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ABSTRACT The finite-time stability (FTS) problem of uncertain neutral time-delay systems via a sliding
mode control (SMC) approach is discussed in this paper. First, we construct a suitable sliding mode surface
and an SMC law, which can guarantee the system states can reach the sliding mode surface in a finite time
and maintain the sliding mode. Then, through the Lyapunov stability theory and the inequality techniques,
the finite time stability of the closed-loop system during reaching phase and sliding mode phase is studied,
a set of sufficient conditions which ensure the system to be finite-time stability is developed. Finally,
a numerical simulation example is given to illustrate the effectiveness of the results.

INDEX TERMS Finite-time stability, sliding mode control, uncertain, neutral time-delay systems.

I. INTRODUCTION
SMC is an effective nonlinear robust control method, which
has strong robustness to resist parameter uncertainty and
external disturbance of dynamical systems [1], [2]. At the
same time, it has the advantage of excellent transient
response [3], [4]. Due to these characteristics, SMC is
widely used in missile guidance systems [5], motor con-
trol systems [6] and other industrial automation fields, and
it becomes a hot spots which attracted many scholars in
interest and importance. For example, for a second-order
nonlinear dynamic system, a new nonlinear sliding mode
controller is presented to resist parameter uncertainty and
external disturbance [7]. The observer-based SMC problem
of phase-type semi-Markovian jump systems was discussed
in [4]. In [8], the authors investigated the issue of SMC with
adaptive neural networks for a class of nonlinear uncertain
systems. A novel asynchronous sliding mode control scheme
is proposed in [9], which guarantees the desired finite-time
boundedness of Markovian jump systems with sensor and
actuator faulty signals. In fact, SMC is used on a variety of
systems, such as Markovian jump systems [4], [10], time-
delay systems [11], [12], and stochastic systems [13], [14].

For a long time, the investigators focused on Lyapunov
asymptotic stability(LAS); however, this theory also has its
limitations. The most important point is that there is gen-
erally no constraint on the time required for the system to
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reach steady state, which is not allowed in some time-critical
systems, such as robot dynamic stability and communication
networks. Based on this issue, Dorato proposed the finite
time theory in 1961, since then, many scholars have begun
to study this theory [15], [16]. FTS means that the weighted
state of a system does not exceed a predetermined threshold
during a finite time interval when the initial states of the
system are norm-bounded [17], [18]. When there are external
disturbances in the system, finite-time boundedness(FTB)
will replace FTS. FTS focuses on the transient performance
of the system, so it has special application scenarios and has
attracted remarkable attention of researchers. Recently, two
new finite-time convergence criterions are proposed based on
the property of the second order differential equation [19].
For a class of discrete-time nonlinear systems, new control
procedures are proposed, which can satisfy the finite-time sta-
bilization [20]. In [21], the authors put forward a finite-time
SMC law to satisfy FTB and H∞ performance requirements.
In addition, FTS is also used in fractional order systems [22],
[23] and neural networks [24], [25].

Different from the common time-delay systems, the neu-
tral system is a special kind of dynamic system, which is
often used in the research of aircraft engine control, immune
response, electrodynamics processes and so on [26]–[28].
Neutral systems contain delays in its state and in the deriva-
tives of its state [29]. The above characteristics lead to more
complex dynamic behavior of this kind of system, and make
this kind of system have better universality than the gen-
eral time-delay systems [30], [31]. In [32], for a class of
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uncertain neutral delay systems with mismatched uncertain-
ties, the author proposed a sliding mode control law to guar-
antee the asymptotic stability of closed-loop systems. The
problem of exponential H∞ output tracking control for a
class of switched neutral system with time-varying delay was
addressed in [33]. The results of robust stability for a class
of uncertain neutral system with time-varying delay can be
found in [34].

To date, there have beenmany studies on finite-time sliding
mode control, and many scholars have extended this method
to various control systems [9], [21], [35]. However, to our best
knowledge, there are still few results on FTS/FTB of uncer-
tain neutral systems. Similar uncertain neutral time delay
systemswith SMCwere studied in [32], [36], but these papers
focused on the asymptotic stability of the system rather than
FTS. FTS for uncertain systems over reaching phase and
sliding motion phase were discussed in [21] and [38]; nev-
ertheless, the system in these papers is relatively simple. Dif-
ferent from these literatures, the neutral time-delay systems
investigated in this paper have better universality, and the
results can better reflect the quantitative relationship between
the FTS conditions and the system parameters. As mentioned
above, neutral systems have a wide range of applications,
FTS based on sliding mode control can guarantee the tran-
sient performance of such systems. In addition, the results
of neutral time-delay systems can be easily extended to
standard time-delay systems. Therefore, the study of this
problem is of practical significance, which is our motivation
for this paper. We summarize the main contributions of this
thesis:

(a) Considering the effect of time delay and uncertainty,
which makes our model have better universality;

(b) The design method of sliding mode controller is given,
which has good robustness to resist parameter uncertainty.

(c) Some sufficient conditions for FTS of the SMC system
in the finite time interval [0,T ] are given.

(d) The obtained results can describe the relationship
between FTS and system parameters, and can be easily
solved.

A. NOTATIONS
The following notations will be used in this paper:
Rn and Rn×m represent the n-dimensional Euclidean space
and the set of n × m real matrices, respectively. Superscript
‘T’ denotes the transpose of matrix. λmin(·) and λmax(·)
stand for the minimum and maximum eigenvalue of matrices.
Asterisk(∗) means the term of symmetry. ‖ · ‖ denotes the
Euclidean norm operator.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the uncertain neutral system with time-delay as
follows:
ẋ(t)− Gẋ(t − h) = (A1 +1A1)x(t)+ (A2 +1A2)
×x(t − d)+ B(u(t)+ f (x(t))),

x(θ ) = φ(θ ), θ ∈ [−τ, 0],

(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control
input, G ∈ Rn×n, A1 ∈ Rn×n, A2 ∈ Rn×n, B ∈ Rn×m

are known constant matrices. h > 0 and d > 0 are time
delay constants. τ takes the maximum value of h and d ,
f (x(t)) denotes non-linear known function, which satisfies the
Lipchitz constraint ‖f (x(t))‖ ≤ β‖x(t)‖, here β is a positive
scalar. 1A1 and 1A2 are uncertain matrices that satisfy the
following condition:

[1A1 1A2] = MF(t)[N1 N2], (2)

where,M ,N1,N2 are constant matrices of appropriate dimen-
sions, F(t) is an unknown time-varying matrix that satisfies
F(t)TF(t) ≤ I , φ(θ ) ∈ Rn×n is a continue initial function
vector.

Firstly we give a necessary definition and some lemmas.
Definition 1 (FTS): For given c1, c2,T and R > 0, where

c2 > c1 > 0, T > 0, the system (1) is said to be finite-time
stabilizable with respect to (c1, c2,T ,R), if

sup
−τ≤θ≤0

xT(θ )Rx(θ ) ≤ c1

⇒ xT(t)Rx(t) ≤ c2, ∀t ∈ [0,T ]. (3)

Lemma 1 [37]: For some real matrices of appropriate
dimensions S1, S2,E(t), here, ET(t)E(t) ≤ I and a scalar υ,
the following inequality holds:

S1E(t)S2 + ST2 E
T(t)ST1 ≤ υS1S

T
1 + υ

−1ST2 S2.

Lemma 2 (Partitioning Strategy [38]): For given c1, c2,T
and R > 0, the system (1) is FTS about (c1, c2,T ,R), if and
only if there exists an auxiliary scalar satisfying c1 < c∗ <
c2 such that the system is FTS about (c1, c∗, τ ∗,R) during
reaching phase and FTS about (c∗, c2,T ,R) during sliding
motion phase, here, τ ∗ is the time that the system state reaches
the sliding surface.

III. MAIN RESULTS
We design the following integral sliding variable

s(t) = H (x(t)− Gx(t − h))−
∫ t

0
H (A1 + BK1)x(s)ds

−

∫ t

0
H (A2 + BK2)x(s− d)ds, (4)

where H is chosen such that HB is nonsingular, which can be
attained by H = BTL with L > 0. K1,K2 are controller gains
to be designed later.

The derivative of s(t) gives

ṡ(t) = H (ẋ(t)− Gẋ(t − h))− H (A1 + BK1)x(t)

−H (A2 + BK2)x(t − d)

= H ((1A1 − BK1)x(t)+ (1A2 − BK2)x(t − d)

+B(u(t)+ f (x(t)))). (5)

A. REACHABILITY ANALYSIS
In this subsection, an appropriate SMC law is designed,
which can ensure the system state reaches the sliding surface
in a finte time τ ∗ and maintain sliding motion for all subse-
quent time.
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Theorem 1: The state trajectories of uncertain neutral sys-
tem (1) can reach the sliding surface in finite time [0, τ ∗] with
the SMC as

u(t) = K1x(t)+ K2x(t − d)− ρ(t)sign(s(t)), (6)

where ρ(t) = η + β||x(t)|| + ||HM ||(||N1x(t)|| + ||N2x(t −
d)||), HM = (HB)−1HM , τ ∗ ≤ 1

η̂

√
V1(x(0), 0), η̂ =

η
√

1
2λmax((HB)−1)

. Here, ρ > 0, sign(·) stands for sign function.

Proof: Take the Lyapunov function as

V1(t) =
1
2
sT(t)(HB)−1s(t).

Time derivative of V1(t) equals to

V̇1(x(t), t) = sT(t)(HB)−1ṡ(t)

= sT(t)(HB)−1H (MF(t)N1x(t)− BK1x(t)

+MF(t)N2x(t − d)− BK2x(t − d)

+B(u(t)+ f (x(t)))

= sT(t)(HMF(t)N1x(t)− K1x(t)

+HMF(t)N2x(t − d)

−K2x(t − d)+ u(t)+ f (x(t)))

= sT(t)(−ρ(t)sign(s(t))+ HMF(t)N1x(t)

+HMF(t)N2x(t − d)+ f (x(t)))

≤ sT(t)(−(η + ||HM || ||N1x(t)||

+||HM || ||N2x(t − d)||)sign(s(t))

−β||x(t)||sign(s(t))+ HMF(t)N1x(t)

+HMF(t)N2x(t − d)+ f (x(t)))

≤ −η||s(t)|| < 0. (7)

We get

2V1(x(t), t) = sT(t)(HB)−1s(t) ≤ λmax((HB)−1)||s(t)||2.

Thus

||s(t)|| ≥

√
2V1(x(t), t)
λmax((HB)−1)

.

Then

V̇1(x(t), t) ≤ −η

√
2V1(x(t), t)
λmax((HB)−1)

= −2η̂
√
V1(x(t), t). (8)

Integrating (8) on the interval [0, τ ∗], where τ ∗ > 0 is the
time to reach the sliding surface, we get√

V1(x(τ ∗), τ ∗)−
√
V1(x(0), 0) ≤ −η̂τ ∗,

which means that the system state trajectories can reach slid-
ing surface in a finite time τ ∗(τ ∗ ≤ 1

η̂

√
V1(x(0), 0)), the proof

is completed.

B. FTS OVER REACHING PHASE WITHIN [0, τ∗]
In this subsection, we will analyze FTB for the system (1)
during the reaching phase. By substituting (6) into (1),
we get

ẋ(t)− Gẋ(t − h) = Ã1x(t)+ Ã2x(t − d)+ Bf̃ (x(t)), (9)

where Ã1 = A1 + 1A1 + BK1, Ã2 = A2 + 1A2 + BK2,
f̃ (x(t)) = −ρ(t)sign(s(t))+ f (x(t)).
Theorem 2: For given positive scalars c1, τ ∗ and symmet-

ric matrix R > 0, the sliding mode dynamics system (9)
is FTS about (c1, c∗, τ ∗,R), if there exist a scalar σ ≥
0, c∗ > 0(c∗ > c1) and symmetric matrices P > 0,Q1 >

0,Q2 > 0 such that the following conditions hold (10) and
(11), as shown at the bottom of the next page: where P̃ =
R−

1
2PR−

1
2 , Q̃1 = R−

1
2Q1R−

1
2 ,

Q̃2 = R−
1
2Q2R−

1
2 .

Proof: Choose the Lyapunov function as

V2(x(t), t) = xT(t)P̃−1x(t)

+

∫ t

t−d
e−σ (t−s)xT(s)Q̃−11 x(s)ds

+

∫ t

t−h
e−σ (t−s)ẋT(s)Q̃−12 ẋ(s)ds.

Along the solution of system (9), we obtain

V̇2(x(t), t) = 2xT(t)P̃−1ẋ(t)+ xT(t)Q̃−11 x(t)

−e−σdxT(t − d)Q̃−11 x(t − d)

−σ

∫ t

t−d
e−σ (t−s)xT(s)Q̃−11 x(s)ds

+ẋT(t)Q̃−12 ẋ(t)− e−σhẋT(t − h)Q̃−12 ẋ(t − h)

−σ

∫ t

t−h
e−σ (t−s)ẋT(s)Q̃−12 ẋ(s)ds

−σxT(t)P̃−1x(t)+ σxT(t)P̃−1x(t).

Note that

V̇2(x(t), t)+ σV2(x(t), t)− π f̃ T(x(t))f̃ (x(t))

= 2xT(t)P̃−1ẋ(t)+ σxT(t)P̃−1x(t)+ xT(t)Q̃−11 x(t)

−e−σdxT(t − d)Q̃−11 x(t − d)+ ẋT(t)Q̃−12 ẋ(t)

−e−σhẋT(t − h)Q̃−12 ẋ(t − h)− π f̃ T(x(t))f̃ (x(t))

= 2xT(t)P̃−1(Gẋ(t − h)+ Ã1x(t)+ Ã2x(t − d)+ Bf̃ (x(t)))

+xT(t)(σ P̃−1 + Q̃−11 )x(t)− e−σdxT(t − d)Q̃−11 x(t − d)

−e−σhẋT(t − h)Q̃−12 ẋ(t − h)+ (Gẋ(t − h)+ Ã1x(t)

+Ã2x(t − d)+ Bf̃ (x(t)))TQ̃
−1
2 (Gẋ(t − h)+ Ã1x(t)

+Ã2x(t − d)+ Bf̃ (x(t)))− π f̃ T(x(t))f̃ (x(t))

= κT(t)5κ(t),

where κ(t) = (xT(t), xT(t − d), ẋT(t − h), f̃ T(x(t)))T the
equation can be derived, as shown at the bottom of next
page,

According to (10) and the Schur complement, 4 < 0
means 5 < 0, thus

V̇2(x(t), t)+ σV2(x(t), t)− π f̃ T(x(t))f̃ (x(t)) < 0. (12)

Multiplying both sides of (12) by eσ t and integrating from
0 to t (t ∈ [0, τ ∗]), we get

V2(x(t), t) < e−σ tV2(x(0), 0)+
∫ t

0
π f̃ T(x(t))f̃ (x(t)) ds.

When t ∈ [0, τ ∗), it is obvious that
∫ t
0 π f̃

T(x(t))f̃ (x(t)) ds
is a bounded integral and its upper bound is assumed to be$ .
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Note that

V2(x(t), t) ≥ xT(t)P̃−1x(t) ≥ λmin(P−1)xT(t)Rx(t)

≥
1

λmax(P)
xT(t)Rx(t),

and

e−σ tV2(x(0), 0)

≤ xT(0)P̃−1x(0)+
∫ 0

−d
eσ sxT(s)Q̃−11 x(s)ds

+

∫ 0

−h
eσ sẋT (s)Q̃−12 ẋ(s)ds

≤ c1(λmax(P−1)+ λmax(Q1
−1)

∫ 0

−d
eσ sds

+λmax(Q2
−1)

∫ 0

−h
eσ sds)

≤ c1(
1

λmin(P)
+

(
1

λmin(Q1)
+

1
λmin(Q2)

)
1
σ
(1− e−στ )),

Thus
1

λmax(P)
xT(t)Rx(t)

≤

(
1

λmin(P)
+

(
1

λmin(Q1)
+

1
λmin(Q2)

)
1
σ
(1− e−στ )

)
c1

+$.

According to (10), we have xT(t)Rx(t) < c∗, t ∈ [0, τ ∗],
which means that the system (9) is FTS with respect to
(c1, c∗, τ ∗,R), the proof is completed.
Remark 1:We note that the conditions of Theorem 2 con-

tain plenty of nonlinear terms, which makes it impossible for
us to solve it through LMI toolbox. To address this problem,
we need to linearize the nonlinear terms in Theorem 3.
Theorem 3: For given positive scalars c1, τ ∗,$ and sym-

metric matrix R > 0, the sliding mode dynamics system (9)
is FTS about (c1, c∗, τ ∗,R), if there exist scalars σ > 0, ν >
0, c∗ > 0(c∗ > c1), λi > 0(i = 1, 2, 3, 4) and symmetric
matrices X > 0, Q̃1 > 0, Q̃2 > 0, real matrices W1,W2
satisfying the following LMIs (13)–(17), as shown at the
bottom of the next page:

where 211 = A1X + XA1T + BW1 + W1
TBT + σX +

νMMT, and the parameters K1 and K2 are given by K1 =

W1X−1,K2 = W2Q
−1
1 .

Proof: Substituting Ã1 = A1 +1A1 + BK1, Ã2 = A2 +
1A2+BK2 into (10), we get4 = 0+10, where the equation
can be derived, as shown at the bottom of next page

Let

TM =
[
MTP̃−1 0 0 0 MT

]
,

TN =
[
N1 N2 0 0 0

]
.

then 10 = T T
MF(t)TN + T

T
NF

T(t)TM .
From Lemma 1, there exists a scalar ν > 0, such that

inequality (18) holds (18) and (19), as shown at the bottom
of the next page.

where

911 = P̃−1A1 + A1TP̃−1 + P̃−1BK1 + K1
TBTP̃−1

+σ P̃−1 + Q̃−11 + νP̃
−1MMTP̃−1,

915 = AT1 + K
T
1 B

T
+ νP̃−1MMT.

By Schur Lemma, it is known that 9 < 0 implies (19).
Multiplying both sides of (19) by diag{P̃, Q̃1, Q̃2, I , I , I } and
letting X = P̃,W1 = K1X ,W2 = K2Q̃1. By Schur comple-
ment, we can know that (13) is equivalent to (19).
On the other hand, from the definition of P̃, Q̃1, Q̃2

and (14)-(17), it follows that

c1

λmin(R
1
2XR

1
2 )
+

 1

λmin(R
1
2 Q̃1R

1
2 )
+

1

λmin(R
1
2 Q̃2R

1
2 )


×
1
σ
(1− e−στ )c1 +$ <

c∗

λmax(R
1
2XR

1
2 )
. (20)

Then, according to Theorem 2, the system (9) is FTS about
(c1, c∗, τ ∗,R), the proof is completed.

C. FTS OVER SLIDING MOTION PHASE WITHIN [τ∗, T ]
In this subsection, we will analyze FTB for the system (1)
during the sliding motion phase. When the system state move
along the sliding surface, the equivalent control ueq can be

4 =


P̃−1Ã1 + ÃT1 P̃

−1
+ σ P̃−1 + Q̃−11 P̃−1Ã2 P̃−1G P̃−1B ÃT1
∗ −e−σd Q̃−11 0 0 ÃT2
∗ ∗ −e−σhQ̃−12 0 GT

∗ ∗ ∗ −π I BT

∗ ∗ ∗ ∗ −Q̃2

 < 0, (10)

c1
λmin(P)

+

(
1

λmin(Q1)
+

1
λmin(Q2)

)
1
σ
(1− e−στ )c1 +$ <

c∗

λmax(P)
, (11)

5 =


P̃−1Ã1 + ÃT1 P̃

−1
+ σ P̃−1 + Q̃−11 P̃−1Ã2 P̃−1G P̃−1B

∗ −e−σd Q̃1
−1

0 0

∗ ∗ −e−σhQ̃2
−1

0
∗ ∗ ∗ − π I

+

ÃT1
ÃT2
GT

BT

 Q̃−12

[
Ã1 Ã2 G B

]
.
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solved by ṡ(t) = 0.

ueq = −(HB)−1H [(1A1 − BK1)x(t)

+(1A2 − BK2)x(t − d)]− f (x(t)). (21)

By substituting (21) into (1), we get

ẋ(t)− Gẋ(t − h) = Ā1x(t)+ Ā2x(t − d), (22)

where

Ā1 = A1 +1A1 − B(HB)−1H1A1 + BK1,

Ā2 = A2 +1A2 − B(HB)−1H1A2 + BK2.

Theorem 4: For given positive scalars c2,T and sym-
metric matrix R > 0, the closed-loop system (22)
is FTS about (c∗, c2,T ,R), if there exist scalars α ≥

0, c∗ > 0(c∗ < c2), and symmetric matrices P̌ >

0, Q̌1 > 0, Q̌2 > 0 such that the following conditions
hold (23) and (24), as shown at the bottom of the next
page:

2 =



211 A2Q̃1 + BW2 GQ̃2 B XAT1 +W
T
1 B

T
+ νMMT XNT

1 X
∗ −e−σd Q̃1 0 0 Q̃1AT2 +W2

TBT Q̃1NT
2 0

∗ ∗ −e−σhQ̃2 0 Q̃2GT 0 0
∗ ∗ ∗ −π I BT 0 0
∗ ∗ ∗ ∗ −Q̃2 + νMMT 0 0
∗ ∗ ∗ ∗ ∗ −νI 0
∗ ∗ ∗ ∗ ∗ ∗ −Q̃1


< 0,

(13)

λ1R−1 < X < λ2R−1, (14)

λ3R−1 < Q̃1, (15)

λ4R−1 < Q̃2, (16)
c1
λ1
+

(
1
λ3
+

1
λ4

)
1
σ
(1− e−στ )c1 +$ <

c∗

λ2
, (17)

10 =


P̃−11A1 +1A1TP̃−1 P̃−11A2 0 0 1AT1

∗ 0 0 0 1AT2
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

 ,

0 =


011 P̃−1A2 + P̃−1BK2 P̃−1G P̃−1B AT1 + K

T
1 B

T

∗ −e−σd Q̃−11 0 0 AT2 + K
T
2 B

T

∗ ∗ −e−σhQ̃−12 0 GT

∗ ∗ ∗ −π I BT

∗ ∗ ∗ ∗ −Q̃2

 ,
011 = P̃−1A1 + A1TP̃−1 + P̃−1BK1 + K1

TBTP̃−1

+σ P̃−1 + Q̃−11 .

0 +10 ≤


911 P̃−1A2 + P̃−1BK2 P̃−1G P̃−1B 915

∗ −e−σd Q̃−11 0 0 AT2 + K
T
2 B

T

∗ ∗ −e−σhQ̃−12 0 GT

∗ ∗ ∗ −π I BT

∗ ∗ ∗ ∗ −Q̃2 + νMMT

+ ν−1T T
NTN

1
= 9, (18)



911 P̃−1A2 + P̃−1BK2 P̃−1G P̃−1B 915 NT
1

∗ −e−σd Q̃−11 0 0 AT2 + K
T
2 B

T NT
2

∗ ∗ −e−σhQ̃−12 0 GT 0
∗ ∗ ∗ −π I BT 0
∗ ∗ ∗ ∗ −Q̃2 + νMMT 0
∗ ∗ ∗ ∗ ∗ −νI

 < 0, (19)
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where P̄ = R−
1
2 P̆R−

1
2 , Q̄1 = R−

1
2 Q̆1R

−
1
2 , Q̄2 =

R−
1
2 Q̆2R

−
1
2 .

Proof: Choose the Lyapunov function as

V3(x(t), t) = xT(t)P̄−1x(t)

+

∫ t

t−d
e−α(t−s)xT(s)Q̄−11 x(s)ds

+

∫ t

t−h
e−α(t−s)ẋT(s)Q̄−12 ẋ(s)ds.

Along the solution of system (22), we obtain

V̇3(x(t), t) = 2xT(t)P̄−1ẋ(t)+ xT(t)Q̄−11 x(t)

−e−αdxT(t − d)Q̄−11 x(t − d)

−α

∫ t

t−d
e−α(t−s)xT(s)Q̄−11 x(s)ds

+ẋT(t)Q̄−12 ẋ(t)

−e−αhẋT(t − h)Q̄−12 ẋ(t − h)

−

∫ t

t−h
e−α(t−s)ẋT(s)Q̄−12 ẋ(s)ds

−αxT(t)P̄−1x(t)+ αxT(t)P̄−1x(t).

Note that

V̇3(x(t), t)+ αV3(x(t), t)

= 2xT(t)P̄−1ẋ(t)+ αxT(t)P̄−1x(t)+ xT(t)Q̄−11 x(t)

−e−αdxT(t − d)Q̄−11 x(t − d)+ ẋT(t)Q̄−12 ẋ(t)

−e−αhẋT(t − h)Q̄−12 ẋ(t − h)

= 2xT(t)P̄−1
(
Gẋ(t − h)+ Ā1x(t)+ Ā2x(t − d)

)
+xT(t)(αP̄−1 + Q̄−11 )x(t)− e−αdxT(t − d)Q̄−11 x(t − d)

−e−αhẋT(t − h)Q̄−12 ẋ(t − h)+ (Gẋ(t − h)+ Ā1x(t)

+Ā2x(t − d)TQ̄
−1
2 (Gẋ(t − h)+ Ā1x(t)+ Ā2x(t − d))

= ξT(t)8ξ (t),

where the equation can be derived, as shown at the bottom of
next page
ξ (t) = (xT(t), xT(t − d), ẋT(t − h))T. By Schur comple-

ment, we can know that � < 0 is equivalent to 8 < 0, then

V̇3(x(t), t)+ αV3(x(t), t) < 0, (25)

Multiplying both sides of (25) by eαt and integrating from
τ ∗ to t (t ∈ [τ ∗,T ]), we get

V3(x(t), t) < e−αtV3(x(τ ∗), τ ∗), (26)

Note that

V3(x(t), t)

≥ xT(t)P̄−1x(t) ≥ λmin(P̆−1)xT(t)Rx(t)

=
1

λmax(P̆)
xT(t)Rx(t),

and

e−αtV3(x(τ ∗), τ ∗)

≤ xT(τ ∗)P̄−1x(τ ∗)+
∫ τ∗

τ∗−d
e−α(τ

∗
−s)xT(s)Q̄−11 x(s)ds

+

∫ τ∗

τ∗−h
e−α(τ

∗
−s)ẋT(s)Q̄−12 ẋ(s)ds

≤ c∗(λmax(P̆−1)+ λmax(Q̆
−1
1 )

∫ τ∗

τ∗−τ

e−α(τ
∗
−s)ds

+λmax(Q̆
−1
2 )

∫ τ∗

τ∗−τ

e−α(τ
∗
−s)ds)

≤ c∗
(

1

λmin(P̆)
+

(
1

λmin(Q̆1)
+

1

λmin(Q̆2)

)
1
α
(1− e−ατ )

)
,

thus,
1

λmax(P̆)
xT(t)Rx(t)

≤

(
1

λmin(P̆)
+

(
1

λmin(Q̆1)
+

1

λmin(Q̆2)

)
1
α
(1− e−ατ )

)
c∗.

From (24), we have xT(t)Rx(t) < c2, t ∈ [τ ∗,T ],
which means that the system (22) is FTS with respect to
((c∗, c2,T ,R)), the proof is completed.
Remark 2: In fact, according to lemma 2 the reaching

instant τ ∗ is not only the end of reaching phase but also the
start of sliding motion phase, so x(τ ∗)Rx(τ ∗) < c∗ can be
used as the initial condition for Theorem 4, which connects
the two segments of SMC.
Theorem 5: For given positive scalars c2,T and symmetric

matrix R > 0, the closed-loop system (22) is FTS about
(c∗, c2,T ,R), if there exist scalars α > 0, γ > 0, c∗ >
0(c∗ < c2), λ̃i > 0(i = 1, 2, 3, 4) and symmetric matrices
X̄ > 0, Q̄1 > 0, Q̄2 > 0, real matrices W̄1, W̄2 satisfying the
following LMIs (27) and (31), as shown at the bottom of the
next page:

where

2̄11 = A1X̄ + X̄AT1 + BW̄1 + W̄T
1 B

T
+ αX̄

+γ (M − B(HB)−1HM )(MT
−MT(B(HB)−1H )T),

2̄14 = X̄AT1 + W̄
T
1 B

T
+ γ (M − B(HB)−1HM )(MT

−MT(B(HB)−1H )T),

2̄44 = −Q̄2 + γ (M − B(HB)−1HM )(MT

−MT(B(HB)−1H )T).


P̄−1Ā1 + ĀT1 P̄

−1
+ αP̄−1 + Q̄−11 P̄−1Ā2 P̄−1G ĀT1
∗ −e−αd Q̄−11 0 ĀT2
∗ ∗ −e−αhQ̄−12 GT

∗ ∗ ∗ −Q̄2

 = � < 0, (23)

c∗

λmin(P̆)
+

(
1

λmin(Q̆1)
+

1

λmin(Q̆2)

)
1
α
(1− e−ατ )c∗ <

c2
λmax(P̆)

, (24)
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and the parameters K̄1 and K̄2 are given by K̄1 =

W̄1X̄−1, K̄2 = W̄2Q̄
−1
1 .

Proof: Substituting Ā1 = A1+1A1−B(HB)−1H1A1−
BK1, Ā2 = A2 + 1A2 − B(HB)−1H1A2 − BK2
into (23), we get � = 0̄ + 10̄, where the equa-
tion can be derived, as shown at the bottom of next
page

here

0̄11 = P̄−1A1 + AT1 P̄
−1
+ P̄−1BK̄1 + K̄T

1 B
TP̄−1 + αP̄−1

+Q̄−11 ,

10̄11 = P̄−11A1 +1AT1 P̄
−1
− P̄−1B(HB)−1H1A1

−(P̄−1B(HB)−1H1A1)T.

Denote

KM = [MTP̄−1 −MT(B(HB)−1H )
T
P̄−1 0 0

×MT
−MT(B(HB)−1H )

T
],

KN = [N1 N2 0 0 ],

then 10̄ = KT
MF(t)KN + K

T
NF

T(t)KM .

From Lemma 1, there exists a scalar γ > 0, such that the
following inequality holds:

0̄ +10̄

≤


9̄11 P̄−1A2 + P̄−1BK̄2 P̄−1G 9̄14

∗ −e−αd Q̄−11 0 A2T + K̄T
2 B

T

∗ ∗ −e−αhQ̄−12 GT

∗ ∗ ∗ 9̄44


+γ−1KT

NKN
1
= 9̄, (32)

where

9̄11 = P̄−1A1 + AT1 P̄
−1
+ P̄−1BK̄1 + K̄T

1 B
TP̄−1

+αP̄−1 + Q̄−11 + γ P̄
−1

×(M−B(HB)−1HM )(MT
−MT(B(HB)−1H )T)P̄−1,

9̄14 = AT1 + K̄
T
1 B

T
+ γ P̄−1(M − B(HB)−1HM )(MT

−MT(B(HB)−1H )T),

9̄44 = −Q̄2 + γ (M − B(HB)−1HM )

×(MT
−MT(B(HB)−1H )T).

By Schur Lemma, it is known that 9̄ < 0 implies
9̄11 P̄−1A2−P̄−1BK̄2 P̄−1G 9̄14 NT

1
∗ −e−αd Q̄−11 0 AT2−K̄

T
2 B

T NT
2

∗ ∗ −e−αhQ̄−12 GT 0
∗ ∗ ∗ 9̄44 0
∗ ∗ ∗ ∗ −γ I


< 0. (33)

Multiplying both sides of (33) by diag{P̄, Q̄1, Q̄2, I , I }
and letting X̄ = P̄, W̄1 = K̄1X̄ , W̄2 = K̄2Q̄1. By Schur
complement, we can know that (27) is equivalent to (33).
On the other hand, from the definition of P̄, Q̄1, Q̄2

and (28)-(31), it follows that

c∗

λmin(R
1
2 X̄R

1
2 )
+

(
1

λmin(R
1
2 Q̄1R

1
2 )
+

1

λmin(R
1
2 Q̄2R

1
2 )

)
×
1
α
(1− e−ατ )c∗ <

c2

λmax(R
1
2 X̄R

1
2 )
. (34)

Then, according to Theorem 4, the system (22) is FTS
about (c∗, c2,T ,R), the proof is completed.
Remark 3. Theorem 3 and Theorem 5 give the FTS con-

ditions of the system state over reaching phase and slid-
ing motion phase, respectively. If the parameters in Theo-
rem 5 are substituted as follows: α → σ, γ → ν, λ̃i →

λi(i = 1, 2, 3, 4), Q̄1 → Q̃1, Q̄2 → Q̃2, X̄ → X , W̄1 →

W1, W̄2 → W2, K̄1 → K1, K̄2 → K2, and solve inequal-
ities (13)-(17) and (27)-(31), then according to lemma 2,
the conditions that the SMC system state satisfies FTS about
(c1, c2,T ,R) in whole finite-time interval [0,T ] can be
obtained.

8 =

P̄−1Ā1 + ĀT1 P̄−1 + αP̄−1 + Q̄−11 P̄−1Ā2 P̄−1G
∗ −e−αd Q̄−11 0
∗ ∗ −e−αhQ̄−12

+

ĀT1

ĀT2

GT

 Q̄−12

[
Ā1 Ā2 G

]
,


2̄11 A2Q̄1 + BW̄2 GQ̄2 2̄14 X̄N1

T X̄
∗ −e−ad Q̄1 0 Q̄1A2T + W̄T

2 B
T Q̄1N2

T 0
∗ ∗ −e−αhQ̄2 Q̄2GT 0 0
∗ ∗ ∗ 2̄44 0 0
∗ ∗ ∗ ∗ −γ I 0
∗ ∗ ∗ ∗ ∗ −Q̄1

 = 2̄ < 0, (27)

λ̃1R−1 < X̄ < λ̃2R−1, (28)

λ̃3R−1 < Q̄1, (29)

λ̃4R−1 < Q̄2, (30)
c∗

λ̃1
+

(
1

λ̃3
+

1

λ̃4

)
1
α
(1− e−ατ )c∗ <

c2
λ̃2
, (31)
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Remark 4: It is now widely recognized that the time delays
are often unavoidable in various practical systems and can
affect system performance. Over the past years, the mixed
time delays has attracted much attention and variety of results
are presented in [39] and [40]. In this paper, the time delay
we consider is constant. By constructing different Lyapunov-
Krasovskii function, we can extend our results to mixed
time-delay systems to reduce the conservativeness.

IV. NUMERICAL SIMULATION
Consider the neutral system (1) with the following matrices:

G =

−0.2 0.1 0
0.1 0.2 −0.6
0.2 0 0.3

 , R =

0.3 0 0
0 0.5 0
0 0 1

 ,
A1 =

−8 2 1
0 −5 −1
5 −1 1

 ,A2 =
−3 −2 0

2 0 4
5 2 0

 ,
B =

−0.10.1
0.3

 ,M =
−0.30.7

0.5

 ,N1 =
[
0.3 −0.3 0.1

]
,

N2 =
[
0.2 −0.4 0.5

]
,H =

[
0.3 0.6 0.3

]
.

Let c1 = 1, c∗ = 2, c2 = 5,T = 2.5, σ = 1, d =
0.05, h = 0.08, η = 0.5, β = 0.6, and choose F(t) =
sin(t), f (x(t)) = 0.6 sin(x1(t)− x3(t)).
Using the method in Remark 3 to solve the LMIs in Theo-

rem 3 and Theorem 5, we can obtain

X =

22.5147 −0.5357 −2.4198
−0.5357 16.6342 2.8563
−2.4198 2.8563 1.7731

 ,
Q̃1 =

11.5908 −6.3525 −1.8589
−6.3525 9.3303 2.0135
−1.8589 2.0135 0.6342

 ,
Q̃2 =

167.9825 −21.0453 −26.7386
−21.0453 173.6349 26.1708
−26.7386 26.1708 40.3957

 ,
W1 =

[
−326.9790 39.3361 −84.2151

]
,

W2 =
[
−148.5988 44.1303 18.0651

]
,

K1 =
[
−26.8605 22.0499 −119.6755

]
,

K2 =
[
−16.0833 −6.9699 3.4727

]
.

ν = 18.6985, λ1 = 0.4526, λ2 = 35.3490,

λ3 = 0.0755, λ4 = 18.5351.

FIGURE 1. System state x(t) in open-loop case.

FIGURE 2. System state x(t) in closed-loop case.

We note that the control law (6) contains a sign function
sign(s(t)), which can cause severe chattering. High-frequency
chattering will affect the actual control accuracy and may
cause system oscillation to destroy controller components.
Therefore, we replace the traditional sign function with a
smooth approximate sigmoid function (35).

sigm(s(t)) =
2

1− e−s(t)
− 1, (35)

Simulation results with the initial condition x(0) =[
0.42 −0.7 0.48

]T are shown in Fig.1 - Fig.6. Fig.1 and

0̄ =


0̄11 P̄−1A2 + P̄−1BK̄2 P̄−1G AT1 + K̄

T
1 B

T

∗ −e−αd Q̄−11 0 AT2 + K̄
T
2 B

T

∗ ∗ −e−αhQ̄−12 GT

∗ ∗ ∗ −Q̄2

 ,

10̄ =


10̄11 P̄−11A2 − P̄−1B(HB)−1H1A2 0 1AT1 − (B(HB)−1H1A1)

T

∗ 0 0 1AT2 − (B(HB)−1H1A2)
T

∗ ∗ 0 0
∗ ∗ ∗ 0

 ,
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FIGURE 3. Evolution of xT(t)Rx(t) in closed-loop case.

FIGURE 4. Sliding variable s(t).

FIGURE 5. Control input u(t) with sign function.

Fig.2 show the curves of the system state in open-loop and
closed-loop cases respectively, which can demonstrate the
effect of SMC law.

FIGURE 6. Control input u(t) with sigmoid function.

From the given initial state vector x(0)=
[
0.42 −0.7 0.48

]T
and know matrix R, we can calculate xT (0)Rx(0) = 0.53,
which satisfies that xT (0)Rx(0) ≤ 1, and from Fig.3, it is
easy to see that the weighted state trajectory xT(t)Rx(t) does
not exceed c2 = 5 during the time interval [0,T ], which
indicates that the system satisfies finite-time stability about
(c1, c2,T ,R) by the SMC law we designed. Fig.4 shows the
curve of sliding variable s(t).
Fig.5 depicts the evolution of control input u(t) with the

switching function sign(s(t)), we can see that the control
input begins to jitter at high frequency when the system state
reaches the sliding surface and then remains in this state,
which we do not want to see. Fig.6 depicts the evolution
of control input u(t) with the switching function sigm(s(t)),
compared to Fig.5, we can find that the addition of sigmoid
function can effectively reduce the chattering phenomenon.

V. CONCLUSION
Based on sliding mode control, we have investigated the
finite-time stability problem of a class of uncertain neutral
systems. A suitable integral-type sliding surface and an SMC
law are designed, which can ensure the system satisfies FTS
in time interval given. The obtained conditions are given
in the form of LMIs for easy solution, a numerical simula-
tion shows the practicability of the proposed method. The
neutral time-delay systems studied in this paper have better
universality than general time-delay systems, such as wire-
less transmission system, standard time-delay system and
so on, can be converted into this kind of neutral system,
FTS can ensure the transient performance requirements of
such systems. It is noteworthy that the results we obtained
contain a large number of variables and parameters, which
increases the computational complexity, so how to simplify
the results and reduce the conservativeness, deserves further
research. In the future, we will use adaptive sliding mode
control to study uncertain neutral systems with mixed time
delays. In addition, we shall extend the proposed method to
Markovian jump systems, and investigate the asynchronous
sliding mode control problem.
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