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ABSTRACT The software engineering community is rapidly adopting machine learning for transition-
ing modern-day software towards highly intelligent and self-learning systems. However, the software
engineering community is still discovering new ways how machine learning can offer help for various
software development life cycle stages. In this article, we present a study on the use of machine learning
across various software development life cycle stages. The overall aim of this article is to investigate the
relationship between software development life cycle stages, and machine learning tools, techniques, and
types. We attempt a holistic investigation in part to answer the question of whether machine learning favors
certain stages and/or certain techniques.

INDEX TERMS Software engineering, machine learning, literature review.

I. INTRODUCTION
The software engineering (SE) community is continu-
ously looking for better and more efficient ways of build-
ing high-quality software systems. However, in practice,
the strong emphasis on time to market tends to ignore
many, well-known SE recommendations. That is, practition-
ers focus more on programming as compared to requirements
gathering, planning, specification, architecture, design, and
documentation – all of which are ultimately known to greatly
benefit the cost-effectiveness and quality of software systems.
Lack of human resources is often cited as the main reason
for doing so. Herein lies the great potential for machine
learning (ML) since its algorithms are proven to be most
befitting to problem domains that aim to replicate human
behavior. Hence, it stands to reason that human-centric SE
activities should also benefit from ML [1].

The growing demand for agility and the ability to solve
complex problems in SE has already led researchers to
explore the potential of ML in this field. To date, ML has
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many demonstrated benefits. Applications of ML for SE
range from resolving ambiguous requirements to predicting
software defects [2]. For example, Sultanov et al. [3] used
reinforcement learning (a type of ML) on understanding the
relationships among software requirements at different levels
of abstraction. Their approach shows how ML can automat-
ically generate traceable links between high-level and low-
level requirements. However, ML is not a single technique
but rather an assortment of techniques. The challenge of using
ML for SE is thus not only about finding the right way of solv-
ing the problem but also about comparing various ML tech-
niques and their potential. For example, several researchers
have explored predictions in order to better estimate the time
to market for software products. For this purpose, various
ML techniques were used and compared, e.g., artificial neu-
ral networks, rule induction, case-based reasoning, support
vectormachines, regression-based decision trees, and random
forest [4]–[7].

In many areas of science and engineering, such as image
recognition or autonomous driving, ML has already revo-
lutionized development. The applications of ML to SE are
also increasing significantly, which is evident through the

140896 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5901-1420
https://orcid.org/0000-0002-2767-0501


S. Shafiq et al.: Literature Review of Using Machine Learning in Software Development Life Cycle Stages

exponential growth in the number of articles on ML for SE
being published every year. Consequently, it is of interest to
understand, which software development life cycle (SDLC)
stages benefit the most from this trend; or even to understand
which ML techniques are most suitable for which SDLC
stage(s). This leads to the motivation of conducting this study.

In this article, we provide a bird’s-eye view on the current
state-of-the-art regarding the causal relationship betweenML
and SDLC stages and suggest the open areas of research
where more primary studies are needed. The fairly broad
scope of this study is by design. While this article sets out to
explore the causal relationship between machine learning and
SDLC stages in the form of a literature review, it should be
noted that some specialized studies already exist, e.g.,ML for
automated software testing [8]. Similar to exploratory studies
conducted in the past, such as Bindewald et al. [9], our review
is based on the quantitative analysis of the articles present
in the literature addressing the application of ML to various
SDLC stage(s).

The rest of the article is organized as follows. The related
work is discussed in Section II. Section III presents a brief
introduction toML. Section IV explains the research method-
ology and protocol followed in the study. Results of the
study are discussed in Section V. Further analysis on the pre-
sented state-of-the-art is discussed in Section VI. Section VII
presents challenges, limitations, and future research direc-
tions of this field. Section VIII discusses different threats to
the validity of the presented results. The article is concluded
in Section IX.

II. RELATED WORK
Some studies, e.g., [8], [10]–[12], have already analyzed
the application of ML in SE in the past. Durelli et al. [8]
conducts a systematic mapping study on the application of
ML for software testing. The study highlights the use of ML
techniques in various software testing activities such as test-
case generation and oracle construction. Results of the study
show that a vast majority of articles employ supervised learn-
ing, such as ANN and DT, to solve testing-related problems.
Moreover, the key advantages and disadvantages of usingML
for software testing are discussed. Mainly, the advantage of
ML techniques is their scalability and efficient application to
large-scale and complex software systems. The disadvantage,
on the other hand, is the unavailability of data that fits well
with the learning process.

Fajardo et al. [10] provides an extensive overview of
applying data mining techniques to SE tasks including open
issues and recommendations for improvements. The study
provides a comprehensive list of data mining techniques
applicable in SE, e.g., aspects related to clustering, regres-
sion, and performance metrics. Moreover, the study high-
lights some widely used datasets of SE employed in the data
mining articles and states key advantages of mining SE data.

Wan et al. [11] performed a survey by interviewing 14 peo-
ple from 3 companies and 342 respondents from 26 countries.
The aim of the study was to understand and highlight the

key differences in the software development practices fol-
lowed in building ML and non-ML software systems. Results
suggested that ML engineers should focus on handling the
uncertain randomness ofML systems andwork on employing
version control systems specifically for ML applications in
order to improve reproducibility.

Zhang et al. [12] conducted the research focusing on the
application ofML in SE. The study provides a comprehensive
list of SE tasks whose problems can be addressed using ML
techniques. The study also emphasizes the fact of SE to be
a highly fertile area to explore with regards to applying ML
techniques by formulating SE tasks as learning problems and
addressed using ML techniques.

In contrast to the aforementioned focused studies, our
study provides a broader context and a comprehensive list
of articles that help identify the relationship between vari-
ous ML techniques and SDLC stages. We also provide the
relationships of ML types, tools, and techniques with respect
to SE stages, which help better understanding the current
progress of the adoption of ML for SE.

III. INTRODUCTION TO ML
ML has evolved drastically over the recent years and is now
being employed on a global scale. As a subset of artificial
intelligence, ML has been considered vital when developing
software systems for domains such as speech/image recog-
nition [13] or automotive [14]. ML techniques have also
been used to address various SE issues and activities. Most
commonly,ML has been employed in defect prediction, effort
estimation, and identifying patterns and similarities in the
source code.

The ML techniques are essentially targeted to solve prob-
lems, which can often become hard to analyze by people
causing misinformation [15]. These problems have various
types, which can be categorized as ML types. ML types gen-
erally include supervised, unsupervised, and reinforcement
learning. Most of the applications of ML consist of problems
that can be deemed of type supervised learning. It refers to
learning from features along with their known class labels.
Then, predicting the class labels from new unseen features.
These problems are also often categorized as classification
problems.

Arguably, ML techniques can also be classified into two
divisions. 1) Traditional ML techniques that include decision
trees (DT), random forest (RF), linear regression, logistic
regression (LR), support vector machines (SVM), k-nearest
neighbors (KNN), and naive bayes (NB). 2) Neural network-
based ML techniques that include artificial neural network
(ANN), recurrent neural network (RNN), and convolutional
neural network (CNN). Deep learning (DL) – also known
as deep neural networks (DNN) – is a subset of ANN.
DL was introduced mainly to address the data scalability
problems such as handling high-dimensional and large-scale
datasets. Structurally, instead of comprising a single hidden
layer within the input and output layer as in ANN, RNN
and CNN techniques are composed of multiple hidden layers

VOLUME 9, 2021 140897



S. Shafiq et al.: Literature Review of Using Machine Learning in Software Development Life Cycle Stages

of interconnected neurons. The processing inside the hidden
layers is based on the principle of weighted connections.
In general, each hidden neuron is comprised of predetermined
weight and bias values, which are later adjusted during the
training process until the desired output is reached. Lastly,
the output layer holding the acquired weight and bias values
represents the solution to the given problem.

IV. RESEARCH METHODOLOGY
In order to direct the study, we followed the Goal, Question,
and Metric (GQM) paradigm suggested by Basili et al. [16].
The aim of the GQM paradigm is to guide the study by
specifying its goals in order to have an objective-oriented data
extraction process. It also helps in tracing goals to formulated
questions leading to better interpretation of the data in line
with goals stated before.

A. GOALS
The overall aim of this study is to evaluate the relation
betweenML and SDLC stages. The considerably broader aim
of this study differentiates it from other similar studies, such
as the one by Durelli et al. [8], which have quite a narrow
focus. Following are the goals formulated for this study.
G1. To identify the susceptibility of various ML types and
techniques to SDLC stages
G2. To understand the maturity of research in this area
G3. To identify the demographics in this area
G4. To understand the implications, challenges, limitations,
and future research directions in this area

The first three goals lead to the research questions dis-
cussed in the following subsection. Due to the descriptive and
elaborate nature of the fourth goal, we decided to thoroughly
discuss it in Sections VI and VII.

B. QUESTIONS
In order to meet the outlined goals, we have formulated
concrete questions and identified suitable metrics (quantifi-
able attributes). The questions and metrics (emphasized) are
explained as follows:
G1. The susceptibility of various ML types and techniques
to SDLC stages
Q1.1 What SDLC stages are being focused on by academic

and industrial researchers in this area?
Rationale: Our interest is to understand what SDLC
stage the researchers tend to focus on, whether,
a particular SDLC stage or the amalgamation of
two or more. The SDLC stages are based on,
but not limited to, the knowledge areas mentioned
in SWEBOK [17] characterizing the practice of
SE, e.g., Software Requirements, Software Design,
or Software Maintenance.

Q1.2 What are the applications of ML for SE?
Rationale: We are interested to know about the spe-
cific applications of ML that exist in SE, e.g., whether
an ML technique was used to automate test case gen-
eration or to predict potential bugs in the system.

Q1.3 What type of ML and its techniques are being
employed for SE?
Rationale: We are interested to know whether a par-
ticular type/technique was consistently employed for
a specific life cycle stage. The type of ML refers to
how the models have been trained, e.g., supervised,
semi-supervised, or unsupervised. Whereas the ML
techniques are the algorithms used for classification
or clustering problems, e.g., SVM, RF, or ANN.

G2. The maturity of research in the area
Q2.1 What is the contribution facet of the articles?

Rationale: The contribution facet refers to the novel
contributions made by the researchers in the articles.
It partially corroborates the attributes provided by
Banerjee et al. [18] and Petersen et al. [19], and are
supplemented by our own views obtained by analyzing
the extracted articles. The attributes are defined as
follows:
• Tool: Article proposing a new tool or improving
an existing one and describing its evaluation.

• Approach/method: Article proposing a new
approach/method or improving the existing one.

• Model/framework: Article introducing a new
model/framework or improving the existing one.

• Algorithm/process: Article proposing a new
algorithm/SE process or improving the existing
one.

• Comparative analysis: Article evaluating differ-
ent approaches and reporting results of the com-
parative study.

Q2.2 What is the research facet of the articles?
Rationale: The research facet of an article refers to
the maturity of the research in terms of empirical
evidence provided in the article or whether an article
was proposing a solution or evaluating an existing
approach. The research facet is defined as follows:
• Evaluation: Article evaluating or validating the
proposed approach using empirical methods.

• Knowledge: Article describing the experi-
ences and opinions of authors on the existing
approaches.

• Solution: Article proposing a new solution and
describing its applicability with the help of exam-
ples and arguments.

We further explored the evaluation facet in order to
understand the empirical methods employed in the
articles.

Q2.3 What datasets are commonly employed in the articles?
Rationale: We are interested to know about the
datasets that are most commonly used to evaluate the
research results in the domain of ML for SE.

G3. The demographics of research in the area
Q3.1 What are the trends in terms of years of publications

in the area?
Rationale: The trends in terms of years refer to the
number of publications varying from a year to another.

140898 VOLUME 9, 2021



S. Shafiq et al.: Literature Review of Using Machine Learning in Software Development Life Cycle Stages

Here, we want to assess how active this research area
is.

Q3.2 What are the highest publishing venues of the area?
Rationale: We are interested to know about the
venues, which have the highest publications with
respect to the area of ML for SE.

C. ARTICLES EXTRACTION
1) QUERY FORMULATION
In order to search for relevant literature, following the guide-
lines proposed by Petersen et al. [19], we devised a query that
uses a two-element PICO search. Problem ‘P’: (requirement,
specification, design, model, analysis, architecture, imple-
mentation, code, test, verification, validation, maintenance),
and Intervention ‘I’: (machine learning, deep learning).
We have not considered Comparison ‘C’ and Outcome ‘O’ as
this is out of the scope of this study. Following is the resultant
query that was eventually used in all digital libraries:
(‘‘machine learning’’ OR ‘‘deep learning’’) AND soft-

ware AND requirement* OR specification* OR design*
OR model* OR analysis OR architecture OR implementa-
tion OR code OR test* OR verification OR validation OR
maintenance1

2) DIGITAL LIBRARIES
The query was applied to titles and abstracts of articles
in five well-known digital libraries: ACM Digital Library,2

IEEEXplore,3 ScienceDirect,4 Springer,5 and Web of Sci-
ence.6 According to [20], these digital libraries are among the
most popular sources in computer science and engineering
that ensure high coverage of potentially relevant studies.
We did not include Google Scholar7 in our study as the search
results of Google Scholar tend to be repetitive with respect
to results from the included digital libraries, and its unique
contribution to the search process is unclear [20].

3) TIME PERIOD
We scope the time period of related studies published from
1991 to 2020. The earliest paper we could find in our study
was published in 1991, hence the starting time.We conducted
the search in Q1 2021 and made sure that the results are
reproducible until 2020, hence the ending time.

4) ARTICLES SELECTION
All repositories, except Springer, returned the number of arti-
cles as shown in Fig. 1. Springer initially yielded 4,502 arti-
cles as a result of the query; however, most of these articles
were quite irrelevant to the scope of our study even after
applying filters, such as ‘‘Computer Science’’ as discipline,

1Asterisk (*) is a wildcard that refers to zero or more characters in a word
2https://dl.acm.org/
3https://ieeexplore.ieee.org/
4https://www.sciencedirect.com/
5https://www.springer.com/
6https://apps.webofknowledge.com/
7https://scholar.google.com

and ‘‘SE’’ and ‘‘AI’’ as sub-disciplines, to reduce the search
space. We then went through the titles and abstracts of the
articles (if the goal of the article is unclear from the title)
and stopped the search process when the first page with all
irrelevant articles was reached. This resulted in 46 articles.

In total, we extracted 565 articles, as shown in Fig. 1.
However, many of them were duplicated as one article may
appear in many digital libraries. We then removed duplicates,
which resulted in 501 unique articles. The articles then under-
went a screening process and were scrutinized based on the
following inclusion criteria.
1) Articles that were relevant to the scope, i.e., relevance

and appropriateness of the article correspond to the
research goals of the study, were included.

2) Articles that were available in the full-text format were
included.

3) Articles demonstrating well-established empirical
soundness were included.

4) Articles of more than a single page were included.
5) Articles that were peer-reviewed were included.
6) Articles that were entirely written in English were

included.
Consequently, a total of 263 relevant articles were selected

and included in the final pool. Fig. 1 shows the overall article
extraction process including the number of articles extracted
from each repository and the final pool.

5) TOOL
Conducting a literature review is a tedious and time-
consuming task. It usually involves the search, collection,
filtration, and classification of a huge amount of papers.
Without a helping tool, this is a very difficult endeavor. In this
work, we used Mendeley8 and Google Sheets.9 These tools
helped us in importing, organizing, and analyzing search
results.

D. CLASSIFICATION SCHEME
We later defined a classification scheme to ensure accu-
rate assessment of attributes [19]. The generalized attributes
obtained were then sorted by the authors of this study based
on the knowledge areas provided in SWEBOK [17]. In fact,
the knowledge areasmentioned in SWEBOKwere not strictly
used in the categorization but merely employed as a defining
factor to providing a high-level abstraction of attributes that
represented the set of articles. However, we referred to the
following knowledge areas while devising the categories in
this study: 1) software requirements, 2) software design,
3) software construction, 4) software quality, and 5) software
maintenance. During the article sorting process, certain arti-
cles were found to be equivocal. In such cases, we associated
those attributes to the articles that received majority votes
from the authors of this study. To get a better understanding,
a graphical representation of the workflow starting from the

8https://www.mendeley.com
9https://www.google.com/sheets/about
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FIGURE 1. Article extraction process.

FIGURE 2. Attribute extraction leading to the classification scheme.

attribute extraction process leading to the resulting classifica-
tion scheme is shown in Fig. 2.

V. STUDY FINDINGS
Here we answer the RQs, which we discussed in Section IV.

A. SDLC STAGES (Q1.1)
As already discussed, based on the analysis of articles,
we have grouped them into 5major categories (inspired by the
aforementioned knowledge areas in SWEBOK [17]). These
categories are briefly described as follows:

1) SOFTWARE REQUIREMENTS
We group all those articles in this category, which are con-
cerned with the elicitation, modeling, analysis, prioritization,
and validation of software requirements.

2) SOFTWARE ARCHITECTURE AND DESIGN
We group all those articles in this category, which deal with
the process of specifying the architectural components and
interfaces of software, and the description of how components
of a software system are organized.

3) SOFTWARE IMPLEMENTATION
We group all those articles in this category, which are
concerned with the development or construction of soft-
ware achieved through a combination of design artifacts and
coding.

4) SOFTWARE QUALITY ASSURANCE AND ANALYTIC
We group all those articles in this category, which deal with
fundamental elements such as quality characteristics, quality
process improvement or assessment, or verification and val-
idation. We have also included articles referring to software
testing in this category.

5) SOFTWARE MAINTENANCE
We group all those articles in this category, which deal with
software adherence activities in order to meet new or changed
operating environments such as refactoring, maintenance cost
estimation, defect correctness, and factors related to software
aging (e.g., resource depletion).
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FIGURE 3. Articles by SDLC stages.

The SE stages and the number of articles that are associated
with those stages are shown in Fig. 3. 136 out of 263 (52%)
articles belong to quality assurance and analytic. 44 out of 263
(17%) articles have focused on architecture and design. 29 out
of 263 (11%) articles have addressed the implementation fol-
lowed by requirements engineering stage with 24 out of 263
(9%) articles. 11 (4%) articles were focusing on the main-
tenance phase. The rest of the articles were not particularly
focusing on any stage but were generally applicable to SE.

B. APPLICATIONS OF ML FOR SE (Q1.2)
To address this question, we have developed a classification
scheme based on the identified applications of ML for SE
in order to characterize the obtained articles into appropriate
categories. We have organized the applications of ML for
SE as branches, which belong to five life cycle stages of SE
(knowledge areas). The applications of ML for SE that come
under corresponding SDLC stages along with the references
of articles are shown in Table 1. Note that the applications
highlighted in this study may not cover the entire knowl-
edge base but rather should be deemed as stemming research
indicating key applications of ML for SE in literature. The
applications falling under the SE stages are described below.

1) APPLICATIONS OF ML AIMING AT SOFTWARE
REQUIREMENTS
ML has been widely used to facilitate the software
requirements stage. For instance, in requirements modeling
and analysis, articles focused on distinguishing ambigu-
ous requirements [21], resolving incompleteness, the
correctness of requirements [22], etc. Requirements
selection/prioritization/classification deals with articles
proposing ML techniques that emphasize on automat-
ing prioritization of requirements or their classification.
Perini et al. [23] employed an ML technique to gener-
ate approximate rank in order to prioritize requirements.
Navarro-Almanza et al. [24] used a convolutional neural net-
work (CNN) to classify functional requirements by analyz-
ing textual features. We further found articles focusing on
requirements traceability. Requirements traceability refers to

the ML approaches that assist in linking requirements to code
or other artifacts as shown by Guo et al. [25], who used deep
learning (DL) techniques in order to generate a trace link of
requirements with other artifacts.

2) APPLICATIONS OF ML AIMING AT SOFTWARE
ARCHITECTURE AND DESIGN
Many types of research in the past have applied ML to soft-
ware architecture and design. The applications include design
models, which are comprised of recommendation models for
software processes/services. Apart from this, model smells
and refactoring techniques of object-oriented structures using
ML have also been proposed in the articles. White et al. [26]
introduced DL to software languagemodeling based on infor-
mation retrieval models. Design pattern prediction primarily
focuses on recognizing design patterns in software through
source code or user interface layout usingML techniques. For
example, Nguyen et al. [27] proposed an approach known as
DeepUI in order to semi-automate the design tasks by learn-
ing from previous UI design patterns. Development effort
estimation refers to estimating effort for the development of
software projects using ML techniques. Ionescu [28] used
ANN to automate effort estimation by learning from textual
features of project tasks.

3) APPLICATIONS OF ML AIMING AT SOFTWARE
IMPLEMENTATION
We found several studies on ML assisting the software
implementation stage. Amongmany applications, code clone/
localization/refactoring/ labeling aims at finding code dupli-
cation, specific location of code in software, refactor-
ing of code, or labeling of code with the help of ML,
e.g., Alahmadi et al. [29] employed CNN in order to predict
the code blocks in video tutorials. Code/bad smell detec-
tion focuses on applying ML in order to detect code and
bad smells in software source code and design models,
respectively. Code smells are indications of poor software
code quality leading to the rise of technical debt. It gener-
ally includes god classes, spaghetti code, etc., whereas bad
smells in design models have similar characteristics such
as lazy classes and middle man. Pecorelli et al. [30] inves-
tigated data balancing techniques and addressed unbalanced
dataset issues when employing ML for code smell detection.
Maneerat et al. [31] proposed an approach to predict bad
smells from design models such as class diagrams. Code
inspection/analysis represents the class in which an ML tech-
nique is employed for the purpose of code reviews. For
instance, Lal et al. [32] proposed an ML approach to auto-
mate code reviews for the pushed code. The code/program
similarity category refers to the identification of specific
piece(s) of code, which are similar between two or more soft-
ware projects. Additionally, Kim et al. [33] proposed an ML
technique in order to reduce the number of program similarity
comparisons aimed at distinguishing between original and
pirated/cracked software.
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4) APPLICATIONS OF ML AIMING AT SOFTWARE QUALITY
AND ANALYTIC
Most of the articles we found were focusing on apply-
ing ML to various software quality assurance and analytic
tasks. The applications include: fault/bug/defect prediction
category, which revolves around the prediction of faults,
bugs, or defects using ML techniques [34]–[39]. Test case/
data/oracle generation surrounds ML techniques that help
in generating test data, test oracles, or entire test suites.
Braga et al. [40] proposed an ML technique to automate
the process of test oracle generation. Test case selection/
prioritization/ classification deals with the class that par-
ticularly focuses on test case prioritization or classification
techniques using ML. Rosenfeld et al. [41] employed an ML
technique in order to select generic test cases for android
applications. The technique is aimed at reducing the manual
testing efforts by classifying the activities and automatically
selecting the activity-specific test cases. Vulnerability/
anomaly/malware discovery/analysis mostly concerns the
security aspect of the software, e.g., Huang et al. [42]
employed the term frequency-inverse document frequency
(TF-IDF) technique and deep neural network to auto-
matically classify software vulnerabilities. Software analy-
sis, technique assessment, and software process assessment
come under assessment and analysis of software. In this
regard, Fu et al. [43] proposed a regression-based ML tech-
nique in order to estimate software energy consumption
by analyzing software performance features. The verifica-
tion and validation category specifically addresses predic-
tion and verification of software reliability through ML,
e.g., Tamura et al. [44] proposed a DL-based technique to
select the most suitable software reliability model for the
development project. Testing effort estimation refers to the
amount of testing effort required in order to test a software
system using ML techniques, e.g., Silva et al. [6] evaluated
various ML tools in order to estimate the execution times for
running functional test cases.

5) APPLICATIONS OF ML AIMING AT SOFTWARE
MAINTENANCE
The software maintenance stage has been found as the least
focused stage for researchers in this domain. In this cate-
gory, the research is more inclined towards cost/effort esti-
mation than the rest of the maintenance tasks. We found
articles focusing on software maintainability prediction,
which refers to the proposed ML techniques in order to
assist the prediction of maintainability metrics appropriate
for specific software projects [45]. Software aging detec-
tion refers to the use of ML in order to detect software
maturity and its aging in terms of resource depletion such
as memory leaks, high CPU usage, and overtime. In this
regard, Andrzejak et al. [46] investigated the feasibility of
ML techniques for classification in detecting early perfor-
mance degradation due to software image aging. The mainte-
nance effort estimation class aims at estimating the amount of

effort required for themaintenance of a software system using
ML, e.g., Chandra et al. [47] used an SVM-based regression
model in order to forecast maintenance effort with univariate
and multivariate approaches.

6) EFFECT AND SIGNIFICANCE OF APPLYING ML AT EACH
SDLC STAGE
ML aims to automate and support the SE activities, which
are considered to be performed intensively by humans.
ML allows systems to perform human-centric activities at a
much larger scale [48]. In fact, an empirical study [49] has
been conducted to understand whether software engineers
can utilize ML techniques for the improvement of their SE
process and whether solutions proposed by engineers still
outperform ML techniques. However, the need for ML tech-
niques is still pertinent due to their ability to outperform in
most SE activities. We highlight some of these activities with
respect to SDLC stages which are as follows:

In the requirements stage, writing requirements specifica-
tions is highly deemed to be a human-centric task. Prior work
by Pandita et al. [50] and Jahan et al. [51] have inferred the
most probable specifications and identified its unexpected
behaviors from various artifacts by employing ML tech-
niques, respectively. Ferrari et al. [52] identified ambiguous
requirements among different domains using ML. In the
architecture and design stage, predicting design patterns is
an important reverse engineering activity to improve soft-
ware integrity. However, it often suffers from false positives
and negatives [53]. As the number of patterns is increasing
rapidly due to their variations, the process of recognizing
these patterns can be effectively learned using ML [53]. In
the implementation stage, detecting code smells in a large
codebase can be extremely difficult for a human as opposed
to a machine, thus ML techniques can greatly reduce this
effort of detecting code smells or technical debt [30], [31].
In quality assurance, there is a need to ensure that the sys-
tem remains error-free or to be able to timely identify the
cause of failure. ML techniques employed in literature for
this purpose proved to be promising in detecting software
faults [34]–[36]. Test generation is also considered to be a
task that requires human intelligence. Zhang et al. [54] have
employed ML to automatically generate test data in order
to improve return on investment. In software maintenance,
Malgonde et al. [55] have shown ML techniques perform
significantly better at predicting the effort as compared to the
team estimates (human-centric).

Despite the intriguing tendency of full automation, com-
plete automation could often result in a potentially fallible
system, therefore, practitioners are encouraged to employ
ML techniques with humans in the loop wherever there is
a presence of criticality [1], [49]. In addition, there is a
significant lack of studies showing the cost-benefit analysis
of their proposed ML techniques, which would be vital for
ML-based approaches to be feasible for adaptation in the
industry.
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TABLE 1. Classification by articles.

C. ML TYPE AND TECHNIQUES (Q1.3)
1) ML TYPES
By the type of ML, we mean how the models have been
trained, i.e., supervised, semi-supervised, unsupervised, rein-
forcement, or analytical learning. Supervised learning is
based on a training set and a test set taken from the dataset.
The model training is done by taking multiple labeled sam-
ples from the train set. After the model is trained, its per-
formance is evaluated using the test set. In semi-supervised
learning, both labeled and unlabelled data are employed in
order to train the model. The dataset is divided into unsuper-
vised clusters as such. Then, the class information is obtained
by learning the clustering outcomes [216]. Unsupervised
learning requires no training dataset. For instance, in unsu-
pervised learning for fault detection, software instances are
usually grouped into clusters and each cluster is labeled as
‘‘Buggy’’ or ‘‘Correct’’. However, each cluster needs to be
labeled manually by the individuals with expertise [198].
Reinforcement learning refers to unsupervised goal-oriented
learning performed by an agent directly interacting with
the environment. Analytical learning is aimed at generating
solutions based on background knowledge and improving
inference iteratively [253].

As shown in Fig. 4, 193 out of 263 (73%) articles
employed supervised learning, 15 out of 263 (6%) arti-
cles employed unsupervised learning, 6 out of 263 (2%)

FIGURE 4. Articles by ML type.

articles employed semi-supervised learning, 4 out of 263
(2%) articles addressed reinforcement learning, and 1 out
of 263 (0.4%) focused on analytical (inference-based) learn-
ing. The rest of the articles 44 out of 263 (17%) did not
explicitly report the employed ML type.

2) ML TECHNIQUES
ML techniques are the algorithms used for classification,
regression, or clustering problems, e.g., SVM, RF, or ANN.
The employed techniques in the selected pool of articles are
shown in Fig. 5. The topmost commonly used techniques are
ANN, RF, DT, and NB, respectively. While 51 out of 263
(19%) articles employed ANN, 45 out of 263 (17%) articles
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FIGURE 5. Articles by techniques.

FIGURE 6. Articles by contribution facet.

have used RF and SVM, and 40 out of 263 (15%) articles used
DT and NB for model training.

D. CONTRIBUTION FACET OF THE ARTICLES (Q2.1)
The contribution facet addresses the novel propositions of the
articles. It is derived by analyzing the contribution of the
articles, which represents the current state-of-the-art and
enables researchers and industrial practitioners to get an
overview of the existing tools and techniques in the liter-
ature. As shown in Fig. 6, 121 out of 263 (46%) articles
focused on approaches/methods, followed by 60 (23%) arti-
cles proposing models/frameworks, 24 (9%) articles focus-
ing on comparative analysis of existing techniques, 13 (5%)
articles focusing on tools, and 6 (2%) articles focusing on
algorithms/processes. The rest of the articles – 39 out of 263
(15%) – reported no new propositions. These articles were
either investigating existing approaches, discussing opinions,
or reporting their experiences.

Table 2 shows the names of the propositions along with the
contribution facet and references of the articles. Interestingly,
only 25 out of 263 (9%) articles have explicitly named their
propositions.

TABLE 2. Named propositions in the articles.

FIGURE 7. Articles by research facet.

E. RESEARCH FACET OF THE ARTICLES (Q2.2)
The research facet describes the nature of articles in terms of
their purpose of conducting the research, such as evaluations
(articles employing empirical methods such as controlled
experiments or case studies), solutions (articles proposing
solutions to underlying problems without empirical evi-
dence), and knowledge (articles expressing experiences and
opinions). Fig. 7 shows the articles by their research facet.
204 out of 263 (78%) articles have contributions with empir-
ically evaluated propositions, whereas 47 out of 263 (18%)
articles are knowledge-based, and 12 out of 263 (5%) articles
have proposed solutions without any empirical evaluation.

The evaluation facet, in turn, represents the type of eval-
uation that has been performed in the articles in order to
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FIGURE 8. Articles by evaluation facet.

evaluate their propositions. The articles by the evaluation
facet are shown in Fig. 8. Controlled experiments have been
performed in 148 out of 204 (73%) articles followed by
case studies in 58 out of 204 (28%) articles and surveys
in 16 out of 204 (8%) articles. 2 out of 204 (1%) articles
have employed both a controlled experiment and a case study
for an empirical evaluation; whereas, rest of the articles
did not use any empirical method for evaluation purposes.
Moreover, we found no article employing ethnography or
action research as empirical methods for evaluation. Among
the articles those performed control experiments, 78 arti-
cles proposed approaches/techniques/methods, and 41 arti-
cles proposed models/frameworks. While 15 articles focused
on comparative analysis, 8 articles proposed tools, and 4 arti-
cles introduced new algorithms/processes.

F. DATASETS (Q2.3)
We further explored the datasets that have been used in most
of the articles in order to evaluate their proposed approaches
or comparative studies. Evidently, the majority of articles
employed datasets obtained from PROMISE10 repository fol-
lowed by repositories made publicly available by NASA,11

StackOverflow,12 Github,13 and JAVA projects.

G. TRENDS IN TERMS OF YEAR (Q3.1)
This refers to the trends in terms of publication years of
articles. It shows the evolution of the adoption of ML for
SE. As shown in Fig. 9, the use of ML for SE is consistently
growing over the passage of time. One can also observe an
exponential growth in this trend from 2016 - 2018, where
2018 proved to be the highest publication year with 63 (24%)
publications. In 2019 and 2020, we recorded relatively fewer
publications: 45 out of 263 (17%) and 34 out of 263 (13%),
respectively. There could be two plausible reasons for that.
Either some databases are not updated completely (as this
study was conducted in Q4 of 2020) or like any hype cycle,

10http://promise.site.uottawa.ca/SERepository/datasets-page.html
11https://data.nasa.gov/
12https://archive.org/details/stackexchange
13https://ghtorrent.org/

FIGURE 9. Articles by year.

FIGURE 10. Articles by venues (Top 5).

the peak of inflated expectations regarding ML for SE was
reached in 2018 and now the trend is slowly going towards
the trough of disillusionment. We believe the latter is the case
here.

H. VENUES WITH HIGHEST PUBLICATIONS (Q3.2)
Fig. 10 shows the top 5 venues where most researchers
of the domain tend to publish. International Conference on
Software Engineering (ICSE) is leading by 11 out of 263
(4%) and the second most publishing venue is Transac-
tions on Software Engineering (TSE) journal with 10 out
of 263 (4%). They are followed by International Workshop
on Machine Learning and Software Engineering, which fea-
tured 5 out of 263 (2%) articles, European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), which also featured
5 out of 263 (2%) articles, and International Conference
on Cloud Computing, Data Science & Engineering (Conflu-
ence), which featured 3 out of 263 (1%) articles. Moreover,
Fig. 11 shows the overall distribution of articles with respect
to publishing venues. Here one can observe that 155 out
of 263 (59%) articles have been published in conferences,
51 out of 263 (19) articles have been published in journals,
26 out 263 (10%) articles have been published in workshops,
and 18 out of 263 (7%) articles have been published in
symposia.

VI. ANALYSIS AND DISCUSSION
This section relates to the fourth goal of this study (G4) and
deals with implications and analysis of the aforementioned
articles.
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FIGURE 11. Articles by publishing venues.

A. RELATION OF SDLC STAGES WITH RESEARCH AND
CONTRIBUTION FACETS
Fig. 12 shows the relationship of the contribution and research
facets explored in this study with the SDLC stages.Moreover,
the figure provides a bird’s-eye view of the current studies
falling into the respective SDLC stages along with their con-
tribution type and research purpose. For instance, 55 articles
belonging to the quality assurance stage have proposed a
new approach or method as their primary contribution, and
the contributions of 107 articles at this stage were evaluated
empirically. In addition, we can observe that no tool has
been proposed for the requirements and maintenance stage
indicating less interest of researchers in prototyping their
proposition.

B. RELATION OF SDLC STAGES WITH ML
As shown in Fig. 3, 52% of the articles were dedicated to
the quality assurance and analytic stage, which shows that
software quality14 is the prime focus for the researchers of
this domain. Indeed, quality assurance, along with require-
ments and design, are human-centric stages of the SDLC
and the high number of articles in these areas highlight the
fact that ML is able to offer help here. As shown in Tab. 1,
we further observed that fault/bug/defect prediction has been
the major focus of researchers within quality assurance. Cer-
tainly, the nature of ML types and techniques is more sup-
portive for this kind of activities, but we hope that in the
future other SE activities may also similarly benefit fromML.
This is particularly valid for the maintenance stage, which
has been the least interesting area for the application of ML.
We encourage researchers to investigate howML can be used
to automate certain tasks in this area. We further encourage
researchers to adopt combinations of ML techniques and use
diverse datasets from different sources in order to train the
ML models so that the applicability of the techniques can be
generalized as also observed in [99], [115], [188], [237].

C. RELATION OF SDLC STAGES WITH ML TYPES
As shown in Fig. 4, a vast majority of articles falling into
requirements, architecture and design, and implementation

14Our criteria for software quality assurance is shown in Tab. 1

categories are addressing the problems using supervised
learning. For instance, [25] used supervised DL technique to
identify trace links and predict associations within artifacts.
A similar supervised learning technique has been proposed
in [86] order to generate trace links from commonly occurring
artifacts in the project. The reason supervised learning is
mostly employed in the articles could be that supervised
learningmodels are comparatively simple and produce results
with high confidence and accuracy. We also noticed that only
4 out of 263 (2%) articles [3], [61], [225], [238] used rein-
forcement learning. This implies a little interest of researchers
in the applications of reinforcement learning to SE. Rein-
forcement learning has proven to be beneficial in solving
complex problems especially in healthcare, business, and
robotics [277]. Thus, we believe it would be an interesting
area to explore in terms of facilitating SE. For instance, soft-
ware simulations can be deemed as an environment in which
the RL agent can interact and reach various goal-oriented
outcomes [278].

D. RELATION OF SDLC STAGES WITH ML TOOLS
As shown in Fig. 6, only 13 articles proposed a new
tool to facilitate SDLC stages. As further can be observed
in Fig. 12, 6 out of those 13 tools have been proposed for
quality assurance purposes, e.g., the tool named ‘‘Appflow’’,
which is proposed by Hu et al. [211] and predicts reusable UI
test cases using neural networks. Tools are indeed a valuable
contribution when it comes to the practicality and applicabil-
ity of the proposed approach. In the future, more tools are
desirable that are targeting other SDLC stages.

E. RELATION OF SDLC STAGES WITH ML TECHNIQUES
Although all ML techniques have certain pros and cons,
the selection of the most suitable technique depends on the
type of dataset being constructed or employed and what prob-
lem is being addressed. The SDLC stage-wise breakdown of
ML techniques is shown in Fig. 13. As anticipated, mostly
ML techniques were employed to solve problems related
to the quality assurance and analytic stage. ANN was the
most commonly used technique here (30 articles), followed
by SVM (28 articles) and RF (24 articles), respectively.
NB was next in line with 21 articles. ANN, which was used
in 30 articles in the quality assurance stage was also a subject
of interest for the researchers working in the architecture and
design stage (15 articles).

As shown in Fig. 13, ANN is the most widely employed
ML technique for SDLC stages in general due to its simplicity
and strong classification and regression capabilities. CNN
is mostly used in supervised learning problems, whereas
RNN has been used to address both supervised and unsuper-
vised learning problems. In traditional ML techniques, KNN,
k-means clustering, NB, and SVM are mostly employed
to address semi-supervised and unsupervised learning prob-
lems. In the case of reinforcement learning, Q-learning tech-
nique and its variants have been mostly employed in the
literature.
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FIGURE 12. Relationship of contribution/research facets with the SDLC stage facet.

FIGURE 13. ML techniques usage in SDLC.

When it comes to neural networks-based techniques, our
findings show that simple neural networks, e.g., ANN (51 out
of 263 (19%)) and shallow neural networks, e.g., CNN and
RNN (containing one or more hidden layers) (combined
47 out of 263 (18%)) are the most widely used ML tech-
niques in SE. Neural networks are mostly employed for soft-
ware architecture and design, and software implementation.
Apart from neural networks, traditional ML techniques such
as Boosting, NB, and case-based ranking, were popular in
requirements engineering, particularly. The SVM technique
has been mostly employed for the software maintenance
stage. Apart from the ML techniques, most of the articles
addressed problems related to supervised learning indicating

classification as a major area of interest. While unsupervised
and semi-supervised learning has been less employed in the
area. The wide adoption of neural networks-based techniques
in articles indicate their suitability and potential for achiev-
ing good results in this area. Mainly due to the reason that
a neural network-based model is capable of learning from
high dimensional large scale input data and an appropriate
selection of cost function leads to the development of a
more robust model. Moreover, neural network-based tech-
niques are highly customizable and can be applied to var-
ious learning problems, such as supervised, unsupervised,
or reinforcement, which make them highly flexible in terms
of applicability.
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Table 3 contains the complete list of articles (263) used in
this paper showing ML techniques employed in those articles
with respect to SDLC stages along with their contribution
facet.

VII. CHALLENGES, LIMITATIONS, AND FUTURE
RESEARCH DIRECTIONS
This section also relates to the fourth goal of this study (G4)
and deals with challenges, limitations, and future research
directions in this field.

A. CHALLENGES
One of the major challenges in this domain, as also reported
by other experts, e.g., [150], [157], is the uncertain and
stochastic nature of the employed ML techniques, and the
difference in the captured data and results, e.g., the difference
in the DL model output values when executing it multiple
times over the same input data. The approaches need to be
reproducible and rigorous in order to build high confidence
for their application.

The availability of sufficiently labeled and structured
datasets is also a challenge as also reported by other
researchers, e.g., [32], [170], [184]. However, this can be
overcome rather easily as more and more researchers have
started sharing their datasets publicly. An associated issue
is the imbalanced sizes of software projects and datasets.
Using new techniques for dataset balancing, such as SMOTE
and ClassBalancer (both evaluated by Percorelli et al. [30]),
or devising new ones is highly recommended in this context.

The ever-increasing software complexity is also one of the
greater challenges for this domain. Meinke et al. [63] also
attest to our observation and further suggest that the scalabil-
ity problem should be given proper attention by researchers
of this domain. We also invite researchers to conduct more
studies investigating the impact ofML techniques on different
software sizes.

B. LIMITATIONS
As observed in some studies, e.g., [140], [176], the lack of
generalizability regarded as over-fitting problems is one of
few major limiting factors, which decreases the accuracy of
results. This leads to lesser results when ML models are
applied to diverse cross-project datasets. Using standard data
preprocessing techniques such as SMOTE, ClassBalancer,
and Resample [30], and performing K-fold cross-validation
or hold-out validation could reduce the problem of over-fitted
and under-fitted models.

As observed in some studies, e.g., Ghaffarian et al. [219],
the current state of evaluation of ML techniques, espe-
cially for software vulnerability testing is not well grounded.
The dataset often lacks sufficient vulnerability types, which
results in less generalizable outcomes. In order to improve
results’ precision, lesser false positives, and false negatives
while maintaining recall can help producemeaningful results.

In a distributed software development environment, man-
ual inspection/allocation of work items, excessive time

consumption, potentially fallible outcomes, and lack of
production-ready approaches are some of the limitations
identified by Barcus et al. [279] and Achimugu et al. [280].

C. FUTURE RESEARCH DIRECTIONS
In order to facilitate requirements traceability, researchers
have suggested that devising a feedback mechanism, such
as adding user feedback during the model training process
in order to improve feature selection and performance, can
really help the cause of generalizability. One of such works is
presented by Sultanov et al. [3], which provides a very good
basis for further developments.

In order to improve prediction accuracy and better reli-
ability of results, more experiments using larger numbers
of datasets and software applications have also been sug-
gested [99], [115], [188], [237].

Researchers in the articles have also suggested investi-
gating further regarding the suitable metrics and loss func-
tions employed in the evaluation of ML for SE-focused
techniques, especially for multi-class classification
problems [125].

Future research directions also include automata learning
for emergent middle-wares and using ML to address com-
plex system integration problems, especially in system of
systems such as the internet of things. Moreover, researchers
are encouraged to devise adaptable, easily integrable, and
scalable solutions in the area.

VIII. THREATS TO VALIDITY
Similar to other secondary studies, this study is also prone
to some validity threats. The threats and their mitigation
strategies are described in this section.

A. EXTERNAL VALIDITY
The extraction of articles and choice of repositories constitute
a threat to internal validity. In order to minimize the former,
we adopted the PICO (Population, Intervention, Comparison,
Outcomes) criteria suggested by Petersen et al. [19] to formu-
late the search terms. The selected terms unequivocally rep-
resent the goals of our work. An associated issue corresponds
to the frequently used specific ML terms. Although the query
used did not explicitly include ML terms, such as classi-
fication, regression, SVM, ANN, inductive logic, Bayesian
network, or deep belief network, this would not affect the
analysis much because such information is usually available
in abstracts, hence accessible. In order to minimize the latter,
we used five digital libraries as the primary source for this
research. All selected digital libraries are well known in the
computer science discipline for including the most relevant
results [281]. Additionally, according to Wohlin et al. [282],
having a larger set of papers is not necessarily better for
such reviews. The important thing is that the found stud-
ies are a good representation of the population, which we
ensured in this study by adopting a rigorous paper selection
process.
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TABLE 3. Articles by ML techniques.
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TABLE 3. (Continued.) Articles by ML techniques.
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TABLE 3. (Continued.) Articles by ML techniques.
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TABLE 3. (Continued.) Articles by ML techniques.

B. INTERNAL VALIDITY
Another threat is regarding the quality assessment of
this study. As discussed by Petersen et al. [283] and
Kitchenham et al. [284], quality assessment is not common
in such kind of studies as their overall aim is to give a broad
overview of the topic area. However, despite these observa-
tions, we have adopted a rigorous process for the inclusion

and classification of papers, which ensures that only high-
quality related papers are selected as primary studies.

C. CONCLUSION VALIDITY
Each article in this study was reviewed by the first author,
which may lead to a threat to the reliability of the results.
This threat was reduced by double-checking the article by the
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second, the third, and the fourth author. A random set of arti-
cles was distributed among the second and the third author.
Their review results were then compared with the results of
the first author. In case of a disagreement, the opinion of the
fourth author was sought. Although this did not happenmuch.

IX. CONCLUSION
The conclusion of the study is manifold. We have provided
an overview of the state-of-the-art in the area of machine
learning for software engineering by evaluating carefully
selected studies. We also proposed a classification scheme
that highlights the overall applications of machine learning
for software engineering in terms of SDLC stages. The classi-
fication shows the primary focus of researchers towards spe-
cific stages. This observation is one of themajor contributions
of this study. This study also reveals that the quality of pri-
mary studies in the domain of ML and SE is evidence-based
with respect to the techniques being empirically evaluated
by the researchers. We have also shown the relationship of
SDLC stages with ML types, tools, and techniques. Although
this research area is showing moderate growth in terms of the
number of publications, further primary studies need to be
conducted to emphasize other lesser explored SDLC stages
such as maintenance. The challenges, limitations and future
directions reported in this article should motivate and further
guide researchers in the future.We believe this study provides
the necessary impetus and further motivation to explore those
SDLC stages, which have been given lesser attention to date
with respect to the application of ML.

In the future, we intend to perform a more comprehensive
study investigating the relationship between ML and SDLC
stages. To this end, we intend to narrow down our search
query by including ML terms such as classification, regres-
sion, SVM, ANN, inductive logic, Bayesian network, or deep
belief network. We believe in this way, we can grasp a more
focused view of the state-of-the-art.
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