are detailed
in Table 7. For XOR-based addressing in higher and mixed
radix FFTs, the results of [4] can be used. The equation
derived by Huang is reproduced in (7) for reference:

Bank

= (8(b5 ⊕ b1)+ 4b0 + 4b8 + ((b8b7)2 + 2b6 + (b4b3)2
+ (b2b1)2 + (2b5 − 1)(b5 ⊕ b1))mod 4)mod 16 (7)

The bank generation logic defined in (7) shows that it is not
possible to identify the bank simply by inspection. In Huang,
the circuit was implemented using XOR logic, but details
were not presented. We redesign and implement the circuit
using Verilog and analyze it for the purpose of comparison
with the PS technique. The detailed design of XOR based
forward commutator is shown in Fig. 5. The first step is to
generate the index of the data using q-bit counters with offset
adders, where q = log2N . This data index is then fed to a bank

VOLUME 9, 2021 140353



S. Agarwal et al.: Low-Complexity Shifting-Based Conflict-Free Memory-Addressing Architecture

FIGURE 4. Architecture for 512 point FFT showing memories and CFA logic.

FIGURE 5. Forward commutator in CFA using XOR-based logic.

and address generator unit (BAGU). ABAGU implements (7)
using XOR gates. In Fig. 5, Bankk is calculated by BAGU0.
This means that Data0 is to be stored at Bankk . Hence,
the multiplexer at k th port must have the selection input
as Bank0. For this transfer, a unique switching unit called
decoder-encoder switch is required, which transfers data from
the input port to the output port in such a way that if the
input is Bankk at port0, then the output at portk is Bank0.
Additionally, the address generated by BAGU0 is for Bankk ,
and it has to be transported to that bank. Thus, this design

requires switching of both data and address, hence requiring
extra multiplexers for address switching.

To read data from the banks, a reverse commutator as
shown in Fig. 6 is used. The reading order is determined
by the FFT algorithm. BAGUs determine the banks and
addresses at which the requisitioned data is available. The
decoder-encoder switch transfers this information to the
select inputs of an address-select multiplexer, and the address
is directed to the proper bank. The read data have to be
realigned with the inputs of the PE. A second array of

140354 VOLUME 9, 2021



S. Agarwal et al.: Low-Complexity Shifting-Based Conflict-Free Memory-Addressing Architecture

TABLE 7. Calculation of the area for radix (r = 16),(N = 512) points using the SCL 180 nm library for (d = 12) bit wordlength.

FIGURE 6. Reverse commutator for CFA using XOR-based logic.

multiplexer bank is used to achieve this, where the select input
is the bank generated by the associated BAGU. Thus, CFA
is achieved with the help of both the forward and reverse
commutator, the former placed before the memory to write
data and the latter placed after the memory to read data. The
decoder-encoder switch is made with an array of decoders
and encoders, as shown in Fig. 7.

VI. SYNTHESIS RESULTS AND COMPARISON
The design implementations of both the XOR-based
technique and the proposed PS-based technique are carried
out using Verilog. The correctness of the designs is verified
through simulations carried out using Synopsys VCS.
For synthesis, an SCL Chandigarh foundry node

FIGURE 7. Decoder encoder used as a switch in XOR-based CFA.

TABLE 8. Comparison of hardware complexity using the SCL 180 nm
library for 12 bit wordlength.

of 180 nm [24] is used, and synthesis is carried out using
Synopsys DC.

Additionally, various parts of the addressing logic are
synthesized separately to evaluate their relative complexity,
and the corresponding results are presented in Table 7.
The table shows that the proposed scheme uses 65% fewer
counters, 26% fewer multiplexers, 52% less selection logic,
and achieves an overall 33% area efficiency, compared with
the XOR-based scheme. The area, power, and execution
time are obtained from the synthesis result and are shown
in Table 8. In terms of power, the proposed scheme is 23%
better, and the timing performance is 39% faster. Complexity
analysis is performed to study the dependence of the area
of logic elements on radix R, the number of FFT points N,

VOLUME 9, 2021 140355



S. Agarwal et al.: Low-Complexity Shifting-Based Conflict-Free Memory-Addressing Architecture

TABLE 9. Comparison of hardware complexity for various FFT sizes (N) and radices (r) for d-bit wordlength (d = 12).

FIGURE 8. Micrograph of the 512 point FFT chip designed using a PS CFA
circuit.

and wordlength D, and the results are tabulated in columns 3
and 6 of Table 7. Simulations are carried out for different
numbers of FFT points with variable radix sizes of 8, 16, and
32 to determine the scalability of the proposed technique. The
results of the simulations are tabulated in Table 9 and plotted
in the graph shown in Fig. 9. From the table, it is clear that
as the number of points increases, the savings in hardware by
using the proposed PS over conventional XOR-based design
improve. For both schemes, as radix increases, complexity
grows in an exponential manner, but the PS scheme remains
more or less 30-40% efficient for all radices.

To estimate overall savings on silicon area, it must be
observed that one CFA circuit is used per memory. Hence,
for an FFT with continuous flow using two memories, there
are two CFA circuits. In order to compare the performance,
the 512-point CF FFT chip was designed using both PS and
XOR based techniques. The results showed that an area of 3
mm2 is needed for PS and 3.35 mm2 for XOR based design.
It is also observed that the CFA logic portion of the proposed
architecture occupies 0.65 mm2 area while that of the XOR
based design occupies 1mm2 area. Hence, it can be concluded
that the area savings of the CFA logic and the complete chip
of the proposed architecture is 35% and 10%, respectively,
compared with XOR based architecture. The FFT chip with
PS CFA circuit was fabricated in 180 nm SCL Chandigarh
foundry, and its micrograph is shown in Fig. 8.

FIGURE 9. Comparison of the area for XOR-based design vs. progressive
shifting for different numbers of FFT points. (The subscript r in XORr and
PSr represent the radix of the FFT).

From the above observations, it is inferred that due to
the following features, the proposed scheme outperforms the
XOR-based bank generation scheme:
• Bank and address generation logic is simpler.
• Since the address for a bank is generated by its linked
address module, multiplexers for address shifting are not
required.

• The decoder-encoder switch is replaced with an SRA,
which is less complex.

VII. CONCLUSION
CFA circuits have to be repeated as many times as the
number of memories in the FFT architecture. Hence, they do
contribute to the overall area and complexity of the design.
The progressive shifting shown in this work is an efficient
technique; in a typical case, it saves approximately 33%
of the area in commutation circuits. It is best suited for
FFTs with a high radix and a lower number of stages or for
architectures with multiple memories. Additionally, designs
with a memory dedicated to a particular stage of PE can take
advantage of this technique. On the other hand, this scheme
is not easy to use for designs in which one memory feeds
more than two stages, as in low-radix architectures. More
investigation is necessary to adapt it for such cases. Another
advantage of this design is that it does not change much from
one architecture to another, facilitating its reusability once
designed.

Comparatively, the other addressing techniques are math-
ematically rigorous and require the design of individual
addressing logic for different FFT architectures and need
to start from scratch each time the architecture changes.
In conclusion, for high-throughput FFTs, the progressive

140356 VOLUME 9, 2021



S. Agarwal et al.: Low-Complexity Shifting-Based Conflict-Free Memory-Addressing Architecture

shifter is expected to result in substantial benefits in terms
of area and design effort.

ACKNOWLEDGMENT
The authors would like to thank the Semiconductor Labo-
ratory, Chandigarh (SCL), for sharing the libraries of their
foundry and fabricating the chip.

REFERENCES
[1] Y. Ma and L. Wanhammar, ‘‘A hardware efficient control of memory

addressing for high-performance FFT processors,’’ IEEE Trans. Signal
Process., vol. 48, no. 3, pp. 917–921, Mar. 2000.

[2] D. Cohen, ‘‘Simplified control of FFT hardware,’’ IEEE Trans. Acoust.,
Speech, Signal Process., vol. 24, no. 6, pp. 577–579, Dec. 1976.

[3] L. G. Johnson, ‘‘Conflict free memory addressing for dedicated FFT
hardware,’’ IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 39, no. 5, pp. 312–316, May 1992.

[4] P.-Y. Tsai and C.-Y. Lin, ‘‘A generalized conflict-free memory addressing
scheme for continuous-flow parallel-processing FFT processors with
rescheduling,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19,
no. 12, pp. 2290–2302, Dec. 2011.

[5] S.-J. Huang and S.-G. Chen, ‘‘A high-throughput radix-16 FFT processor
with parallel and normal input/output ordering for IEEE 802.15.3C
systems,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8,
pp. 1752–1765, Aug. 2012.

[6] Y. Tian, Y. Hei, Z. Liu, Q. Shen, Z. Di, and T. Chen, ‘‘A modified signal
flow graph and corresponding conflict-free strategy for memory-based
FFT processor design,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66,
no. 1, pp. 106–110, Jan. 2019.

[7] D. Reisis andN.Vlassopoulos, ‘‘Address generation techniques for conflict
free parallel memory accessing in FFT architectures,’’ in Proc. 13th IEEE
Int. Conf. Electron., Circuits Syst., Dec. 2006, pp. 1188–1191.

[8] J. Hazarika, M. T. Khan, and S. R. Ahamed, ‘‘Low-complexity continuous-
flow memory-based FFT architectures for real-valued signals,’’ in Proc.
32nd Int. Conf. VLSI Design 18th Int. Conf. Embedded Syst. (VLSID),
Jan. 2019, pp. 46–51.

[9] Y. Ma, ‘‘An effective memory addressing scheme for FFT processors,’’
IEEE Trans. Signal Process., vol. 47, no. 3, pp. 907–911, Mar. 1999.

[10] S. Richardson D. Marković, A. Danowitz, J. Brunhaver, and M. Horowitz,
‘‘Building conflict-free FFT schedules,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 62, no. 4, pp. 1146–1155, Apr. 2015.

[11] K. F. Xia, B. Wu, T. Xiong, and T. C. Ye, ‘‘A memory-based FFT processor
design with generalized efficient conflict-free address schemes,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 6, pp. 1919–1929,
Jun. 2017.

[12] C.-F. Hsiao, Y. Chen, and C.-Y. Lee, ‘‘A generalizedmixed-radix algorithm
for memory-based FFT processors,’’ IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 57, no. 1, pp. 26–30, Jan. 2010.

[13] S.-G. Chen, S.-J. Huang, M. Garrido, and S.-J. Jou, ‘‘Continuous-flow
parallel bit-reversal circuit for MDF and MDC FFT architectures,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 10, pp. 2869–2877,
Oct. 2014.

[14] Z.-G. Ma, X.-B. Yin, and F. Yu, ‘‘A novel memory-based FFT architecture
for real-valued signals based on a radix-2 decimation-in-frequency
algorithm,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 9,
pp. 876–880, Sep. 2015.

[15] X.-B. Mao, Z.-G. Ma, F. Yu, and Q.-J. Xing, ‘‘A continuous-flowmemory-
based architecture for real-valued FFT,’’ IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 64, no. 11, pp. 1352–1356, Nov. 2017.

[16] M. Yuan, Z. Ma, F. Yu, and Q. Xing, ‘‘A novel address scheme
for continuous-flow parallel memory-based real-valued FFT processor,’’
Electronics, vol. 8, no. 9, p. 1042, Sep. 2019.

[17] C. Ma, H. Chen, Y. Liu, and Y. Wang, ‘‘An efficient design for general
mixed radix FFT processors,’’ IEICE Electron. Exp., vol. 13, no. 6, pp. 1–7,
Mar. 2016.

[18] S.-S. Long, M.-Y. Hong, and M.-T. Shiue, ‘‘A low-complexity generalized
memory addressing scheme for continuous-flow fast Fourier transform,’’
in Proc. 3rd Int. Conf. Comput. Commun. Syst. (ICCCS), Apr. 2018,
pp. 492–496.

[19] X. Xiao, E. Oruklu, and J. Saniie, ‘‘An efficient FFT engine with reduced
addressing logic,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 11,
pp. 1149–1153, Nov. 2008.

[20] S. Liu and D. Liu, ‘‘A high-flexible low-latency memory-based FFT
processor for 4G, WLAN, and future 5G,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 27, no. 3, pp. 511–523, Mar. 2019.

[21] B. G. Jo and M. H. Sunwoo, ‘‘New continuous-flow mixed-radix (CFMR)
FFT processor using novel in-place strategy,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 52, no. 5, pp. 911–919, May 2005.

[22] J. Wang, S. Li, and X. Li, ‘‘Scheduling of data access for the radix-2k FFT
processor using single-port memory,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 28, no. 7, pp. 1676–1689, Jul. 2020.

[23] C. Burrus, ‘‘Index mappings for multidimensional formulation of the DFT
and convolution,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. 25,
no. 3, pp. 239–242, Jul. 1977.

[24] H. S. Jatana and N. M. Desai, ‘‘SCL 180 nm CMOS foundry: High
reliability ASIC design for aerospace applications,’’ in Proc. 19th Int.
Symp. VLSI Design Test, Jun. 2015, pp. 1–2.

SUMIT AGARWAL received the B.E. degree in
electronics and telecom from the Assam Engineer-
ing College, in 2002. He is currently pursuing the
Ph.D. degree with IIT Guwahati. From 2004 to
2007, he worked with Indian Defence Research
and Development Organisation. He worked as a
Senior Design Engineer with GE Healthcare. His
work in defense research and development led
him to publish several papers in journals and
conferences in the field of phased array microstrip

antenna. His research interests include OFDM and high-speed digital design
for communication systems.

SHAIK RAFI AHAMED received the B.Tech. and
M.Tech. degrees in electronics and communication
engineering from Sri Venkateswara University,
Tirupati, India, in 1991 and 1993, respectively,
and the Ph.D. degree from IIT Kharagpur,
India, in 2008. He is currently a Professor with
the Department of Electronics and Electrical
Engineering, IIT Guwahati, Guwahati, India.
His research interests include digital, adaptive,
biomedical, and VLSI signal processing.

ANUP KUMAR GOGOI was born in Assam,
India, in 1953. He received the B.E. (electrical)
degree from Assam Engineering College, in 1976,
and the master’s and Ph.D. degrees in electronics
from IIT Kanpur, in 1981 and 1991, respectively.
He recently retired as a Professor with IIT Guwa-
hati, Assam. He has published numerous articles
in various fields of VLSI. His current research
interests include VLSI circuits and systems.

GAURAV TRIVEDI (Member, IEEE) received the
Ph.D. degree in electrical engineering from the
Indian Institute of Technology Bombay, India,
in 2007. He worked as a Senior Member of
Technical Staff with Cadence Design Systems and
Berkeley Design Automation (presently, Mentor-
Siemens) for a period of three years and as a
Postdoctoral Fellow for a period of two years
at the Indian Institute of Technology Bombay,
before joining the Indian Institute of Technology

Guwahati (IIT Guwahati), India, as a Faculty Member. He is currently
an Associate Professor with the Department of Electronics and Electrical
Engineering, IIT Guwahati. His research interests include VLSI CAD,
semiconductor devices, digital and analog circuit design, high-performance
computing, computer architecture and algorithms, embedded and the IoT,
and quantum computing.

VOLUME 9, 2021 140357


