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ABSTRACT With the rapid development of location-based services (LBSs), efficient and mobile-friendly
localization algorithms should be designed for users to deliver a reliable LBS. In this paper, we present
an algorithm with the corresponding smartphone app that enables users to calculate their locations based
on representative infrastructures, such as nearby Wi-Fi access points and Bluetooth low energy (BLE)
beacons subject to low-cost, rapid system deployment, and competitive location accuracy. Working under
indoor multiple-floor scenarios, our app has three prominent features for estimating user locations. First,
we establish a feature identifier to detect the current floor and the feasible area in which the user may
walk. Second, owing to the structures of the indoor environment and the presence of different obstacles,
the unpredictable variation of the received signal strength (RSS) in indoor environments is considered in the
RSS-distance relationship to provide accurate location estimates. Third, with the prevalence of smartphones,
we extract smartphone-inertial measurement units to learn users’ behavior preferences, while collecting
reference signals (e.g., Wi-Fi/BLE readings) along the pathway and input to the tracking algorithm. Then,
the user’s current location is displayed on the app. With this solution, we can provide an accurate location
estimate with relatively low computational complexity regarding mobile device capability, while reducing
labor costs from traditional fingerprint deployments. Finally, we test our tracking app in real-time multiple
floor scenarios and evaluate the collected tracking data. Experimental results show that our proposed scheme
achieves an average localization accuracy of more than 80% within a 2-m error bound in multiple-floor
scenarios, while all areas (i.e., corridors, rooms, and stairs) were successfully identified.

INDEX TERMS Smartphone, indoor tracking, Bluetooth low energy, inertial measurement unit,
multiple-floor localization.

I. INTRODUCTION
Recently, the design of efficient and effortless localization
algorithms is essential for mobile users when tracking their
locations in indoor environments. Although the global posi-
tioning system (GPS) works very well in outdoor environ-
ments, it has high localization errors in indoor environments
because GPS signals do not pass through walls and obstacles
in buildings. To provide a reliable solution in indoor envi-
ronments, many indoor technologies have been developed,
including Wi-Fi, Bluetooth, and radio frequency identifica-
tion (RFID). Hence, the task of the localization problem is
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to extract location information based on the relevant signals
according to the given infrastructure installed in indoor build-
ings [1]–[4]. With the wide range of mobile wireless systems,
the aim of indoor localization tasks is to perform real-time
and accurate object location using the current infrastructure.
In indoor environments, Wi-Fi access points (APs) have
become more prevalent because they provide Internet access
and other location-based services (LBSs) on mobile devices
(e.g., laptops and smartphones). Thus, Wi-Fi has become
more popular for indoor tracking, while modern smartphones
are able to track the direction and distance traveled [1]–[4].
As a result, the smartphone-based Wi-Fi and pedestrian
dead reckoning (PDR) hybrid scheme is often integrated
for self-tracking purposes. However, according to [5],
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Wi-Fi-based localization on the iPhones is currently very
difficult because it is not possible to extract Wi-Fi network
information on iOS. Moreover, Wi-Fi-based ranging is inac-
curate and produces large localization errors when tracking.
Consequently, to upgrade the Wi-Fi-based localization on
smartphones, a new dimension that considers wireless signals
is required.

Over short distances, Bluetooth low energy (BLE) enables
numerous emerging applications that are associated with the
Internet of things (IoT), such as asset tracking, home automa-
tion, and smart factories. BLE beacons are typically small,
inexpensive, and power-efficient. Each BLE beacon can be
deployed either as a stand-alone or in combination withWi-Fi
as an AP to cover the area of interest (AoI) [5]. Objects
can be tracked indoors using BLE beacons, mobile devices
(e.g., smartphones), or BLE tags. Depending on the target
application and budget, object tracking can be automatic
(i.e., no human participation is needed) or semi-automatic
(i.e., people participating with smartphones). In our study,
we focus on semi-automatic systems. Here, a smartphone car-
ried by a user is treated as a Wi-Fi/BLE receiver and exploits
the reference signals to determine its location, which is the
current user’s location. Typical BLE broadcast packages con-
tain a universally unique identifier (UUID) and a received
signal strength (RSS), which can be detected by smartphones.
Owing to its limited accuracy, BLE-based tracking methods
are often combined with other technologies such asWi-Fi and
PDR to support tracking.

Regarding the two-dimensional (2D) case, recent
works [5]–[12] have adopted fusion or hybrid algorithms that
combine Wi-Fi/BLE and PDR to achieve consistent tracking.
Most experimental activities take place on a single floor,
such as a research lab [10], [11], complex areas consist-
ing of office rooms and long corridors [5], or large-scale
areas [12]. Conventional BLE scanners often measure either
the presence status (i.e., the presence or absence of an
object at a given location corresponding to a given proximity
threshold) or report the distance to an object in centimeters.
The observed received signal quality is inversely dependent
on the distance between the smartphone and nearby reference
nodes (RNs). Assuming that the RSS is known when the
peripheral and central signals are 1m apart as A, a commonly
used relationship between the distance and Bluetooth signal
strength is given as in [17].

d ≈ 10(A−R)/10n, (1)

where R is the RSS at the current distance and n is the
radio propagation constant. In terms of location estimation,
three major techniques were used to obtain the location from
the RSS readings. These include triangulation, proximity,
and fingerprints [6]–[9]. The triangulation and proximity
techniques are more low-cost and energy-efficient, and they
enable real-time localization because they do not require a
site survey and database maintenance for radio maps. Mean-
while, the fingerprinting techniques in [18]–[20] require a site
survey over the AoI to build the finest fingerprint database,

which may lead to increased costs, effort, and inflexibil-
ity to the indoor environment dynamics. Recently, a new
fingerprinting-based localization was developed using chan-
nel state information (CSI) to construct fingerprint maps
through CSI and deep learning [21]–[23], which frequently
adapts to time and environmental changes. Nevertheless,
the manual collection of the corresponding database is costly,
not only for dataset construction but also for interpolated
classification and analysis.

There are few practical approaches for three-dimensional
(3D) space, such as [24]–[28]. With respect to multiple-floor
scenarios, a typical 3D localization problem consists of
the following three basic steps: (i) current floor detection,
(ii) localization in a single floor, and (iii) detecting the
areas in which the user may climb or descend stairs. With
problem (i), the RSS profile-based floor-detection method
is commonly used. In particular, it has been shown that
the RSS from nearby Wi-Fi APs on multiple floors can
be used for floor detection [26]–[28]. A lightweight fin-
gerprint database can be utilized from the collected RSS
readings during the training phase. Problem (ii) can be effi-
ciently solved using the aforementioned approaches in the
2D cases [5]–[12].

In our research, we focused on localizing a mobile user
in multiple-floor scenarios. In particular, we aim to develop
a localization system for estimating the smartphone location
using existing Wi-Fi/BLE infrastructure and inertial sensors
with less human effort. Our proposed localization app is
specifically built on an iPhone and is fully functional along
with information got in advance of products such as Wi-Fi
APs and BLE beacons. This is an extended version of our
work [5], in which we want to address the following three
main questions:
(i) How dowe detect the current floor and the feasible area

in which the user may belong?
(ii) How do we localize and track the user’s location at a

certain floor area?
(iii) How can a floor that currently contains a user be

detected between two adjacent floors?
To answer the above questions, a user with a smartphone
collects RSS readings when the device is stationary at a speci-
fied location. Then, we learn about the predictive relationship
between the RSSs of the smartphone and some special points
near reference positions to build a regression model with
minimum least squares error. When a user enters the AoI,
the floor level is determined based on the currently con-
nected Wi-Fi AP/BLE beacon list. Once that floor has been
determined, the user’s location as he/she moves is updated
according to the received RSS signal, a prior light radio map,
and AP/BLE knowledge. Smartphones with various inertial
measurement unit (IMU) readings are exploited to reduce site
survey efforts and record users’ trace information along the
walking path. Moreover, we establish some simple boundary
check rules to adjust the estimated location in order to enable
it to be smoother to avoid jumping too far, thus improving the
user experience.
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The remainder of this paper is organized as follows.
In Section III, we present our tracking app components and
the method used to collect information from BLE beacons
and IMU information for localization purposes. In Section V,
we present our tracking scheme for online applications, which
corresponds to an AoI classification scenario. The experi-
mental results are presented in VI, followed by concluding
remarks in Section VII.

II. BACKGROUND
A. INDOOR LOCATION SENSING TECHNIQUES
Regarding the aforementioned indoor infrastructures, three
main sensing techniques for obtaining related location infor-
mation are described below.

1) MULTILATERATION
At a specific time, the smartphone first measures the
RSS from the Wi-Fi AP within its communication range and
translates it into a distance according to a specific signal
propagation model. Then, the triangulation technique [1] cal-
culates the location of the smartphone using a set of radial dis-
tances. This technique is very simple but can only be accurate
when there exists a line-of-sight (LoS) between the smart-
phone and the Wi-Fi AP. Thus, one major disadvantage of
this technique is that it suffers from environmental dynamics,
which prevents researchers from developing accurate indoor
localization systems based on this technique.

2) BLE PROXIMITY
The proximity of a BLE beacon can be obtained using several
tools based on the smartphone operation. For example, in the
iOS system, CoreBluetooth framework [29] scans nearby
BLE beacons and provides the proximity of the smartphone
to some nearby BLE beacons in the area. A BLE scan-
ner such as an iPhone can run the BLE scanning function
provided by this framework. In general, proximity-based
localization selects the strongest RSS from specific BLE
beacon and determines the smartphone location to be the
region covered by the BLE beacon. Thus, it often provides
a rough location estimate but is very easy to implement in a
smartphone.

3) FINGERPRINTING
The fingerprinting technique is often used to obtain the
spatial relationship between the RSS and the location.
It computes the smartphone location by matching the online
RSS readings to the fingerprints collected during the offline
phase. Then, the matching process picks the RSS fingerprint,
which has the smallest standard deviation to the online one
owing to the time-varying nature of the indoor propaga-
tion channel, even at the same location. To support track-
ing, RSS fingerprints are collected during user movements.
In particular, when a user enters a building, and his/her
smartphone records the RSS fingerprints along his pathway.

The finalized fingerprints are then summed along different
walking paths.

B. EXISTING LOCALIZATION SYSTEMS
First, in this section, the reference nodes (RNs) refer to
nearby Wi-Fi APs, BLE beacons, or a combination of them,
where the smartphones can obtain their reference signals
within the communication range. With respect to localiza-
tion within a single floor, because modern smartphones are
already equipped with both Wi-Fi and Bluetooth receivers,
they can collect the RSS readings from RNs to localize them-
selves. Several studies have attempted to achieve this goal via
Wi-Fi-only [1]–[4], BLE-only [10]–[12], or a combination
of them [5], [13]–[16], [24]–[27]. Most of the studies tried
to jointly estimate the location of the smartphone based on
a radio map of the AoI. The core idea is that using the
online RSS reading, the smartphone matches it to the location
of sample points whose RSS fingerprints are the closest
match to the current smartphone location. The k nearest
neighbor-based method [22] can be applied to estimate the
location of the smartphone. In this way, it has low complexity
and can handle the mobility of the user, but the accuracy of
such schemes suffers from environmental dynamics, usually
producing a location error of 5∼10m. Alternative proba-
bilistic methods such as histograms [30] and kernel-based
schemes [32] can be utilized in the RSS database to calculate
the user’s location.

Recent works [5], [10]–[12], [31] showed that the per-
formance of any hybrid wireless sensing tracking system
depends on two factors: the RN deployment strategy and
the description of the richness of information extracted
from the hybrid signals. Table 1 summarizes some exist-
ing hybrid localization systems that have been successfully
implemented on smartphones. We note that the localization
accuracy of each work depends on several factors, such as
the BLE deployment density, a comprehensive survey of the
Wi-Fi/BLE fingerprint database, and the characteristics of
the AoI. Moreover, there exists a trade-off between accuracy
and cost when designing a pervasive indoor tracking system,
especially in mobile environments. For example, many track-
ing algorithms [10]–[12] require that a sufficient number of
BLE beacons cover the AoI, and their deployment spacing
must remain sufficiently large to avoid interference from
nearby Wi-Fi APs and other BLE beacons. Meanwhile, [5]
designed a hybrid Wi-Fi/iBeacon indoor tracking system that
overcomes the problem of limited public Wi-Fi information
on iOS devices.

C. TECHNICAL CHALLENGES AND MOTIVATION
Although there are many systems and solutions for indoor
environments that rely onWi-Fi/BLE/IMU readings, the opti-
mal tracking strategy is still an open problem. In con-
trast to the aforementioned works [10]–[12], [24]–[28],
we identify current technical problems for 3D track-
ing systems on smartphones, especially in multiple-floor
scenarios.
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TABLE 1. Existing hybrid-based tracking systems on smartphones.

1) APPLICATION PROGRAMMING INTERFACE (API)
CAPABILITIES AND INTEGRATION
TheWi-Fi AP information can be extracted easily on Android
smartphones via public API, but it is very difficult on iPhones
owing to the secure Apple policy [33], [34]. An iPhone can
only extract information from a single currently-connected
Wi-Fi AP instead of a list of APs in the area. With this limited
information, Wi-Fi usage has become optional for localiza-
tion purposes. For example, the authors in [24] proposed
that RSSs from nearby Wi-Fi APs can be utilized for floor
detection by evaluating the principle of fingerprinting with
a prior knowledge of certain areas. Such a method suffers
from heavy database and performance degradation when the
Wi-Fi AP density is low. And the most common beacon
protocols used in iOS are Apple’s iBeacon and Google’s
URIBeacon. By default, both of them make use of proximity
sensing capabilities to estimate a user range as (1) from
RSS measurements. However, BLE beacons have a variety
of discriminating capabilities to recognize a specific location,
subject to the inherent limitations of radio signal propaga-
tion. Converting a relevant distance from the RSS requires
a practical model that reflects the effects of the deployed
BLE locations in the AoI.

2) BLE LOCATION DEPLOYMENT
The challenge is to balance the trade-off between deploy-
ment cost and power consumption during the offline phase
(e.g., AoI survey) and online phase (e.g., power consumed in
each BLE scanning, system calibration). The density of BLE
beacons must be sufficient for the tracking app to accurately
localize a user within a short processing time, while the
distance between them must be greater than a safe threshold
to avoid interference between them and nearby Wi-Fi APs.
Under the assumption that only existingWi-Fi APs, BLE, and
smartphones are used without additional devices, we would
like to design a precise tracking app using a certain number
of pre-deployed BLE beacons and a smartphone.

3) DATABASE COLLECTION AND ENVIRONMENT
RECOGNITION
Any indoor tracking application relies heavily on the map of
the AoI, which can illustrate different features such as rooms,
corridors, and staircases. Themap database generation should
extract these features and engage with smartphone-based
sensor readings during the user’s moving trajectory. Collect-
ing more Wi-Fi/BLE samples at multiple locations improves
localization accuracy, but also introduces large errors and
affects the user’s experience. Intuitively, recording more RSS
samples at the same location at different times and averaging
RSSs from the same Wi-Fi AP/BLE location as a finger-
print can mitigate random noises and contribute to a robust
solution. Owing to the presence of obstacles indoors, it is
necessary to involve relative measurement errors from an
unpredictable variation of reference RSS readings andmotion
sensors. From the users’ perspective, many fingerprints in
the database cause a long query time to determine the area
where the user is currently located, thus affecting the overall
localization system.

4) HYBRID LOCALIZATION ALGORITHM
With the above observations, a hybrid location estimation is
required in order to accurately estimate user location with a
short processing time. Because various measurement errors
may lead to inaccurate localization results, online calibration
and drift compensation should be adopted according to the
geometric constraints.

In our design, we do not aim to provide the most accu-
rate solution for the given indoor infrastructure, but try
to uncover the true potential of these tools. Our track-
ing app takes advantage of the currently-existing Wi-Fi
and only uses some BLE beacons to provide extra infor-
mation, while combining with inertial sensing to moni-
tor mobility levels. Thus, the proposed solution includes
a lightweight fingerprint assembly collection module,
a robust regression model for RSS-distance conversion, and
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a hybrid localization algorithm. We demonstrate how to
solve the previously mentioned problems in the following
section.
• We observe that a good tracking app should not follow
any complex smartphone operations. To overcome the
Wi-Fi difficulties on iPhones, we applied the proximity
method in [5], where a Wi-Fi status bar is converted
to a related range. Using this approach, the smartphone
can easily determine the proximity of nearby Wi-Fi APs
within the network perimeter. Furthermore, instead of
using the default settings for the BLE measurement
model, we consider several factors, such as the path loss
component and attenuation. Considering the random-
ness, the RSS diminishes with distance according to a
certain propagation model.

• One of the advantages of the BLE beacon is that it
can be placed freely within the AoI and provides good
signal geometry. BLE beacons can be installed along
with the available Wi-Fi APs in the AoI to improve
the localization accuracy. Inspired by [5], we deploy
BLE beacons over the AoI in an optimal strategy to
reach the currently-existing Wi-Fi coverage and remain
clear from the interference of other nearby BLE bea-
cons. Through the training phase, we classified the AoI
into three areas that represent three types of environ-
ments according to the RSS readings. For each partition,
we calculated the signal propagation parameters, such
as the path loss exponent and attenuation factor. Thus,
when a user comes online, it can predict and control the
RSS fluctuations over both time and space by adjusting
these parameters.

• For data collection based on Wi-Fi/BLE, we build a
sparse 3D database of the geometry captured by several
key points. A key point consists of the spatial location
and pre-recorded RSS readings. For example, a typical
key point is constructed as κij = 〈IDij, (xij, yij),RSSij〉,
where i is the floor level, j is the number of orders, and
RSSij is the corresponding RSS record in the database.
In terms of smartphone-based inertial sensing, because
the PDR relies on the IMU readings, we studied several
relevant factors such as step detection and counting,
stride length, and heading direction to select robust and
reliable estimation models for the user’s mobility char-
acteristics.

• A hybrid indoor localization algorithm collects Wi-Fi
BLE readings with smartphone-based IMU to estimate
the user location along a walking path. Moreover, RSS
readings can be treated as a random process and its
path loss needs to be modeled depending on whether
the smartphone is in LoS, partial-none-line-of-sight
(p-NLoS), or full NLoS condition. Thus, with a
good BLE deployment strategy and suitable path
loss modeling, we aim to track a smartphone in
indoor environments. To achieve this goal, we use
a smartphone-assisted IMU as extra information for
mobility tracking in our localization app.

III. PROPOSED LOCALIZATION APP COMPONENTS
As illustrated in Fig. 1, we introduce three major components
of our tracking app: (i) An RN collection layer consists of
a Wi-Fi/BLE scanner. The scanner runs a scanning function
provided by the corresponding RN type and an API library
with the smartphone operation. For example, in the iOS sys-
tem, the proximity function in [5] provides a trusted-range
for Wi-Fi, whereas the CoreBluetooth framework [29]
scans nearby BLE beacons and estimates the distance of
the smartphone to some nearby BLE beacons in the area.
The RN profile is subject to a lightweight and lower computa-
tional load. (ii) A smartphone-IMU collector enables the user
to retrieve mobility data via theCoreMotion framework [35]
and to update the user location via CoreLocation [36].
(iii) Location estimation and calibrationmodules periodically
collect data from (i) and (ii), run the tracking system, and
display the current user location on the app screen. This
app can track the location of the user device independently
using the online RSS and IMU readings of the user device.
It also helps to identify either stationary or moving to another
floor location or inside an intended area.

FIGURE 1. Our tracking app architecture.

A. AoI CLASSIFICATION
1) REGION CLASSIFICATION METRIC
To identify a feasible region of the point of interest, let
φ be the dissimilarity function between two RSS vectors
f = [f1, · · · , fn]T and f′ = [f ′1, · · · , f

′
n]
T in Rn, which is

measured by the Euclidean distance between them as

φ(f, f′) =

√√√√ n∑
j=1

δ2j =

√√√√ n∑
j=1

|fj − f ′j |
2, (2)

where δj = |fj − f ′j | is the dissimilarity between two finger-
prints. To retrieve a fingerprint f∗ in the fingerprint database
space F , we find the best match that achieves the highest
similarity with respect to f, that is,

f∗ = arg min
f′∈F

φ(f, f′). (3)

Given a predefined threshold δ, if the dissimilarity δj sat-
isfies δj ≥ δ, two fingerprints fj and f ′j are treated as two
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different points in the fingerprint space. Otherwise, they are
indicated at the same point. The distinguished fingerprint
percentage is defined as

Pdf =
# {δj : δj ≥ δ}

Number of samples
× 100%. (4)

Alternatively, Pdf is the probability that two RSS samples
are identified as different fingerprints.

2) FLOOR AND ROOM DETECTION BASED ON RSS PROFILE
For each scan, our localization app ran a feature detection
algorithm and identified various key points. By matching
key points from the database, we obtain the following infor-
mation: (i) the current Wi-Fi AP/BLE beacon location to
which the user may be close, and (ii) predictions on floor
level and room level to which the user may belong. Before
applying the location methods to the database, we need
to define a subset of the associated BLE beacons and
Wi-Fi APs, which can easily distinguish RNs. In our tracking
app, we generated an RN map according to floor level and
floor types, such as Fmap = {p

j
f ,Featurej, j = 1, · · · , nF }.

Here, pjf = (x jf , y
j
f , z

j
f ) is the location of the RN, Featurej =

〈floor level, room/corridor type〉 is the RN characteristic, and
nF is the total number of RNs defined on the indoor map. For
each RN, there is a unique identifier for easy retrieval on a
smartphone. For example, it can extract Wi-Fi information,
such as the MAC address and service set identifier from
the AP. However, a BLE beacon advertising packet consists
of three numerical identifiers: UUID, major number, and
minor number. Major and minor numbers can be modified
according to classification purposes. A lookup table consists
of all RN features, so the smartphone easily retrieves related
information from the RNs. In summary, we determined the
current floor according to the following rules:

(i) We select the RN with the strongest RSS signal. This
point can be near the Wi-Fi AP or BLE beacon.

(ii) In the case of hybrid measurements, if the smartphone
recognizes that both the Wi-Fi AP or BLE beacon
have the same range, we prioritize the location of that
BLE beacon.

(iii) If the smartphone detects that it is in a transition zone
(e.g., a transition zone between two consecutive floors),
the floor detection function is not updated until it
receives a clearer signal from the other RNs. The floor
detection was then processed according to (i).

With respect to room detection, we follow the above rules.
However, it is more difficult to distinguish between two con-
secutive rooms, as shown in the experiment below. Therefore,
we need to combine different signals, such as IMU readings,
to accurately track the phone.

To test the floor/room detection scheme, we conducted the
following two series called floor-to-floor (F2F) and room-
to-room (R2R) experiments, which are illustrated in Fig. 2.
The BLE beacons (in particular, RedBear iBeacon [37]) were
placed on the ceiling based on the instructions in [5], [38].

FIGURE 2. Experimental illustrations in two recognition scenarios.

A smartphone (e.g., iPhone 12) held by a user is under
the iBeacon’s location with an actual distance of 1m, but the
ground distance is 0m. According to the figure, we draw the
actual distance in cyan color and the ground distance in blue.
For each experiment, the iPhone scans for 10 minutes each
time during various times of the day (e.g., morning, noon,
and night). Note that the smartphone can scan more than one
RSS reading from a nearby BLE beacon within one second,
but we take only one RSS value. If more than one value is
recognized, our app takes the average of the RSS readings
in one second. Thus, there are around 60 samples per minute
andwe obtain a dataset of 1800 RSS samples for a single BLE
beacon during the collection day.
• F2F experiment: The iPhone collects RSS readings
from nearby BLE beacons on the same floors at different
ground distances (e.g., 0m, 5m, 10m) and BLE beacons
from upper and lower floors. To convert a 3D distance d
to the ground truth distance dg, we use the following
formula:

dg =
√
d2 − h2d , (5)

where hd is the difference between the ceiling height and
the user’s height. We then check whether the iPhone can
correctly detect the current floor on which the user is at
an acceptable rate (e.g., 70∼80%).

• R2R experiment: We conduct the experiment in two
adjacent offices, where each room has a BLE beacon.
The iPhone is held by the user receiving the BLE signals
at different ground distance locations (e.g., 0m and 3m).

From the collected data, we calculate the floor/room detection
rate as

Detection rate =
Number of success detected cases

Total number of samples
×100%.

To evaluate the floor and room detection performance,
we integrated the results from different experimental areas.
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FIGURE 3. Detection rate performance with two recognition scenarios.

As shown in Fig. 3, the average detection rate is about 88.3%
for floor detection and more than 80% for room detection.
For the multi-room experiment, each room has a different
room detection probability owing to the different number of
obstacles in the rooms. From the results, we observe that
under an appropriate BLE beacon installation, we achieve
accurate detection results with sufficient confidence to be
used for future tracking.

3) SMALL REGION CLASSIFICATION
After recognizing the floor and room to which the user
may belong, we aim to decide sample locations into a dis-
tinguishable area based on signal classification. For a spe-
cific location, we observe the RSS inconsistency caused by
signal fluctuations and obstacle blockages, and reveal the

RSS uncertainty with respect to the physical distance.
We consider three types of environments in our tracking
system: LoS, p-NLoS, and NLoS. In an LoS environment,
the BLE signals received by smartphones from the same or
close locations exhibit relatively stable RSSs. Thus, location
errors from unmatched fingerprints do not fluctuate dras-
tically, as is the case with RSS readings. In the p-NLoS
environment, the BLE signals are blocked with low NLoS
coefficients, such as glass windows, ambient dynamics, and
human body blockages. Finally, in NLoS environments,
BLE signals are blocked with high NLoS coefficients, such
as metal doors and cinder walls. It can be recognized that
the RSS variance is high because the RSSs fluctuate dras-
tically. In addition, to differentiate the p-NLoS area from the
NLoS area, the compass patterns from the IMU readings
provide clues to distinguish between the two types of areas.
In the NLoS area, the variance in the compass reading is much
larger than that in the p-NLoS area. By performing several
practical experiments in [5], we observe that it usually varies
from 4∼10◦, as observed from real user traces.
This space regionalization method applies to both Wi-Fi

and BLE signals. Specifically, we adopt the classifier in [39]
to separate a dataset into smaller ones and analyze their sta-
tistical features. In the following section, we present specif-
ically BLE signal classification. During the offline phase,
the distribution of the RSS readings from each BLE beacon
was evaluated. Based on the fact that the probability of RSS
measurements in LoS conditions is generally expected to be
centralized, given an observation vector x ∈ RS , we calculate
the kurtosis as its statistical feature [40].

κ =

∑S
i=1(xi − µ)

4

σ 4 , (6)

where µ and σ are the sample mean and standard deviation
of the observation vector, respectively. We note that each
data trace in our database was labeled with the corresponding
scenario for online phase use. When we place a BLE beacon
in the AoI, we also associate the probability that a region falls
into the three aforementioned types.

4) TRANSITION REGION DETECTION
Previous works [24]–[26] exploited barometer changes to
detect a user transfer from one floor to another. A barom-
eter measures the atmospheric pressure value in millibars
(mbar), which can be converted to height in meter. In partic-
ular, it computes the height h from the barometric pressure,
as in [17].

h(p0, p) =
T0
L

[
1−

(
p
p0

) RL
gM
]

= 44330 ·

[
1−

(
p
p0

) 1
5.255

]
. (7)

Here, p and p0 are the measured currently location air
pressure and standard sea level pressure in mbar, respec-
tively; T0 = 1, 013.25mbar is standard sea level pressure,
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TABLE 2. Experiments data on barometer measurements.

L = 9.8◦C/km is the temperature lapse rate, R =

287.057J/(kg · K) is the universal gas constant of air,
g = 9.807m/sec2 is the Earth’s gravitational acceleration, and
M is the molar mass of dry air.

It has been shown in [41] that weather patterns reflect the
relationship between the barometric pressure and the tem-
perature. Low temperatures can create higher air pressures
than high temperatures because the air has denser molecular
density. By calculating (7), we can determine the height
of the current user’s location, including the floor level and
the transition area between the two floors (e.g., staircase).
However, by performing practical experiments, we observed
that this method depends on the weather conditions and the
given data from a reference floor. Table 3 shows the barom-
eter measurements collected on three office floors during
a week. From the experimental results, we realize that the
above pressure-altitude conversion method has the following
disadvantages. First, the estimated altitude depends on the
ambient temperature, which varies under different weather
conditions. Thus, it may not be possible to distinguish the
altitude between two adjacent floors, leading to inaccurate
location calculations. Second, to perform the localization on
a particular floor, we need to perform data normalization on
one floor and then validate the pressure change of the other
floors based on this reference floor data.

To overcome the aforementioned problems, we propose a
method to detect users entering the transition zone between
two floors according to the following signs.
• Sign 1: We frame the transition region in the AoI with
a rectangle called the bound rectangle. The rectangle
is defined by four given corner points. At a certain
time, if the calculated location falls inside this rectangle,
we predict that the user has entered the transition region
between two adjacent floors.

• Sign 2: When the user goes up/down the stairs,
the accelerometer values fluctuate significantly from the
ones in normal walking, and we know that the user
has entered the transition zone by the stairs. In this
case, the variance of acceleration becomes larger, and
the distance between two adjacent acceleration peaks
becomes shorter than that of normal walking. If the user
walks into the elevator, the radio signals are blocked and
the acceleration patterns are mostly straight and long.
Because we assume that the user does not spend much
time in the transition zone, we do not investigate the
characteristics of different functional areas in the zone.

• Sign 3: The barometer change provides a clue to dif-
ferentiate between upstairs and downstairs. Under the
practical assumption that the ambient temperature on all
floors is the same, the pressure decreases with increasing
altitude. By observing this change, we can predict the
direction of movement of the user in the region.

B. RSS-DISTANCE CONVERSION FOR RN SIGNALS
In this section, we use the RSS-based ranging technique to
map the signal strength to a relevant distance. Because radio
signals degrade during propagation, understanding radio
attenuation in an AoI helps us to estimate this distance more
accurately. Generally, with any RN type (Wi-Fi AP or BLE
beacon), the same RSS-to-distance conversion can be applied
with a different set of channel parameters (e.g., reference path
loss at reference distance, path loss exponent, etc.). In special
cases, such as iOS devices, which cannot read the RSS signal
in dBm, the proximity conversion table in [5] is applied based
on the Wi-Fi status bar. Below, we show how to develop
a relationship between the RSS signal and the estimated
distance for BLE RN.

An intuitive way to overcome the traditional fingerprint
problem is to recognize and discard outdated entities before
fingerprint matching. We denote L(d) and L(d0) as the
RSS values for BLE signals at actual distances d m and d0 m
from the smartphone, respectively. Mathematically, the rela-
tionship between the distance and the RSS can be represented
by

L(d) = L(d0)− 10n · log10

(
d
d0

)
− Xg, (8)

where n is the path loss exponent, and Xg is a normal ran-
dom variable with zero mean and standard deviation σ . The
value of σ was empirically determined through practical
measurements in the AoI. By collecting a series of reference
RSS values versus distance, we can specify the parameters of
the model (8) and use them to estimate the RSS-based range.
For simplicity, the estimated distance d is calculated for each
BLE beacon using the following formula:

d̂ = d0 · 10
L(d0)−L(d)−Xg

10n . (9)

The relationship between the estimated distance (9) and the
ground truth distance can be found in (5). Under the current
indoor conditions, we collected real-time RSS readings of a
RedBear beacon measured by an iPhone 12 at a reference
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distance d0 = 1m. In order to find the related parame-
ters for each area, we applied the minimum mean square
error (MMSE) to the training data. Mathematically, we write

MMSE(d) =
1
S
·

∑
S

(d̂ − dactual)2, (10)

where S is the number of samples, d̂ is the distance obtained
from (9), and dactual is the actual distance from the dataset.
Thus, the model in (8) has two parameters that can be tuned:
the path loss exponent n and the standard deviation of Xg.
Several experiments were conducted on the 12th floor of
Hyungnam Memorial Engineering Building at Soongsil Uni-
versity. The area is approximately 30m× 20m, with the floor
plan shown in Section VI.
The procedure to obtain the parameters n and Xg in (9) dur-

ing the offline phase is described as follows. First, we place a
BLE beacon at a specific location in the AoI. Second, a smart-
phone measures the RSS values from dactual = 0.5 to 1.5m,
where the sampling distance interval is 0.5m. As reported
in [38], the reliable range of a RedBear beacon is approxi-
mately 2.5∼4m; thus, we only collected the RSS measure-
ments within a ground truth distance of 1.5m. Within this
distance, the confidence level for classifying the BLE mea-
surements is more than 95% [5]. Collecting far BLE beacons
may not always be efficient because of significant RSS fluc-
tuations. Hence, the best way to deal with signal ambiguity
problems among nearby reference ones is to obtain the RSS
values within a short distance and to discard the others.
With respect to the BLE beacon placement as in Section VI,
the results obtained from the measured data on iPhone 12 are
given in Table 3. After this stage, the estimated values of n
and Xg are given in (9) to obtain an accurate range when
converting the RSS reading during the online phase.

TABLE 3. Obtained channel results from a collected dataset on iPhone 12.

Overall, when generating the indoor map for the app,
we analyze the relevant RN signal propagation properties
and other additional information such as IMU data to region-
alize the trace map into different distinct regions and refer
to the corresponding functionality of different areas. Coarse
regionalization classifies the floor, corridors, rooms, transi-
tion areas, and so on, while fine regionalization classifies the
selected region into smaller regions based on the probabilistic
model. Finally, it yields a map of AoI.

IV. IMU-BASED PDR
In this section, we introduce some basic components of
the PDR and the method used to obtain readings from

smartphone-based IMU sensors. From the readings, we learn
about the relevant parameters to improve the PDR compo-
nents to avoid accumulated errors from path deviations and
external impacts along the walking path.

A. ACTIVITY RECOGNITION
In this section, we describe the three main user activities.
• Idle:Acceleration and barometer readings do not change
much.

• Normal walking: Acceleration readings stably change
with small variance.

• Go up/down stairs: In cases involving stairs, the
accelerometer signature has large variations on acceler-
ation and barometer readings.

Figure 4 gives examples of the acceleration behaviors
of such movement states. We observe that the acceleration
patterns are unique in each activity. Furthermore, each floor
is divided into several small regions based on RN reading
and IMU (acceleration and barometer) patterns. Each region
corresponds to a potential motion state. For example, con-
sidering the path of a person walking from the exit, through
the corridor, and into the room, the path can be divided into
several parts such as the first part (transition area), the second
part (corridor area with normal walking), and the third part
(enter the room and connect with the RN in that room).

FIGURE 4. Accelerometer signatures corresponding to movement states.

B. PDR-RELATED COMPONENTS
To retrieve the user’s mobility, a typical smartphone-assisted
IMU collector reads the corresponding measurements from
several sensors such as barometers, accelerometers, gyro-
scopes, and magnetometers [13]–[16]. With these inputs,
the PDR calculates them to track a user along the walking
path. Mathematically, the user location pk (xk , yk ) at each
step k is calculated as

xk = x0 +
k∑

m=1

λm · sin(αm),

yk = y0 +
k∑

m=1

λm · cos(αm). (11)

Here, p0(x0, y0) is the starting location of the tracking path,
which may be unknown or given. The parameters λk and
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αk are the estimated step length and heading direction angle
obtained from the IMU, respectively. Next, we describe the
three main functions of a typical PDR-based tracking system.

1) STEP DETECTION AND STEP COUNTING
From [42], the main principle for step detection is the recog-
nition of a repetition of accelerometer readings. In particular,
depending on the user’s walking style, a step is recorded if the
corresponding acceleration measurements form a peak fol-
lowed by a valley in the time domain. Mathematically, given
an accelerometer reading at , we define a step as follows.

{at ≥ aupper , at+1t ≤ alower , 0 < 1t < 1}. (12)

In practice, we set aupper = 0.3m/sec2 and alower =
−0.3m/sec2 for normal walking, and aupper = 0.7m/sec2

and alower = −0.7m/sec2 for walking on stairs. Moreover,
we assume that a user normally takes two steps per second,
so the time spacing between two adjacent accelerometer
peaks/valleys must be greater than one-third of the walk-
ing step period. In particular, if the walking step period
is 1sec, the time spacing between two adjacent accelerometer
peaks/valleys must be greater than 1/3sec. Once a step is
recognized, the pedometer adds this step to its counters.
Using a smartphone pedometer, it is possible to achieve a step
counting accuracy above 95% [12].

2) STRIDE LENGTH ESTIMATION
The stride length λ0 is defined as the distance between two
adjacent steps. This value depends on the height, walking
style, and speed of the user. Using a given accelerome-
ter signal, calculating the step length can be obtained in
several ways, such as the regression [43], Weinberg [44],
Kim et al. [45], Scarlett [46], and artificial intelligence mod-
els [47]. In this work, we use the following regression model
to obtain a suitable step length for the PDR.

λ = π0 · f + π1 · Var(a)+ π2, (13)

Here, f is the step frequency that can be learned from
experiments [5], [31], Var(a) is the acceleration vari-
ance in each step, and π0, π1, and π2 are the regression
coefficients [5].

3) HEADING DIRECTION ESTIMATION
To obtain the direction of the steps as the user walks, we use a
smartphone gyroscope and compass in themagnetometer. For
each sensor, we have different heading direction information
according to its characteristics. The compass-based reading
is stable in a long walking path, but can be affected by metal
material along the path, while the gyroscope-based reading
avoids magnetic fields but suffers from accumulated errors.
In our previous works [5], [48], we considered a combina-
tion of two sensors in order to achieve a good prediction
of the heading direction. In this section, we denote αg as
the newest gyroscope and αc as the orientation calculated
from the accelerometer/magnetometer. Themodified heading

direction angle is updated as follows.

αm = b · (αm + αg · dt)+ (1− b) · αc, (14)

where dt is the short time interval from the last gyroscope data
until the present. The value of parameter b depends on which
data are primarily used. For example, b = 0.98 means that
we want to use the gyroscope data as the heading direction
for the PDR. Let Nnum be the number of footsteps that the
user has completed along a given route, then the smartphone
measures the traveled distance, as in [48].

dpdr =
Nnum∑
k=1

λk . (15)

Note that (15) is usually used to check the user’s instanta-
neous trace with the reference RN range for efficient devia-
tion detection. This procedure is described in section V.

C. SMOOTHING
To provide better IMU data for PDR functioning, low pass
filters are common used in mobile devices in some forms of
weight smoothing [49] or averaging window [17]. In terms
of weight smoothing, a weight smoothing parameter ν can be
applied on raw IMU data xi as follows.

(New value) = (Last value) · (1− ν)+ xi · ν. (16)

Here, the last calculated value is added to the most
recently collected one xi according to a weight factor ν.
If ν is close to 0, it means the new value does not much
change when smoothing. Otherwise, it allows xi to affect the
updated value. For example, in CoreMotion [35], the output
acceleration values after applying a soft weight smoothing
(e.g., ν = 0.005) are identified as raw acceleration readings
for motion tracking.

In this section, we applied a method called the simple mov-
ing average (SMA) [10] to smooth out data spikes. It works as
a rolling averagewithin a givenwindow size.Mathematically,
we denote ω as the size of the averaging window, and the
SMA does not work until ω values have been collected. Once
the collection has been completed, it finds the mean of the
most recent ω data values in a stream.

(New value) =
1
ω
·

k+ω−1∑
i=k

(Last value)i. (17)

The maximum frequency is usually hardware-dependent
(e.g., CoreMotion can use the supported frequency
at 100Hz). The selected window size ω should be chosen
to be large enough to smooth out the data, while being not
too large to cause delay in response time because of longer
calculation. In our paper, with a sampling frequency of 20Hz,
we selected the window size ω = 3∼5 for PDR process.
There are various filter options such as Kalman filters and

their variants [47], [50], [51] and particle filters [14], [42],
which are computational expensive. In this work, note that
we did not focus on optimizing these filters. Depending on the
applications, we can choose the appropriate filters depending
on the design choices.
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V. ONLINE TRACKING PROCEDURE
In this section, we show how our proposed tracking appworks
in a typical indoor multiple-floor environment. A diagram
showing how the application works are shown in Fig. 5.
A tracking scheme consists of an indoor map (e.g., RN list
and deployment map) and a mobile user holding a smart-
phone (e.g., iPhone 12). The tracking problem is defined as
follows. At the m-th step, the iPhone carried by a mobile user
periodically collects online RSS readings from Nm near RNs.
We denote the RSS reading vector as rm = [r1m, · · · , r

Nm
m ]T ,

where each component of this vector corresponds to the RSS
fromNm RNs. Note that the onlinemeasurement vector is first
pre-filtered to determine the N f

m RNs that have the strongest
RSS readings. The indoor tracking app uses the vector rm
and the corresponding IMU data to detect the current feasible
area (floor, room, transition area) and chooses a suitable
channel propagation according to this area. It also updates
the user location via the PDR, such as the previous user’s
estimated location pm−1(xm−1, ym−1), the step length λm,
and the heading direction αm to calculate the current user’s
location pm(xm, ym).

FIGURE 5. Flowchart of our tracking app.

1) INITIALIZATION
First, we assume that the RN database has been saved on
the iPhone; thus, our tracking app can easily access related
information of any RN inside the AoI. This information
includes their locations, and the signal profiles are built dur-
ing the offline phase. When the user starts the app, he/she can
navigate his/her location by exploring the characteristics of
the RN space. In our tracking app, if the RNs are of the same
type, we seek the strongest RN as a starting location for the
tracking path, i.e., p0(x0, y0). Otherwise, if there are multiple
RNs in the area with the same RSS value, we use a weighted
centroid algorithm to determine p0(x0, y0) as

p0(x0, y0) =
Nb∑
i=1

wi · ai, (18)

where Nb is the number of available RNs {ai, i = 1, · · · ,Nb}
that appear on the iPhone’s scanning list. The weight

factorswi are assigned according to the strongness level of the
RN signals, which are obtained from our previous work [5].
If the RNs are different from each other, we assign priority
to the RN that has the shortest calculated distance from its
signal to the iPhone, according to Section III.

2) LOCATION ESTIMATION
As the user is moving, the tracking app exploits the
PDR method based on smartphone-IMU measurements to
perform the localization. In particular, the current location of
the smartphone pm(xm, ym) is calculated as

pm(xm, ym) = pm−1(xm−1, ym−1)+1pm

=

[
xm−1
ym−1

]
+ λm

[
sin (αm)
cos (αm)

]
. (19)

Here, λm is the estimated stride length. The value αm is the
estimated heading direction at point pm(xm, ym). Both λ and
αm were obtained from Section III.

3) LOCATION CORRECTION
At every step, the smartphone uses the tracking app to keep
track of its location. For each tracking update, we check
whether the location estimate properly follows the desired
path. Thus, the aim of the location calibration module is
to determine if the user is still within the reliable range
of the strongest RN in the scan list. The module generates
instructions according to the following two rules:
(i) Without loss of generality, we denote the strongest RN

location in the scan list as a1 and its estimated distance
from (9) as d̂1. If d̂1 ≤ dlim (dlim = 5m for Wi-Fi AP
and 1.5m for BLE beacon), the tracking app sets a1 as
the corrected location of the current user.

(ii) Otherwise, we consider the dissimilarities among the
estimated ranges (9) of N f

m nearby RNs and the
PDR walking distance (15) as

ϕm =

Nb∑
i=1

wi · |d̂mi − d
m
pdr |. (20)

To provide correct walking hints at the correct loca-
tions, when the dissimilarity veers off the desired path
of the thickness ε (i.e., ϕm ≥ ε), the module attempts
to match Pm(xm, ym) to the intersection of the circle
C(a1, d̂1) made by a1 with radius d̂1 and the line seg-
ment made by Pm−1(xm−1, ym−1) and Pm(xm, ym) as

Pm(xm, ym) = C(a1, d̂1) ∩
−−−−−→
Pm−1Pm. (21)

4) BOUNDARY CHECK
Any sub-region in the AoI can be bounded by a rectangle
represented by the four corners. As illustrated in Fig. 6 (a),
an office room is marked on the map by four red squares.
For the corridor case, it becomes simpler by saving the
corridor width, the starting point, and the ending point of
the corridor. Therefore, only a finite number of markers are
stored in the database, making data storage simpler and easier.
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FIGURE 6. Boundary check and correction.

To present smooth visuals for the user experience, we rely
on the following two principles so that the calculated jump
distance between two estimated steps is not too large com-
pared to the user step length. (i) The currently estimated
step (e.g., pm) is inside the closed rectangle, and the next
estimated step pm+1 indicates that it is out of the rectangle.
Then, the correction point is the intersection of the adjacent
rectangle edge and the line connecting the two points pm
and pm, as shown in Fig. 6 (b) (first image). (ii) In cases where
the distance between the current estimated location and the
next one is too large, for example, more than 2m, we under-
stand that there is a large fluctuation in the input signals, and
the updated point remains at the current location until newRN
signals are received, as shown in Fig. 6 (b) (second image).

In summary, we adopted a fusion scheme between the
probabilistic approach for RN signals and the smartphone-
based PDR system to perform self-localization and
tracking. To investigate the potential causes of limited
localization accuracy, we performed various practical exper-
iments and revisited the characteristics of the RN localiza-
tion scheme. First, floor level detection can be improved
by employing an RSS profile-based method and mixed
data of barometer/acceleration from the smartphone-IMU.
Taking advantage of the characteristics of specific regions,
we used different signal readings to achieve a precise level
for each area detection. Second, RN signals are reliable
over short communication ranges, and distant RN locations
may lead to large location errors. Biased RSS measurements
caused by p-NLoS/NLoS effects can be controlled using
a prior probability model during the training phase. Third,
the smartphone-IMU extracted user mobility information to
reduce tedious site survey efforts, while improving tracking
accuracy. In addition, our localization app is more friendly
because it does not expect the user to start at a specific
location for tracking.

VI. EXPERIMENT RESULTS
We conducted several experiments in a typical office build-
ing to demonstrate the effectiveness of our tracking scheme.
We built a tracking app on an iPhone 12 with iOS 14.7 and
128 GB storage. Throughout this section, we make the fol-
lowing assumptions.
(i) First, in order to scan nearby Wi-Fi AP/BLE beacons,

the iPhone needs to turn on Wi-Fi/Bluetooth function
in the setting manner. All Wi-Fi APs and BLE beacons
used in the test area were aggregated into an RN list.
The ratio of the number of nodes between Wi-Fi and
BLE depends on the choice of design. For the readers’
convenience, wemark the letter ‘‘B’’ for BLE and ‘‘W’’
for Wi-Fi for simplicity in the RN name.

(ii) Second, assuming that we take advantage of the exist-
ing Wi-Fi infrastructure in the building, BLE beacons
just need to be placed in some locations to support room
detection and to corroborate the tracking algorithm.
In this case, the number of BLE beacons should be
sufficient to cover the AoI and not conflict with the cur-
rentWi-Fi communication range. In terms of BLE-only
deployment, the AoI is covered by a reasonable BLE
beacon density; that is, each BLE beacon only covers a
separate area without causing interference and ensuring
appropriate coverage for the area between two adjacent
beacons. We follow the BLE deployment principles
in [5] for planning BLE beacons over the AoI.

(iii) Third, we also label the RN list using two categories:
‘‘office room’’ and ‘‘office corridor’’ by using theMAC
address for Wi-Fi APs and the UUID, major value, and
minor value for BLE beacon. For example, the UUID
parameter gives us a unique number that allows the
identification of the beacon manufacturer or owner,
while the major and minor values can be assigned as a
certain floor number and a room number, respectively.
During the online phase, only beacons with the same
category can join the localization algorithm described
in Section V.

(iv) The tester holds a mobile iPhone in hand and walks
through the AoI. The screen of the iPhone is kept
facing up when the user is using it. Depending on the
user’s activities, the IMU data are recorded with either
short intervals (e.g., go up/downstairs) or long intervals
(e.g., idle or normal walking).

The series of our experiments is described as follows.
We conducted our experiments on three floors (11th, 12th,
and 13th floors) of Hyungnam Memorial Engineering Build-
ing at Soongsil University. The size of each floor in this
building is approximately 20m× 40m. The distance between
two consecutive floors is approximately 3.5m. The staircase
connecting the two floors consists of two segments, each
of which has 11 stairs. On each floor, there are two types
of elevators at both ends of the corridor: the single elevator
can reach all floors and the double elevators only goes to
either odd or even floors. Currently, there are two Alcatel
Lucent IAP-305 2×/3× 11ac Wi-Fi APs deployed over each
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floor. A detailed description of the AP’s specifications can be
found in [52]. For a hybrid tracking system, we used RedBear
beacons [37] to support tracking. All of them were placed
in either office or office corridor. The beacons were attached
to the ceiling of the floor to avoid disturbances when people
passed. The iPhone 12 carried by a user collects both IMU
data and RSS readings from detectable Wi-Fi AP/RedBear
beacons simultaneously, and it then inputs them to the track-
ing app. The estimated steps along the tracking path were also
recorded on the iPhone storage for further analysis. Because
the three floors have the same structure, the number of BLE
beacons placed on each floor is the same. Regarding the
localizationmetric, we defined the accuracy rate (AR) to eval-
uate the localization performance. Given a localization error
bound ε, it can be obtained by the percentage of the number
of estimated points that fall inside the path of thickness ε.

AR(ε) =
#{Pm(xm, ym) : Pm ⊂ P(ε)}

Nstep
× 100%. (22)

Here, Nstep is the actual number of steps in which the user
has finished the desired path P(ε) with a thickness ε.
Before going through the experimental results, we made a

few notes about the visual representation of our app. To plot a
point in 3D space and update its next point, we must represent
the ground truth location on the floor where the user is cur-
rently located, and represent the height of the floor. Usually,
we only provide indoor floor plans in 2D space, which show
specific details of the relationships between rooms and other
areas on each floor. Here, it was not easy for us to express
smooth 3D tracking results, while satisfying the above con-
ditions. In the following step, we present the calculated user’s
location on the floor under the 2Dmap.When the user detects
that it enters the transition area, the app plots the location in
terms of the vertical direction.

To demonstrate the performance of our tracking app, sev-
eral experiments were conducted in the building, as shown
in Fig. 7. The user carrying the iPhone 12 collects the RSS and
IMUmeasurements at every step, andwalks at a normal speed
along the path. This figure shows the demo tracking results
of the proposed work in two cases: (a) floor detection with
RN RSS-based profile and (b) floor detection with barometer
readings in the floor transition area. The grid spacing of
the map display was 1m. In this figure, we plot the desired
path in green. The thickness of this path indicates a given
localization error bound (e.g., ε = 2m). The RN locations are
indicated by a bright yellow circle. The starting and ending
points of the actual path are plotted as star and square shapes,
respectively. In Track 1, we observe that when the user moves
on the corridor of a certain floor, the tracking results are quite
good. Then, when the user reaches the transition staircase
area, it creates a large jump in the estimation location. This
is clearly shown in the transition from the 12th floor to
the 13th floor because this area is not covered by any RN
signal, the user’s location is updated only when the phone
connects to the next RN. However, in Track 2, exploiting
barometer readings helps the app to track vertically within

FIGURE 7. Demonstration of our proposed tracking scheme in a
three-floor scenario.

the transition area. The visual representation of the estimated
steps is a refined state along with the user’s movements. From
the results, we observe that the user would have a better
3D experience if we combine the two schemes on the AoI.
In particular, we apply a floor detection scheme with an RN
RSS-based profile within corridor/room regions and floor
detection with barometer readings in the floor transition area.

In Fig. 8, we consider a practical route when a user walks
in a sequence including several complex areas in the building.
• 11th floor (F11) activities: Enter a door on the F11 �
move along corridor F11 � enter room 1102 � exit
room 1102 and continue moving on corridor F11 until
the user meets the stairs to go upstairs to the next floor.
On this floor, we evaluate the tracking results when the
user walks from the office corridor to the office room,
and vice versa.

• 12th floor (F12) activities: Enter a corridor � enter
room 1202 and exit the room � enter room 1203 and
out� back on F12 corridor and take the single elevator
to go up to the next floor. On this floor, we observe the
performance when the user enters two adjacent rooms,
and we check whether the current room detection is
correct.
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FIGURE 8. More demonstration of the proposed tracking scheme in
another three-floor scenario.

• 13th floor (F13) activities: Exit the elevator � walk
along the F13 corridor to the end.

Note that the user’s walking turns are different among
office rooms because there are different numbers of obstacles
(e.g., tables and bookshelves) and the distribution of furniture
is heterogeneous among rooms. All regions on the map were
recognized. We noticed that users rarely get close to the walls
and corners of an office room. With the strong signals of the
RN placed in the middle of the room, the tracking results
obtained are more accurate. With respect to the corridor,
because the corridor in the AoI is quite straight, the local-
ization performance has less error than in other areas. For the
joint area of the corridor and the room, when the current user
is in the room and receives a strong RN signal in the corridor,
the app automatically updates the user’s locations based on
the correction function in Section III. For the transition area
between two floors, we observe that the calculations of floor
height and the direction based on IMU readings are sufficient
to identify this area correctly, but the tracking results are not
as good as in other regions. This is because the use of IMU
data for long travel distances can lead to a common problem
of veering off the walking path. The situation is terminated
only when the smartphone finds a new RN, so it updates itself
according to the RN information.

Figure 9 shows a comparison of the average AR ver-
sus error bound with different tracking situations: mixed
Wi-Fi/BLE scheme with RSS profile floor detection [5]
called as ‘‘conventional,’’ proposed scheme with BLE-only,
proposed work with mixed staircase-elevator, and proposed
work with staircase-only. For each route, a user walks several
times on the same route during a day and evaluates the
average AR values of path estimation. During the user’s walk,
there are people who pass by as well as other obstacles such
as bookshelves and metal doors. Although we can utilize
smartphone-IMU and a single Wi-Fi AP when the Wi-Fi AP
density is low, it is still applicable for tracking with BLE
only. Note that whenwe replace existingWi-Fi APswith BLE
beacons, the current BLE beacon density should be the same

FIGURE 9. Accuracy rate versus error bound.

as that of Wi-Fi, or slightly denser, so it has a low or com-
parable deployment cost. In this figure, in the office corridor,
the number of deployed BLE beacons is the same as the old
Wi-Fi AP density. In this case, the average spacing between
two BLE beacons is about 10m in the corridor and 6∼7m
in the room. First, we observe that the hybrid scheme in [5]
provides good estimated results only when the user moves on
a particular floor. When the user exits the floor and enters
the transition zone, its location is no longer updated until
he/she moves to the next floor and uses the RNs for location
correction. It can be seen that this problem has been com-
pletely overcome by our proposed solution. For visualization,
as the user ascends/descends the stairs, the corresponding
IMU readings provide an additional source to localize the user
at every step in this region. Second, the proposed mixed Wi-
Fi/BLE achieves slightly better accuracy than the one with
BLE only. Tracking results in a simple path (staircase-only)
are better than those in the complex path (including the mixed
staircase-elevator). Overall, the results show the benefits of
the assisted smartphone-IMU sensors and demonstrate the
practical efficacy of the proposed scheme.

Throughout the experiment results, we observe that our
conventional work [5] achieves reasonable accuracy and a
fair complexity level when tracking the user on a particular
floor, the user does not spend a lot of time in the transition
area, and the user does not perform complicated movements.
Therefore, this tracking scheme can be effectively applied
for these situations. When we are continuously tracking the
user over several floors in a row and using a complex set of
sensors and additional information from the RNs in the AoI,
the calculation of the user’s location must be consecutive to
create a smooth representation of calculated location points
on the app as well as representing the movements among
different regions. As explained Section I, instead of focus-
ing much on the accuracy improvement gained by tracking
algorithms, we aremore interested in having a comprehensive
understanding of adaptation effects. By conducting several
experiments in a certain area, we evaluate the accuracy and
the effectiveness of the adaption methods.

VII. CONCLUSION AND DISCUSSION
In this paper, we present a simple indoor multiple-floor track-
ing scheme based on hybrid Wi-Fi/BLE for smartphones.
We also built an iOS app to capture, visualize, and display
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user mobility, which is measured by smartphones using the
hybrid IMU-RSS signal information in a coordinated man-
ner. In particular, by performing several practical experi-
ments, we aim to obtain a comprehensive understanding of
indoor radio maps, while validating the accuracy and effec-
tiveness of the smoothing and adaptation effects. The final
tracking system has a lightweight database, is capable of
identify user location by region, and selects an appropri-
ate signal-to-location model. Experimental results show that
the proposed tracking system achieves a good performance,
while enabling adaptationwith/without currently fixed infras-
tructure. Thus, it is beyond the achievements of previous
approaches.

By performing this study, we identify several practical
issues that need to be carefully addressed when integrating
our tracking scheme with other hybrid systems. First, local-
ization accuracy does not always serve as the sole criterion
to prove that a tracking system is effective. In addition,
an effective system should be stable over a long time and
energy aware without much human effort by using energy
more efficiently or collecting a minimal number of mea-
surements for localization purposes. Although the proposed
scheme works well inside a typical medium-size building,
many experiments need to be carried out in large spaces
(e.g., malls, subway stations, and airports). Second, even
current smartphones can effectively track user mobility (e.g.,
detect whether the smartphone is moving or if it is context-
aware of the user path), it can still lead to bad estimated results
over long travel distances owing to uneven inconsistency
among different dimensions of hybrid data (e.g., Wi-Fi/BLE
observation and IMU data). To overcome this problem,
it should obtain a sufficient number of reference traces and
control RSS quality along a path when the user is walking.
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