IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 4, 2021, accepted October 9, 2021, date of publication October 13, 2021, date of current version October 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119633

Reliability Analysis of ASIC Designs With
Xilinx SRAM-Based FPGAs

LUIS ALBERTO ARANDA"', OSCAR RUANO !, FRANCISCO GARCIA-HERRERO “'1,
AND JUAN ANTONIO MAESTRO 2, (Senior Member, IEEE)

I ARIES Research Center, Universidad Antonio de Nebrija, 28040 Madrid, Spain
2Department of Computer Architecture and Automatics, Computer Science Faculty, Complutense University of Madrid, 28040 Madrid, Spain

Corresponding author: Luis Alberto Aranda (laranda@nebrija.es)

ABSTRACT There are many platforms and tools based on field-programmable gate array (FPGA) devices
oriented to facilitate the reliability estimation of digital designs, but they are usually focused only on config-
uration memory errors since the configuration memory represents the majority of the memory elements in
an FPGA. However, an FPGA-based platform could also be exploited to support the emulation of transient
and permanent errors for designs intended to work in application-specific integrated circuits (ASICs) or
radiation-hardened devices such as antifuse FPGAs. In this context, the obtention of a particular set of
bits to flip is required to be able to emulate these error models. The main difficulty of this approach lies
in determining the mentioned set of bits, which is due to the unavailability of a public description of the
bitstream and the lack of FPGA architecture details. To help with this issue, we present a methodology
to determine specific configuration memory bits from SRAM-based FPGAs that, when flipped, emulate
permanent or transient upsets in any flip-flop element of the design under test. This methodology is proved
in recent FPGA technologies and provides great control and precision in reliability experiments for harsh

environments.

INDEX TERMS ASIC, configuration memory, emulation, fault injection, FPGA, reliability.

I. INTRODUCTION
Hardware-based fault emulation is a widely used approach
to test the reliability of designs intended to work in harsh
environments such as space, nuclear, or, more recently, quan-
tum processors [1]-[3]. Compared to accelerated beam tests
carried out in radiation facilities [4] or physical reliability
tests perfomed in rooms at cryogenic temperatures, fault
emulation approaches provide great versatility to test differ-
ent designs in a short amount of time while simultaneously
keeping costs low. Besides that, fault emulation can reduce
timing requirements and provides more realistic results than
simulation-based set-ups, which can be used to perform an
accurate analysis of the design’s behavior [5]. These designs
may be deployed in field-programmable gate array (FPGA)
or application-specific integrated circuits (ASICs), hence the
error model differs and the platform’s hardware has to be
carefully selected.

Over the years, FPGAs have been traditionally used as
fault emulation platforms. In particular, static random access

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu Wang

140676

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

memory (SRAM)-based FPGAs tend to be the preferred tech-
nology due to their low cost, accessibility, and reconfigurable
capabilities [6]. SRAM-based FPGAs can be conceptually
split into two layers. An application layer containing the
bits that are dynamically managed by the user’s design (e.g.
the bits stored in flip-flop elements), and a configuration
layer including the bits related to the configuration of the
logic, memory, and routing resources (e.g. the structure of the
design). Therefore, the FPGA error model, which is mainly
focused on persistent errors, can be emulated by flipping the
design-related configuration bits. Similarly, the ASIC error
model, which comprehends both transient and permanent
errors, can be emulated by inverting the bits in the application
layer. The latter are particularly difficult to locate and modify
since, as mentioned before, these bits are dynamic. For this
reason, we propose a different approach to emulate the ASIC
error model in an SRAM-based FPGA device through the
testing of a selected group of configuration memory bits.
These bits are static, but their modification will lead to the
same behavior as modifying the bits in the application layer.

ASIC devices or radiation-hardened FPGAs such as anti-
fuse FPGAs are sensitive to permanent errors (i.e. stuck-at

VOLUME 9, 2021

https://orcid.org/0000-0003-4458-9761
https://orcid.org/0000-0001-8275-1745
https://orcid.org/0000-0001-6719-9681
https://orcid.org/0000-0001-7133-9026
https://orcid.org/0000-0002-8344-1586

L. A. Aranda et al.: Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs

IEEE Access

faults) and transient events that may eventually be registered
by a flip-flop element creating a single-event upset (SEU)
or may be masked by the subsequent logic elements of the
design. On the other hand, a configuration memory bit flip
typically produces persistent errors that modifies the structure
or the routing of the design under test (DUT). Therefore,
transient and permanent errors in flip-flop elements associ-
ated to ASIC or rad-hard FPGA designs could be emulated
in an SRAM-based FPGA by flipping the configuration bits
related to the flip-flop inputs. The two main difficulties of this
approach are:

1) Configuration memory errors lead to persistent errors
that can only be removed by reprogramming the FPGA
or by flipping the bit again to its initial state. Therefore,
permanent errors could be easily emulated, but tran-
sient errors should be carefully introduced and removed
during the fault injection campaign to emulate the
desired behavior.

2) Identifying the configuration bits to emulate both per-
manent and transient errors is a time-consuming and
non-trivial task.

The first point is a matter of adjusting the duration of the
bit flip by controlling the design clock signal and it is related
to the fault injection campaign itself. In contrast, the second
point is related to the lack of a configuration bit identifica-
tion mechanism available. In this paper, a methodology to
facilitate the ASIC or rad-hard FPGA error emulation in an
SRAM-based FPGA platform is presented. It is based on the
previously mentioned approach of emulating both transient
and permanent errors in flip-flop elements through config-
uration memory bit flips. To test our idea, the reliability of
several designs is assessed through fault injection. In these
experiments, a set of configuration bits for every design
flip-flop is translated into injection addresses for the Xilinx
Soft Error Mitigation (SEM) IP Core [7]. This fault injector
is then used to perform the reliability campaign in a Xilinx
FPGA device.

The rest of the paper is organized as follows. Section II
presents other fault injection approaches and platforms
and explains the motivation behind the methodology.
The methodology details are described in Section III.
In Section IV, some example designs are tested following
the methodology to evaluate its benefits. Finally, Section V
summarizes the contributions of this work.

Il. EXISTING FAULT EMULATION PLATFORMS

Nowadays, there are different approaches to increase the fault
tolerance of a system intended to work in harsh environments.
Hardening-by-process strategies are based on modifying the
manufacturing process to increase the reliability of the device.
Conversely, there are techniques based on adding some sort
of redundancy to the original design that can be applied to
commercial off-the-shelf (COTS) devices. Some well-known
examples are triple modular redundancy (TMR), error cor-
rection codes (ECC), or techniques based on the system
knowledge [8], [9].

VOLUME 9, 2021

Once the design under test has been protected through one
or several of the above techniques, it is required to test the
reliability level achieved by the protection using fault injec-
tion platforms to generate bit flips into the design’s memory
elements emulating different environments. A schematic dia-
gram of these types of platforms is presented in Fig. 1 for
illustrative purposes.

Error
campaign

Fault
injector

A

Controller

Output
log file

Monitor

h 4

Design

under test
(DUT)

FIGURE 1. Schematic diagram of fault injection environment based on
hardware emulation.

The controller in Fig. 1 manages the fault injection cam-
paign, while the fault injector carries out the bit flips at the
specific locations of the target DUT told by the controller.
During the campaign, the effects of each introduced bit flip
are typically logged in a file or stored for later processing.

In recent years, both simulation and emulation-based fault
injection platforms have been documented in the literature.
Simulation environments or tools such as XCEPTION [10],
SST [11], MEFISTO [12], or VERIFY [13] are some exam-
ples. They all try to reproduce the behavior of a hard-
ware circuit under specific undesirable malfunctions from
its high-level description by using a commercial or ad-hoc
simulator. However, the physical behavior of a complex cir-
cuit is usually difficult to mimic and requires to constrain
the platform to analyze specific cases of interest. In con-
trast, emulation-based platforms may be used to test different
scenarios just by selecting the resources and applying the
conditions of the harsh environment under test. But, in this
case, the difficulty lies in identifying those resources and
modifying them in a way that imitate the physical effect.
Some examples of emulation-based fault injection systems
for SRAM-based FPGAs are the FT-UNSHADES [14], FLIP-
PER [15], SPFFI [16], XRTC [17], NESSY [18], or FIJI [19].
One major limitation of these hardware emulation platforms
is that the ASIC error model is not usually supported. In fact,
some of these platforms are focused on a specific technology
or device and quickly become obsolete due to the lack of
portability. For a detailed comparison between the different
tools we refer to [20].

Apart from the above platforms, Xilinx and Intel (Altera)
vendors have opted for providing proprietary methods to
perform fault injection in their corresponding devices. Both
alternatives are integrated into their development environ-
ments and are focused on facilitating user interaction.

140677

IEEE Access

L. A. Aranda et al.: Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs

« Intel provides the Fault Injection Debugger as part of
its Quartus II hardware design software. It is capable
of performing fault injection in the FPGA configuration
memory by toggling one bit per injection thus emulating
an SEU in runtime [21].

« Xilinx’s Vivado Design Suite includes the SEM IP Core
that is able to perform fault injection in the FPGA’s
configuration memory as the Intel tool. The user can
select the specific configuration memory bit to flip by
introducing its physical or linear address [7].

The previous tools allow the user to inject configuration
memory errors to test its designs. However, adapting the
fault injection campaign to test the desired error model and
DUT regions is complex and time-consuming since the FPGA
architecture, the bitstream, and the configuration memory
details are not provided by the vendor.

In order to help reliability designers with this issue,
we presented a tool named ACME (automatic configuration
memory error-injection) in [22]. ACME determines the con-
figuration bits associated with the DUT by using the infor-
mation of the static bits collected in the Xilinx essential bit
data (EBD) files. In this manner, the FPGA error model can
be exercised with the Xilinx SEM IP fault injector.

In this present work, we introduce a methodology to enable
the injection of transient and permanent errors in flip-flop
resources to emulate the ASIC error model. The main idea
behind this work lies in reusing the experimental set-up
already created for ACME and extending it to support the
ASIC error model. This new approach requires logic location
files (11 files) as input for the translation to SEM IP injection
addresses because EBD files do not contain explicit informa-
tion about flip-flop resources.

For clarification purposes, Fig. 2 is presented as an
overview of a dual fault injection emulation procedure in
which both FPGA and ASIC error models can be assessed
depending on the user’s needs. For the FPGA error model,
ACME can be used as translation tool. For the ASIC error
model, the methodology presented below can be followed to
deal with the difficulty of locating the dynamic bits in the
FPGA application layer. As can be observed in this figure,
the SEM IP is kept as the fault injector since the ASIC error

Al file
AsIC =N
FPGA —
11 Injection
] NN f addresses
[our > rror Translator » SEM IP
H 1 model)
T EBD file
1 — A
Y = T
FPGA -

Configuration memory injection

FIGURE 2. Integration of the ASIC emulation in an FPGA fault injection
procedure.

140678

model is mimicked by flipping the configuration memory bits
related to the flip-flop elements of the DUT.

ill. METHODOLOGY DESCRIPTION

To create a state-of-the-art portable set-up able to emulate
transient and permanent errors in Xilinx FPGAs, SEM IP
has been applied. The SEM IP [7] is a standalone module
designed by Xilinx to mitigate the effects of soft errors in the
FPGA configuration memory. It can also be controlled via
serial port to inject errors into a particular configuration mem-
ory bit by providing its physical or linear address. The SEM
IP is well-documented and has been upgraded to support
newer UltraScale and UltraScale+ devices, ensuring the con-
tinuity of the emulation platform and the portability between
FPGA families. However, it presents an important limitation
related to its use as a fault injector. The main question that
arises when the user develops an experimental set-up based
on the SEM IP is: how should I know the proper bits to test?
This question cannot be answered by Xilinx since it implies
uncovering proprietary information, and a “‘blind”” statistical
injection campaign is usually recommended. Therefore, it is
fundamental to have a methodology to obtain the desired
bits and gain control over the injection campaign to deal
with this gap. As mentioned in the previous section, we have
already developed ACME as a tool to enable the emulation of
persistent errors in the configuration memory with the SEM
IP following the FPGA error model. In this present work,
we propose an approach to emulate the ASIC error model
by modifying a specific subset of configuration bits of the
design flip flops. The main idea is to locate the configuration
bits associated to the set/reset input of each flip-flop to emu-
late both permanent and transient errors of the ASIC error
model:

« Permanent errors could be emulated by triggering and
holding the set/reset signal indefinitely. While the
set/reset signal is triggered, the value stored and out-
putted by the affected flip-flop will remain constant
(and will be equal to its initialization value). Therefore,
the initialization value has to be manipulated as well to
emulate both logic ‘0’ and logic ‘1’ scenarios.

o Transient errors of any duration could be emulated
by triggering and releasing the set/reset signal at any
moment. While the set/reset signal is triggered, the con-
tent of the affected flip-flop will not be updated by new
input values. Once the set/reset signal is released by
correcting the injected error, the flip-flop returns to its
normal behavior.

In this manner, the difficulty of locating the dynamic
bits in the application layer related to the flip-flop elements
is reduced and the injection of permanent and transient
errors in these memory elements is enabled to continue fill-
ing the mentioned gap. With this approach, the reliability
of the sequential elements of any design can be evaluated
as well as its combinational part by triggering a flip-flop
upset and observing its propagation along the combinational
elements.

VOLUME 9, 2021

L. A. Aranda et al.: Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs

IEEE Access

A. CONFIGURABLE LOGIC BLOCK ARCHITECTURE

In Xilinx FPGAs, the configurable logic block (CLB) is the
core resource for implementing general-purpose combinato-
rial and sequential circuits [23]. It contains look-up tables
(LUTs), flip-flops, and other logic elements.

In the UltraScale family, for example, a CLB consists
of 16 flip-flops labeled AQ, AQ2, BQ, BQ2, ...to HQ,
HQ2 from bottom to top (see Fig. 3). In every CLB, there
are two global set/reset (GSR) inputs, each of them dedicated
to 8 of the 16 flip-flops, and one initialization (INIT) attribute
per flip-flop (i.e. 16 INIT values in total).

rCLB INIT 1

| 1 |

I INT_ HQ2 |

| HQ INIT |

| L |

I INIT GQ2 I

| GQ INIT |
1 —

| |

I INIT FQ2 I
1 =

I FQ INIT I

l L |

I INIT |EQ2 I
—

asr2 L | EQ I
| |
INIT

| — |

| INT DQ2 |

| DQ INIT I

| L — |

I INIT cQ2 |

| caq INIT |

| 1 1 |
INIT BQ2 I

| — 1

| INIT |

BQ —_—

| L |

I INIT [AQ2 |
— |

| |

GSR1 AQ
| . |
U S — . |

FIGURE 3. GSR signals and INIT attributes in a CLB of the UltraScale
family. The remaining connections of the flip-flops have been omitted for
clarity.

The INIT value (a logic ‘0’ or a logic ‘1) can be different
for each flip-flop and it is set after the configuration of the
device. The INIT values are stored in a different storage ele-
ment associated with each flip-flop. The initialization values
are only released and stored in the flip-flop when the GSR
signal is triggered. This means that both a logic ‘0’ or ‘I’
could be generated by altering these values. For example,
if the default INIT value of a flip-flop is ‘0’ then, a stuck-
at-0 or a transient ‘0’ could be generated at any moment

VOLUME 9, 2021

by triggering the GSR signal. Similarly, a stuck-at-1 or a
transient ‘1’ could be generated in the same flip-flop by first
performing a bit flip in the INIT value and then triggering the
GSR signal. This procedure has the advantage of testing the
two possible logic values in a flip-flop without even knowing
the INIT value. In addition, the procedure can be directly
applied to other Xilinx families such as the 7-series since their
CLBs also contain the GSR and INIT signals and work in the
same way.

The status of the GSR signal and the INIT values are
stored in the configuration memory cells of the FPGA and,
therefore, they could be modified by the Xilinx SEM IP to
generate events in the flip-flops. The main difficulty is, again,
to determine the precise injection addresses of the GSR and
INIT values to perform the mentioned bit flips. To deal with
this difficulty, we present a methodology and an example of
use in the next subsection.

B. METHODOLOGY STEPS AND EXAMPLE OF USE

The purpose of this section is to present an experimental
methodology to determine the injection addresses that have
to be sent to the Xilinx SEM IP to alter the GSR and the
INIT values of the flip-flops. Using these addresses, the ASIC
error model can be emulated in an FPGA by releasing the
initialization value of the flip-flop or its opposite.

In order to determine the addresses of the GSR and the
INIT values, a CLB of the FPGA device has to be character-
ized. This means that sixteen INIT and two GSR addresses
have to be found experimentally. The good thing is that,
once a particular CLB is characterized, certain fields in the
injection addresses are constant over the entire FPGA device,
and the rest of the fields can be easily obtained from the logic
location file of the DUT as will be described later.

The first step in the methodology is to create the design
under test. A simple design is recommended during the first
time characterizing a CLB of the target FPGA. Once the
FPGA is characterized, any other DUT can be chosen. In our
case, we have chosen an 8-bit register as a design to charac-
terize the FPGA since its output values are directly related to
its inputs and any change can be easily monitored using LED
indicators. The second step is to obtain the logic location file
of the DUT, file that has to be processed to determine specific
fields of the SEM IP injection address. Most of the fields
such as the row, column, and word addresses can be directly
obtained from this file. However, during the first time follow-
ing the methodology, the minor and the bit fields have to be
experimentally determined. At all other times, the values can
be loaded and reused. Finally, after determining the values
for each field, they can be merged and collected in a text file.
This text file can then be used by the SEM IP to perform the
desired fault injection campaign.

For clarification purposes, the steps of the proposed
methodology to emulate the ASIC error model in an
SRAM-based FPGA are detailed in Fig. 4. It can be observed
in this flowchart that the fifth step changes depending on
whether or not it is the first time following the methodology.

140679

IEEE Access

L. A. Aranda et al.: Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs

1) Create the
DUT

v

2) Obtain .lI file

v

3) Extract DUT
file lines

!

4) Determine
row, column,
and word

Y N

5a) Calculate
minor and bit
values
I I
v

6) Merge fields

v

7) Write injection
addresses in
text file

5b) Load minor
and bit values

FIGURE 4. Steps of the proposed experimental methodology to generate
the SEM IP injection addresses of the GSR signal and the INIT values from
a logic location file.

This is representing the experimental characterization that
has to be done once for the first time. Then, with the FPGA
characterized, the methodology can be automated by reusing
the previous values.

The steps of the methodology are explained below in detail
following the mentioned 8-bit register example.

1) CREATE THE DUT

As mentioned before, a CLB of the target FPGA device has to
be first characterized. To do so, an 8-bit register has been cho-
sen as a design under test. This example design will be used
to find the GSR and INIT addresses of the CLBs of a Kintex-
UltraScale KCU105 FPGA. After the characterization of this
device is done, the test register can then be replaced by the
desired DUT and most of the steps explained below can be
automated.

To facilitate the characterization of the CLB, the reset and
the D inputs of the register flip-flops have been mapped to
slide switches. Similarly, each Q output has been connected
to an LED indicator for visual inspection. This will help us to
monitor the status of each individual flip-flop more easily.

2) OBTAIN .LL FILE
Once the DUT is created, the next step is to generate its
logic location file. A logic location file (.1l file) is an ASCII

140680

file provided by Xilinx containing information about all the
nodes in the design from where a readback operation can
be performed. This means that the logic location file can be
taken as a reference to obtain information about the flip-flop
elements. However, the information in this file is not enough
to determine the complete injection address of the GSR signal
and the INIT values associated with each flip-flop. Therefore,
and as mentioned before, some experimental tests have to
be performed to characterize the CLB. The logic location
file of any DUT can be generated together with its bitstream
by activating the logic_location_file option in the bitstream
settings of Xilinx’s Vivado project.

3) EXTRACT DUT FILE LINES

Continuing with the 8-bit register example, the .1l file lines
obtained for this design are presented in Fig. 5. These lines
can be easily extracted by searching the name of the design
under test (i.e. DUT in this case).

Bit 48879104 0x00042584 1856 SLRO @ Block=SLICE_X37Y149 Latch=AQ Net=DUT/Q[®]
Bit 48879108 0x00042584 1860 SLRO @ Block=SLICE_X37Y149 Latch=BQ Net=DUT/Q[2]
Bit 48879112 0x@0042584 1864 SLRO @ Block=SLICE_X37Y149 Latch=CQ Net=DUT/Q[4]
Bit 48879116 0x80042584 1868 SLRO @ Block=SLICE_X37Y149 Latch=DQ Net=DUT/Q[6]
Bit 48879120 0x00042584 1872 SLRO @ Block=SLICE_X37Y149 Latch=AQ2 Net=DUT/Q[1]
Bit 48879124 0x00042584 1876 SLRO @ Block=SLICE_X37Y149 Latch=BQ2 Net=DUT/Q[3]
Bit 48879128 0x00042584 1880 SLRO @ Block=SLICE_X37Y149 Latch=CQ2 Net=DUT/Q[5]
Bit 48879132 0x00042584 1884 SLRO @ Block=SLICE_X37Y149 Latch=DQ2 Net=DUT/Q[7]

FIGURE 5. Logic location file fragment showing the eight lines (one line
per flip-flop) of an 8-bit register named DUT.

It can be observed that each flip-flop in the register has an
associated file line. In each line, the following information
is listed from left to right: bit offset, frame address, frame
offset, super-logic region (SLR) name, SLR number, and
information about the block, latch and net names. Among
these fields, only the frame address and the frame offset are
required to generate the injection addresses of the GSR and
the INIT values for the SEM IP. With the information from
these fields, the SEM IP can be used to emulate both transient
and permanent events in the configuration memory of the
FPGA as will be described later.

4) DETERMINE ROW, COLUMN, AND WORD
As explained in its manual [7], the SEM IP supports both
linear and physical addressing formats. The physical format
is related to the physical location of the bit to flip, while the
linear format is based on an linear organization of the FPGA
frames and does not provide any information about type and
physical location of the frame.

Analyzing the fields of the frame address in the .11 file
(see Table 1 [24]) it can be observed that these files contain

TABLE 1. Fields of the frame address in a logic location file [24].

Field Bit index
Row address [22:17]
Column address | [16:7]
Minor address [6:0]

VOLUME 9, 2021

L. A. Aranda et al.: Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs

IEEE Access

physical information and thus, it is easier to directly provide
it to the SEM IP using the physical injection address format.

The SEM IP physical addressing format contains 40 bits
which are distributed on the fields shown in Fig. 6.

RA CA MA WA BA
1 1 | 1 |

\
[0000] orrRR[RRRC[CCccc[cccc]cmmm[mmmm [wwww [wwwi[BBES|

Where:

+ RA =row address (6 bits)

« CA = column address (10 bits)
« MA = minor address (7 bits)

« WA = word address (7 bits)

« BA = bit address (5 bits)

FIGURE 6. SEM IP physical injection address. Figure adapted from [7].

Therefore, the information in the .11 file has to be translated
to fill in the row, column, minor, word, and bit fields shown
in Fig. 6. The row, column and minor values are related to the
frame address presented before while the word and bit fields
are related to the frame offset that will be described later.
Taking the frame address in the example presented in Fig. 5,
0 x 00042584 gives RA = 000010, CA = 0001001011, and
MA = 0000100. On the other hand, the word and bit fields
can be calculated using the frame offset in the .1l file and
knowing that a word is made up of 32 bits. With this informa-
tion, the translation from frame offset to physical word and bit
addresses can be done as presented in equations (1) and (2).

WA = floor (f—mmzﬁ set) (1
BA = frameoffset mod 32 2)

In the example case, this gives WA = 58 = 0111010 for
every flip-flop of the 8-bit register and, for example, BA =
0 = 00000 for the Q[O] flip-flop. However, both the minor
and the bit addresses obtained directly from the .11 file are not
valid since they are related to the readback node. Therefore,
the correct values will have to be found experimentally. But,
these values obtained directly from the .11 file can be taken as
a starting point for these experimental tests.

5) CALCULATE OR LOAD MINOR AND BIT VALUES

As mentioned before, the minor and the bit values for the GSR
and the INIT signals have to be experimentally determined
for every flip-flop inside the CLB. These values are unique
for the target FPGA and once they are known, they can be
reused to test different designs in the same device since they
are constant over the entire FPGA. This fact is also true for
other Xilinx FPGA families such as the 7-series. The values
that will change depending on the physical location of the
DUT are the row, column, and word fields, and they can be
easily calculated from the .11 file as explained in the previous
step.

The GSR signal address can be found by knowing that,
when triggered, it forces the flip-flop to output the initializa-
tion (INIT) value. For example, if we input a constant ‘1’ in
every flip-flop of the register and the initialization value is

VOLUME 9, 2021

a logic ‘0’, then we expect to see the 8 LED indicators con-
nected to the Q outputs of the flip-flops go off when the GSR
signal is triggered. Therefore, an exploratory fault injection
campaign can be performed by taking MA = 0000100 = 4
as a starting point and testing each of the 32 bits inside this
and adjacent minor frames with the SEM IP. The GSR minor
and bit values will be those that turn off the 8 LED indicators
simultaneously when the register input is a constant ‘1’ and
the initialization values are all ‘0’.

In order to find the minor and bit addresses of the INIT
values, the procedure is similar to the one explained for the
GSR signal. In this case, the INIT value is only released (and
observed at the Q output) when the reset (or set) signal is
triggered. Therefore, the main idea is to leave the register in
a permanent reset state and to perform again an exhaustive
fault injection campaign in each of the 32 bits inside MA =
0000100 = 4 and adjacent minor frames with the SEM IP.
In this way, the INIT minor and bit values will be those that
turn on a particular flip-flop when the default INIT value
is ‘0.

Once the minor and bit values are identified for these 8 flip-
flops, the same process has to be repeated for the remaining
8 flip-flops of the top-half of the CLB controlled by the
GSR2 signal (see Fig. 3). Then, the CLB will be completely
characterized.

For reference purposes, the characterization values
obtained for the Kintex-UltraScale KCU105 device are sum-
marized in Table 2. These values are constant over the entire
FPGA and are valid for any design implement in the FPGA.
This means that the procedure does not have to be repeated
again for other designs. It can be noticed in this table that the
configuration memory bit of the INIT values is located at
the next minor address from the one obtained directly from
the .11 file (i.e. MA = 4 4+ 1 = 5). That makes sense since the
addresses presented in the .11 file are related to the flip-flop
readback nodes.

TABLE 2. Minor and bit values obtained after the characterization of a
CLB for the Kintex-UltraScale device. These values are constant
throughout the FPGA.

Field Minor address Bit address
GSR1 7 7
GSR2 6 13
INIT 11 minor address + 1 A1 bit address

6) MERGE FIELDS

With the row, column, and word obtained from the .11 file and
the minor and bit values obtained empirically, the SEM IP
physical addresses can then be created by merging each field.
The creation of future SEM IP physical addresses for other
designs can now be automated developing a script or a simple
application.

7) WRITE INJECTION ADDRESSES IN TEXT FILE
All the injection addresses for each flip-flop can be collected
in a text file and sent line by line to the SEM IP through its

140681

IEEE Access

L. A. Aranda et al.: Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs

Algorithm 1 Pseudocode for Flip-Flop Placement
Input: The name n of the design under test
Output: A constraints file containing the commands to place
half of the flip-flops at AQ and half at EQ
F, < (emptyfile)
OpenImplementedDesign()
all_flipflops < GetCells(n)
I < Length(all_flipflops)
h<1/2
fori=1—1Ido
if i <= h then
file_line < SetFlipflop(AQ)
F, < Write(file_line)
else
file_line <— SetFlipflop(EQ)
F, < Write(file_line)
end if
: end for
: return F),

R A A R e

— = e e e
wm AW N = O

monitor interface to inject in every design flip-flop. In this
way, the two possible scenarios in a flip-flop can be emulated
as follows:

o Default value: inject a bit flip using only the GSR
address.

o Opposite value: inject first in the INIT address and then
(without correcting the error) inject another bit flip in the
GSR address.

It should be clarified that, for example, the GSR1 signal is
common to the eight bottom-half flip-flops. Therefore, and
in order to modify the content of one design flip-flop with
each injection, the design under test has to be constrained to
use at most two flip-flops per CLB (one from the bottom-half
and one from the top-half). The creation of the physical
constraints for the flip-flop placement can be done imple-
menting a TCL (tool command language) script. For the sake
of completeness, the pseudocode of this script is detailed in
Algorithm 1.

The script opens an empty file to write the constraint com-
mands to place half of the flip-flops at AQ and the other half
at EQ (see Fig. 3). It receives as input the name of the design
under test to get the flip-flop cells from the implemented
design. Then, a constraint line is written for each flip-flop ele-
ment to place it at AQ or EQ. This file can then be used in the
Vivado project to perform the mentioned placement. It should
be remarked that this fact is not a limitation since there are
abundant flip-flop elements in current FPGA devices but,
in large designs where the use of two flip-flops per CLB may
be a limiting factor, an option is to divide it into submodules
and test each of them separately with the appropriate input
values. After evaluating the reliability of the design, the flip-
flop constraint can be removed and the final ASIC or rad-hard
FPGA design manufactured or implemented as usual. There-
fore, this constraint will not affect the deployment of the

140682

circuit since it is only used in the FPGA platform to assure
the reliability of the design.

The methodology explained in this section is valid to per-
form exhaustive fault injection campaigns, when the expected
campaign runtime is reasonable, or statistical campaigns,
when the design is too large to be completely covered.
Besides, the experimental set-up may be configured to per-
form permanent or transient errors in the flip-flops depending
on the user needs. For the sake of simplicity, this paper
covers a detailed explanation of an experimental set-up to
emulate permanent errors. However, transient errors can also
be introduced with the SEM IP by using a clock management
scheme such as the one presented in [25] to stop the master
clock of the DUT, inject the error, and then resume the clock.
In any case, the proposed methodology is independent of the
campaign and the desired error to test.

As just mentioned, an experimental set-up to emulate per-
manent errors is presented in the next section as a practical
example of the methodology described. This exercise will
illustrate how to perform exhaustive fault injection campaigns
in different example designs to demonstrate the control and
precision achieved with the methodology.

IV. TESTING THE METHODOLOGY
In order to test the methodology, a serial-in serial-
out (SISO) shift register and a 10-taps finite impulse
response (FIR) filter have been implemented in a Kintex-
UltraScale KCU105 FPGA to illustrate different behaviors.
The expected behavior of the shift register in the presence
of errors will be merely based on its structure. This means
that any injected error will always imply a visible error in
the output since the introduced bit flip will be shifted to the
right and eventually outputted by the design (see Fig. 7 (a)).
Conversely, the behavior of the FIR filter in Fig. 7 (b) is more
complex to predict since the injected error may be masked
by subsequent multiply-accumulate operations depending on
the flip-flop affected, the dynamic range of the input, and the
coefficient values of the filter.

X Z-1 ~{z1 Z-1 v
(a)
X
b(n-1) b(n-2) b(1) b(0)
Z-1 -z Z- v

(b)

FIGURE 7. Structural comparison between the (a) SISO shift register and
the (b) FIR filter.

For illustrative purposes, the reliability of these designs
against permanent errors have been tested by conducting

VOLUME 9, 2021

L. A. Aranda et al.: Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs

IEEE Access

6000 6000

4000 4000 [

2000 | / \ 2000 [

-2000 [‘
-4000
-6000

2
-8000

6000
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

(@) (b)

-4 10000
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

(c) (d)

FIGURE 8. Output waveforms generated by the FIR filter during the fault injection campaign when the affected flip-flop stores (a) the most significant
bit (MSB) of the first tap, (b) an intermediate bit from the sixth tap, (c) an intermediate bit from the ninth tap, and (d) the MSB of the final tap.

fault injection campaigns with the SEM IP. The flip-flop
injection addresses have been previously obtained following
the proposed methodology. To control the campaign, a C++
script running in a computer transmits the addresses through
the serial port to the IP.

Exhaustive fault injection campaigns' have been con-
ducted to test both designs. In particular, a single-error fault
injection campaign has been carried out. The procedure is as
follows:

1

1) The circuit under test is exercised in the absence
of errors with a set of inputs to obtain the golden
model.

2) A logic ‘0’ is created in one of the flip-flops of the
design by using the SEM IP and the injection addresses
obtained from the methodology.

3) The circuit under test is exercised using the same set
of inputs and the current output is compared with the
previously obtained golden (error-free) output.

4) The behavior of the circuit is logged and the previously
injected error is removed.

5) Steps 2 to 4 are repeated creating the opposite error
scenario (a logic ‘1°).

6) A new flip-flop is selected and the process is repeated
from step 2 to 5 until all the flip-flops are tested.

Since there are two scenarios per flip-flop element (logic
‘0’ and logic ‘1’), the experimental results obtained from
the previous procedure have to be processed following the
classification in Table 3.

TABLE 3. Flip-flop classification depending on the behavior observed
during the fault injection campaign.

Logic ’0’ Logic I’ Flip-flop

scenario scenario classification
output = golden output = golden | Non-critical
output = golden | output # golden | Critical
output # golden | output=golden | Critical
output # golden | output # golden | Critical

Based on the procedure and the Table explained before,
the selected designs under test can be exercised. The results

IExhaustive campaign means that bit flips are injected in all the design
flip-flops testing both the logic ‘0’ and the logic ‘1’ scenarios.

VOLUME 9, 2021

obtained for the shift register and the FIR filter are summa-
rized in Table 4 together with the amount of flip-flops used
by each design.

TABLE 4. Error rate and resource usage for the SISO shift register and the
FIR filter.

Design Flip-flops Critical flip-flops
Shift register 128 128 /128 (100%)
FIR filter 176 167 /176 (94.87%)

It can be observed that the error rate is exactly 100% in the
shift register, meaning that all the flip-flops in the design are
critical and any introduced error leads to an erroneous out-
come. This behavior is expected for designs where the input
values are just stored in flip-flops (and eventually outputted)
because the error cannot be masked by subsequent logic or
arithmetic operations.

On the other hand, the 10-taps FIR filter shows a different
behavior. In these experiments, a sine wave that covers all the
dynamic range is used as input to exercise the filter. It can be
seen that 9 out of 176 flip-flops are not critical according to
the classification shown in Table 3. This implies that some
of the injected errors do not affect any of the input samples.
As mentioned before, this percentage depends on several
parameters such as the flip-flop affected, the dynamic range
of the input used, and the coefficient values of the filter, and it
is not expected to reach 100% because the FIR filter performs
multiply-accumulate operations at each tap that may mask the
injected bit flip.

In order to provide insight about this masking behavior,
a more detailed analysis can be done by studying the output
waveforms generated by the FIR filter after each injection.
Fig. 8 shows some examples of these waveforms. It can be
seen in Fig. 8 (a) that errors in the flip-flops from the first
taps are likely to produce negligible effects in the output
waveform. However, if we inject the error closer to the out-
put tap, the effects are more visible. In Fig. 8(b), the error
is injected in an intermediate bit of the sixth tap. In this
case the shape of the sinewave is still present, but it has
been distorted by a sawtooth artifact. Finally, in Fig. 8(c)
and Fig. 8(d) the error is injected in bits from the final
taps. This creates wrapping artifacts in the sinewave due to

140683

IEEE Access

L. A. Aranda et al.: Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs

extreme positive or negative values (see the vertical axes in
figures 8(a) to (d)). This is just an example of a visual anal-
ysis that can be done with the results obtained from the fault
injection campaing. The proposed methodology gives infor-
mation about the flip-flop tested and the type of error intro-
duced (logic ‘0’ and/or logic ‘1’) and, therefore, provides full
control over the fault injection campaign to perform in-depth
studies.

Finally, it should be remarked that these designs have been
tested against permanent errors for illustrative purposes, but
any design can be tested in a similar fashion using the method-
ology and set-up detailed. The methodology is independent of
the circuit structure and knowing its hierarchy is not manda-
tory for a “‘black-box’’ study but, in large designs, the reliabil-
ity analysis of a particular submodule may be needed. In these
cases, the name of the specific module in the hierarchy should
be known since it is required to find and extract from the logic
location file the specific flip-flop addresses associated to that
module under test. Besides, the flip-flop addresses generated
are valid to perform statistical fault injection campaigns (by
selecting a subset of the generated addresses) and could be
used to introduce transient errors of any duration just by
controlling the design clock and using the SEM IP to remove
the injected error at a specific moment. These modifications
do not affect the steps of the methodology since they are
related to the VHDL set-up.

V. CONCLUSION

This paper presents a methodology to extract the config-
uration memory bit addresses associated with the flip-flop
elements of a design implemented in a Xilinx SRAM-
based FPGA. With these injection addresses, the ASIC error
model can be mimicked by emulating transient and per-
manent errors in the FPGA to assess the reliability of the
design. In this manner, ASIC or rad-hard FPGA designs
intended to work in harsh environments can be evaluated
a priori in a short amount of time and in a cost-effective
way.

The proposed methodology is proved in recent FPGA
technologies and has been designed to work together with
Xilinx’s SEM IP Core. However, it can be considered as a
reference procedure for other FPGA vendors and injection
tools. The proposed FPGA-based set-up can be integrated and
merged with other platforms to create a richer fault injection
environment in which both FPGA and ASIC error models can
be tested.

REFERENCES

[1]1 R. C. Baumann, “Soft errors in advanced computer systems,” IEEE Des.
Test. Comput., vol. 22, no. 3, pp. 258-266, May/Jun. 2005.

[2] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro,
T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, and S. Kawatsuma,
“Emergency response to the nuclear accident at the Fukushima Daiichi
nuclear power plants using mobile rescue robots,” J. Field Robot, vol. 30,
no. 1, pp. 44-63, Jan. 2013.

[3] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, p. 79, Aug. 2018, doi: 10.22331/q-2018-08-06-79.

140684

[4]

[5

—

[6]

[7

—

[8]

[9

—

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]
(24]

(25]

P. Maillard, M. J. Hart, P. Chang, Y. P. Chen, M. Welter, R. Le, R. Ismail,
J. Barton, and E. Crabill, “Single-event evaluation of Xilinx 16nm Ultra-
Scale+ single event mitigation IP,” in Proc. IEEE Radiat. Effects Data
Workshop (REDW), Jul. 2018, pp. 1-5.

A. Ullah, E. Sanchez, L. Sterpone, L. A. Cardona, and C. Ferrer,
“An FPGA-based dynamically reconfigurable platform for emulation of
permanent faults in ASICs,” Microelectron. Rel., vol. 75, pp. 110-120,
Aug. 2017.

1. Herrera-Alzu and M. Lopez-Vallejo, “design techniques for Xilinx
Virtex FPGA configuration memory scrubbers,” IEEE Trans. Nucl. Sci.,
vol. 60, no. 1, pp. 376-385, Feb. 2013.

Soft Error Mitigation Controller V4.1., Xilinx, San Jose, CA, USA,
2018.

A. Kourfali and D. Stroobandt, ‘“In-circuit fault tolerance for FPGAs
using dynamic reconfiguration and virtual overlays,” Microelectron. Rel.,
vol. 102, Nov. 2019, Art. no. 113438.

0. Ruano, J. A. Maestro, and P. Reviriego, “A methodology for automatic
insertion of selective TMR in digital circuits affected by SEUs,” IEEE
Trans. Nucl. Sci., vol. 56, no. 4, pp. 2091-2102, Aug. 2009.

J. Carreira, H. Madeira, and J. G. Silva, “Xception: A technique for the
experimental evaluation of dependability in modern computers,” IEEE
Trans. Softw. Eng., vol. 24, no. 2, pp. 125-136, Feb. 1998.

O. Ruano, J. A. Maestro, P. Reyes, and P. Reviriego, ““A simulation plat-
form for the study of soft errors on signal processing circuits through soft-
ware fault injection,” in Proc. IEEE Int. Symp. Ind. Electron., Jun. 2007,
pp. 3316-3321.

E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, ‘“‘Fault injection
into VHDL models: The MEFISTO tool,” in Predictably Dependable
Computing Systems. Berlin, Germany: Springer, 1995, pp. 329-346.

V. Sieh, O. Tschache, and F. Balbach, “VERIFY: Evaluation of reliability
using VHDL-models with embedded fault descriptions,” in Proc. [EEE
27th Int. Symp. Fault Tolerant Comput., Jun. 1997, pp. 32-36.

H. Guzman-Miranda, J. N. Tombs, and M. A. Aguirre, “FT-UNSHADES-
uP: A platform for the analysis and optimal hardening of embedded sys-
tems in radiation environments,” in Proc. IEEE Int. Symp. Ind. Electron.,
Jun. 2008, pp. 2276-2281.

M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, D. M. Codinachs,
S. Pastore, C. Poivey, G. R. Sechi, G. Sorrenti, and R. Weigand, “Experi-
mental validation of fault injection analyses by the FLIPPER tool,” IEEE
Trans. Nucl. Sci., vol. 57, no. 4, pp. 2129-2134, Aug. 2010.

G. Cieslewski, A. Jacobs, A. George, and A. Gordon-Ross, ‘“Multibit fault
injection for field-programmable gate arrays with simple, portable fault
injector,” J. Aerosp. Inf. Syst., vol. 11, pp. 1-13, 07 2014.

N. A. Harward, M. R. Gardiner, L. W. Hsiao, and M. J. Wirthlin, “Esti-
mating soft processor soft error sensitivity through fault injection,” in
Proc. IEEE 23rd Annu. Int. Symp. Field-Program. Custom Comput. Mach.,
May 2015, pp. 143-150.

F. Serrano, J. A. Clemente, and H. Mecha, ““A methodology to emulate
single event upsets in flip-flops using FPGAs through partial reconfig-
uration and instrumentation,” IEEE Trans. Nucl. Sci., vol. 62, no. 4,
pp. 1617-1624, Aug. 2015.

C. Fibich, P. Roessler, S. Tauner, M. Matschnig, and H. Taucher, “A FPGA-
based demonstrator for safety-critical applications,” in Proc. Austrochip
Workshop Microelectron. (Austrochip), Oct. 2017, pp. 35-40.

0. Ruano, F. Garcia-Herrero, L. A. Aranda, A. Sanchez-Macian,
L. Rodriguez, and J. A. Maestro, “Fault injection emulation for sys-
tems in FPGAs: Tools, techniques and methodology, a tutorial,” Sensors,
vol. 21, no. 4, p. 1392, Feb. 2021. [Online]. Available: https://www.mdpi.
com/1424-8220/21/4/1392

Debugging Single Event Upsets Using Fault Injection Debugger, Altera,
San Jose, CA, USA, 2014.

L. A. Aranda, A. Sanchez-Macian, and J. A. Maestro, “ACME: A tool to
improve configuration memory fault injection in SRAM-based FPGAs,”
IEEE Access, vol. 7, pp. 128153-128161, 2019.

UltraScale Architecture Configurable Logic Block User Guide, UG574,
Xilinx, San Jose, CA, USA, 2017.

UltraScale Architecture Configuration User Guide, Xilinx, San Jose, CA,
USA, 2020.

H. Liang, X. Xu, Z. Huang, C. Jiang, Y. Lu, A. Yan, T. Ni, Y. Ouyang, and
M. Yi, “A methodology for characterization of SET propagation in SRAM-
based FPGAs,” IEEE Trans. Nucl. Sci., vol. 63, no. 6, pp. 2985-2992,
Dec. 2016.

VOLUME 9, 2021

http://dx.doi.org/10.22331/q-2018-08-06-79

L. A. Aranda et al.: Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs

IEEE Access

LUIS ALBERTO ARANDA received the B.Sc.
degree in industrial engineering and the M.Sc.
in robotics from the Universidad Carlos III de
Madrid, Spain, in 2012 and 2015 respectively, and
the Ph.D. degree (Hons.) in industrial engineering
from the Universidad Antonio de Nebrija, Madrid,
Spain, in 2018.
j He worked as a Project Engineer with Zeus Cre-
\ & ative Technologies S.L. developing various com-
‘ o N puter vision projects, from 2013 to 2014. He was
responsible for both hardware and software design and implementation.
He is currently with the ARIES Research Center, Universidad Antonio de
Nebrija. He is the author of several technical publications, both in journals
and international conferences. His research interests include reconfigurable
computing for space applications, computer vision, and robotics.

OSCAR RUANO received the M.Sc. and Ph.D.
degrees in computer engineering from the Uni-
versidad Antonio de Nebrija, 2005 and 2011,
respectively.

He has worked as a Lecturer and a Researcher
in several Spanish universities, such as Universi-
dad Nebrija and Universidad Francisco de Vitoria.
He has developed his activity in the Space field,
with different research projects on fault tolerance
optimization against radiation effects in micro-
electronic circuits. He is the author of several technical publications, both in
journals and international conferences and a series of patents. Also, he has
worked with different multinational companies in the IT consultancy field,
as Accenture. His research interests include computer architecture, digital
design, fault-tolerance, and reliability.

VOLUME 9, 2021

FRANCISCO GARCIA-HERRERO received the
B.Sc. degree in telecommunication engineering
from the Escuela Politecnica Superior de Gan-
dia, Spain, in 2008, and the M.S. and Ph.D.
degrees in electrical engineering from the Univer-
sitat Politecnica de Valéncia, Spain, in 2010 and
2013, respectively.

He has worked as a Lecturer and a Researcher at
several universities, including the European Uni-
versity Miguel de Cervantes and the Universitat
Politecnica de Valencia. He is currently an Associate Professor and a
Researcher with the Universidad Antonio de Nebrija. His research interests
include hardware and algorithmic optimization of error-control decoders and
fault-tolerance electronics in communication and storage systems.

JUAN ANTONIO MAESTRO (Senior Member,
IEEE) received the M.Sc. degree in physics and
the Ph.D. degree in computer engineering from
the Universidad Complutense de Madrid, Madrid,
Spain, in 1994 and 1999, respectively.

He is currently a Full Professor in the computer
architecture with the Universidad Complutense
de Madrid. Previously, he directed the Elec-
tronic Design and Space Technology Research
Group, Universidad Nebrija, Madrid, where he
also founded the ARIES Research Center, devoted to the Aerospace Research
and Innovation in Electronic Systems. His current activities are oriented to
the space industry , with several projects on the protection of digital circuits
against the effects of radiation, including microprocessors, memories, and
auxiliary systems. He also collaborates with institutions as the European
Space Agency, Stanford University, University College Dublin or the Harbin
Institute of Technology, among others. He is the author of numerous technical
publications in journals and international conferences. His research inter-
ests include computer architecture, digital design, fault-tolerance, reliability,
small satellites, and space applications.

140685

