
Received September 19, 2021, accepted October 9, 2021, date of publication October 13, 2021, date of current version October 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119600

Deep Transfer Learning Based Intersection
Trajectory Movement Classification for
Big Connected Vehicle Data
MD MOSTAFIZUR RAHMAN KOMOL 1, MOHAMMED ELHENAWY 1,2,
MAHMOUD MASOUD 1,2, SEBASTIEN GLASER 1,2, ANDRY RAKOTONIRAINY 1,2,
MERLE WOOD3, AND DAVID ALDERSON3
1Centre for Accident Research and Road Safety-Queensland, Queensland University of Technology, Brisbane, QLD 4000, Australia
2Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
3Department of Transport and Main Road (Queensland), Brisbane, QLD 4002, Australia

Corresponding author: Md Mostafizur Rahman Komol (mdmostafizurrahman.komol@hdr.qut.edu.au)

This research is funded by the Department of Transport and Main Roads, the Queensland University of Technology, iMOVE Australia, and
supported by the Cooperative Research Centres program, an Australian Government initiative.

ABSTRACT Trajectory movement labelling is an important pre-stage for predicting connected vehicle (CV)
movement at intersections. Drivers’ movement prediction and warning at intersections ensure advanced
transportation safety and researchers use machine learning-based data-driven approaches to implement these
technologies. However, prediction of drivers’ movements at intersections requires labelling the train and
test dataset accurately with different vehicle movements at intersections to evaluate the performance of the
prediction model by comparing the actual and predicted intersection movements. Moreover, due to GPS
detection error or missing co-operative awareness messages (CAM), the data resides with many abnormal
trajectories which are unable to be matched with regular straight or any turning movements. Especially for
big data with million trajectories, it is tedious to label the movements manually. To solve this problem,
we have created an automated trajectory movement classification technique using a dual approach of map
matching technique and deep transfer learning modelling. Data of connected vehicle trajectory information
is taken from the Ipswich Connected Vehicle Pilot (ICVP) Project, which is one of the largest connected
vehicle pilots within a naturalistic driving environment in Australia. Map matching approach is performed
as initial labelling by analysing the origin and destination of the vehicle CAMmessages at intersections and
then was converted as image datasets of 19202 samples. The map matching error and abnormal trajectories
are identified by visual inspection. With properly labelled 9496 training images, 10 transfer learning models
are built and tested through the remaining 9706 testing images. The maximum testing accuracy (99.73%) is
achieved from the Densenet169 model, and the result shows satisfactory accuracy for individual classes:
straight (99.85%), turn left (99.59), turn right (99.25), u-turn (100%), abnormal (98.63%). This model
becomes a routine tool that is used daily to automatically classify thousands of trajectory movements of
the C-ITS data in the ICVP project.

INDEX TERMS Connected vehicle, movements classification, intersection,mapmatching, transfer learning.

I. INTRODUCTION
The connected vehicle is an emerging technology of Intel-
ligent Transportation System (ITS) that has potential road
safety applications and advanced transportation facilities [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Afendee Mohamed .

It is an advanced transformative solution to traffic collisions,
vulnerable road users’ safety, road work zone safety, conges-
tion, and dilemma zone problems [2], [3]. Here, vehicles and
system infrastructures are connected wirelessly with a vehic-
ular ad hoc network (VANET) and communicate with each
other to properly navigate with upcoming circumstances.
The communication transmits bi-directionally from vehicle
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to vehicle (V2V) and vehicle to infrastructure (V2I) in order
to locate vehicle positions, intended movements, destination
and produce safety warnings based on circumstances [2].
The multipurpose implementation of this technology and
consequent safety warning for drivers improve transportation
in many ways [4], [5]. Some most frequent safety appli-
cations of connected vehicle technology include back of
queue warning [6], road work warning [7], advanced red
light warning [8], red-light running prediction [3], emergency
vehicle travel time reduction [9]. In Queensland, Australia,
vulnerable road users: pedestrians, bicyclists, and motorcy-
clist fatality is 12.3%, 3% and 13% respectively of overall
road death [10]. Connected vehicle technology is effective
in producing warnings for vulnerable road users crossing
at roads. Apart from safety implications, connected vehicle
technology ensure emission reduction and fuel-saving which
is environmentally friendly as future mobility [11].

At present, there exist many pilot studies of connected
vehicles in developed countries like the USA, Australia,
Japan, China, France and so on. Some common and
renowned connected vehicle pilots are New York City
DOT Pilot [12], Tampa-Hillsborough Expressway Authority
Pilot [13], Wyoming DOT Pilot [7], Ipswich Connected vehi-
cle Pilot [14], [15], Safe and Intelligent Mobility Project [16]
etc. They are working on implementing connected vehicle
technology and applications practically on-road as field oper-
ation test (FOT) over large urban areas. Such large-scale
pilot studies confront major challenges with accurate data
collections, management, processing and analysis.

When evaluating drivers’ behaviour under the influence of
C-ITS, identifying and labelling individual trajectory move-
ments of connected vehicles at intersections is essential for
accurate analysis and understanding. Labelling can be a
labour-intensive task that also introduces some level of error.
An automated intersection trajectorymovement classification
is the desired approach for handling big connected-vehicle
datasets. As an alternative, there are other commercial rout-
ing tools that extract accurate geo-location and map infor-
mation during dynamic vehicle movements. However, such
commercial tools incur a license fee, and this expense rises

FIGURE 1. Example of an erroneous trajectory.

immensely with usage over very large datasets. Moreover,
the quality of collected data highly relies on the transmission
latency of information between vehicles and infrastructures.
During the data collection in such extensive field operation
test procedure, errors are occurred by communication devices
like GPS and cause inaccurate CAM location information,
which raises the difficulty in properly classifying vehicle
trajectories. Especially at intersections, this inaccurate loca-
tion information leads to obscurity in labelling the vehicle
trajectory movements. An example of an erroneous trajectory
found during data analysis is shown in the following Figure 1.

These vehicle trajectory movements are inconsistent, mis-
matched, or incompatible with regular straight and turning
movements at intersections. So, it is also a desired concern to
classify these abnormal trajectories for the purpose of track-
ing error, defining error reasoning statements and data clean-
ing. Otherwise, the downstream analysis of the FOT data will
not be conclusive with the mislabeled or erroneous dataset.
For further use of the data in various applications such as
prediction of driver movement or red-light running incidents
at intersections, the training of the machine learning model
needs accurate labelling of drivers intended movements at
the intersection. Otherwise, the trained model’s performance
will not be reliable as the training and testing data labels
are noisy. Even if the trained model performance appears
satisfactory, it may produce unacceptable false alarms if used
on roads and may even distract drivers and compromise road
safety. Thus, accurate and cost-effective trajectory labelling
for data analysis purposes and building prediction models is
extremely important. Geographic Information Systems (GIS)
and vehicle kinematic information like speed, acceleration,
braking and other forces related to diving behaviour from
naturalistic driving dataset was used to extract driving pat-
terns. They also analyse the effective parameters of GIS
mapping of naturalistic driving data. However, no study is
found on automated intersection movement scenarios anal-
ysis with connected vehicle data using the deep transfer
learning technique [17], [18].

In this study, an automated trajectory movement classi-
fication technique is developed using a dual approach of
map matching technique and deep transfer learning mod-
elling for big, connected vehicle data. Initially, a Shallow
Map Matching approach is used to label trajectory move-
ments at intersections. The performance of map matching
based trajectory movement labelling is unsatisfactory with
many mislabelled movements, and this approach is incapable
of identifying abnormal trajectories. Further, the trajectory
events are converted into images to generate an image dataset
of 19202 samples. The mislabeled images are corrected by
manual visual inspection, and the images of incomplete,
missing and erroneous trajectories are labelled as abnor-
mal Trajectories. At the final stage, this image dataset is
used for the Deep Transfer Learning technique, which is
considered more flexible than building a deep neural net-
work (DNN) as DNN requires much bigger labelled data
to get high performance which is excessively repetitive and
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time-consuming. Instead, 10 pre-trained models are trained
for accurate classification of the five intersection move-
ments, including abnormal trajectories, and the best model is
found with a satisfactory and reliable test result. This proce-
dure helps classifying trajectory movement accurately (near
100%), including abnormal trajectories, and it does not bear
any expense like commercial tools. This model has potential
application for connected vehicle pilot studies to:

• Identify erroneous abnormal trajectories which have
missing CAM information due to GPS error at
intersections.

• Automatically annotate trajectory movement for down-
stream statistical analysis or as for any supervised
machine learning based prediction analysis like drivers’
intended intersection movement prediction.

• Create models suitable for hardware capacity. Moreover,
this study comparesmany pre-trained networks of differ-
ent sizes to annotate trajectories at intersections so that
hardwires with different computational power can use
the best performing model based on its capacity.

II. WORKING PRINCIPLE
Our working principle comprises several stages. For our
current study, naturalistic driving data of connected vehicles
is taken from the ICVP project [14], the largest connected
vehicle pilot study in Australia. The naturalistic driving
method provides intuition to regular driving behaviour, and
it is advantageous in collecting very large datasets in quan-
titative and qualitative terms from field operational test
(FOT) [17]–[19]. The ICVP project has installed roadside
units at 29 signalised intersections and undergoes a field oper-
ation test of 351 connected vehicles on Queensland roads.

Themapmatching approach is performed using road topol-
ogy information from MAP Extended Messages (MAPEM)
and polygon drawing over desired intersection zone using
Google Earth Pro software. By analysing the origin and
destination of the CAM messages at these polygon regions,
vehicle trajectory movements at intersections are labelled
initially. Following that, trajectory information is converted
as image datasets of 19202 samples using our MATLAB
app. The map matching error and abnormal trajectories are
identified by visual inspection over the images, and they are
labelled into five classes, including straight, turn left, turn
right, U-turn and abnormal trajectory class. By the end of
the map matching and visual inspection, we take a data set
that consists of 19202 images with pure labels. Consequently,
9496 images are used to train 10 pre-trained models through
transfer learning, and the rest are used to test the trained mod-
els. The flowchart in Figure 2 shows the Automated trajectory
movement labelling framework. The detailed schematic pro-
cedure of trajectory movement identification is illustrated in
the following subsections.

III. MAP MATCHING BASED MANEUVER LABELLING
This section describes the first step in labelling vehicle tra-
jectories at the signalised intersections. This step matches the

FIGURE 2. Schematic view of automated trajectory movement labeling.

trajectory points to the surveyed lane centre lines to identify
the origin and destination of a trajectory in the intersection
segments. The surveyed lane centre lines are extracted from
the MAPEM. The steps to do this labelling are as follow:

A. PREPARING SCENARIO
Initially, a set of polygons are constructed for the 29
signalised intersections. Google Earth Pro is used to draw
the polygons, which are then saved as a KML file. Finally,
the KML is imported into MATLAB and converted to a
structure. Figure 3 shows an example of the polygon drawing
approach over the intersection.

We import the trajectory data points and use the polygon
structure to select all CAMs inside the intersection area. Then
we filter out all CAMs which has a speed value of less than
4.32 km/h. We consider any CAM with a speed value of
less than 4.32 km/h is broadcasted by a stationary vehicle.
The removal of stationary CAMs can minimise duplicate data
points to improve data processing efficiency.

B. ORIGIN-DESTINATION (OD) APPROACH
We use the constructed Origin-Destination (OD) matrix of
the intersection to estimate the origin and destination of
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FIGURE 3. Segmenting Intersection Polygon on Google Earth Pro.

the trajectories. Because of inaccuracies in the location infor-
mation, we group the lanes of each leg into two groups,
namely the ingress group and the egress group, as shown in
Figure 3. Each ingress and egress of intersections is assigned
with a unique id. Based on a schematic analysis of origin
and destination, we can assign the label of trajectory move-
ment. Segmentation of a four-leg intersection into numeric ids
based on ingress (labelled with red fonts) and egress (labelled
with green fonts) is shown in Figure 4, and trajectory labelling
scheme with origin and destination is shown in TABLE 1.

C. MATCHING TRAJECTORIES WITH OD MATRIX
We calculate the distance from each point on the trajectory
to the intersection centre point and use these distances to
divide the trajectory into two parts ingress trajectory and
egress trajectory. Then we match the constructed ingress
trajectory CAM points against all possible ingress lane centre
lines extracted from the intersection’s KML file. Remove
any CAM that is far more than five meters from the nearest

FIGURE 4. Intersection segmentation with numeric id at ingress and
egress.

TABLE 1. Trajectory labeling with OD.

centre line as they are deemed to add noise to the data
matching. Based on this match, each ingress lane has a score
reflecting its probability of being part of the ingress trajectory.
We repeat the above procedure using the egress trajectory
and the egress centre lanes. After that we use the output lane
scores from ingress and egressmatching and the approachOD
matrix to assign a label (i.e. straight, turning left, turning right
andU-turn) to the trajectory. The flowchart in Figure 5 depicts
the overall map matching procedure.

Using the map machine based automated labelling, four
types of connected vehicle trajectory movements are labelled
at a signalised intersection consisting of straight, turn left,
turn right and U-turn movements. However, there are no
ground truth labels of trajectory movements to compare our
map matching based labelling, and so, it is not feasible
to measure the accuracy of map matching based labelling.
Moreover, our map matching approach is incapable of iden-
tifying abnormal and erroneous trajectories that do not match
with regular four intersection movements. The trajectories
with missing CAM messages are not identifiable using this
algorithm as it only analyses the origin and destination of
vehicle trajectory points. So, we converted intersection trajec-
tories into images using our designed MATLAB application
and inspected their movements visually to compare with map
matching based labels. Vehicles positions at trajectory are
continuous dots that originate from frequent CAM message-
based communication. These continuous dots generate the
trajectory line at images which define its movement at inter-
sections with its origin to destination approach. Also, using
the vehicle position information at longitude and latitude
in the map, the trajectories of each event are drawn into
images. The graphical user interface (GUI) of the MATLAB
app is shown in Figure 6.

To evaluate the result of map matching based trajectory
movement labelling, we visually inspect all 19000 trajecto-
ries. Here, many incorrect labelling is detected when visually
inspecting the trajectory images, and the estimated accu-
racy is 90%. Also, the abnormal trajectories were identified
during the visual inspection of images which were unable
to be detected by the map matching approach. So, only
labelling with map matching may produce further mislabeled
data of intersection trajectories with a lot of noisy abnor-
mal movement incidents. These abnormal trajectory move-
ments found through GPS tracking are often caused by
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FIGURE 5. Flow chart of CAM filtering, trajectory construction and map matching.
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data incompleteness, double trajectory lines or undefined
movement class. It is noted that some trajectory origins
have displaced a few steps ahead due to missing a few
CAM messages, but they are still clearly identifiable of their
movement class. So, instead of considering them as abnormal
trajectories, they are still considered under regular movement
classes. Also, sometimes vehicles parked or passed through a
sideway after crossing the intersection. These incidents still
show incomplete trajectories, but their movement is still iden-
tifiable. But trajectory movements that are not identifiable
to the regular four-movement class are considered abnormal
and don’t contribute to our research purpose. Instead, these
can be considered as an error in data collection or detection
equipment (GPS). These abnormal trajectories are needed
to be identified such that any downstream analysis of the
data becomes more accurate. So, it is crucial to identify five
different trajectory movement classes, including abnormal
trajectories. Figure 7 and Figure 8 shows output labels and
some abnormal trajectories, respectively. The assigned label
in Figure 7 shows the mistaken label.

FIGURE 6. MATLAB application interface developed to visually check and
correct any wrong label.

To classify trajectory movements with a higher level of
accuracy, we used deep transfer learning-based modelling.
The detailed schematic procedure of trajectory movement
identification is illustrated in the following subsections.

IV. DEEP TRANSFER LEARNING-BASED
MANEUVER LABELLING
Transfer learning is a machine learning design methodology
where a model developed for a task is reused as the starting
point for a model on a second related task. It is a popular
methodology in deep learning where it is not feasible to
label millions of data points to learn the massive number
of parameters in a neural network. Therefore, pre-trained

models are used as the starting point on a second related
task. In the context of our trajectory classification problem,
transfer learning uses knowledge learned from the image
classification task for which millions of labelled data is avail-
able in identifying the trajectory movement type where only
a little labelled data is available. Recall that creating labelled
data is time-consuming and expensive, and our goal is to
reduce human efforts and cost in trajectory classification.

In general, there are two common transfer learning
approaches we can use in our trajectory classification prob-
lem, namely: develop a model approach and a pre-trained
model approach. In the developed model approach, we start
by selecting a source task related to our task. This source
task must have massive data to train a deep neural network
from scratch. Then, we use the source task data to train the
deep neural network and ensure that it learns the source task.
Finally, we reuse and finetune this model or parts of it in our
trajectory classification task. The pre-trained model approach
is different from the above approach in that we directly reuse
and finetune one of the models trained on large and challeng-
ing datasets and released by many research institutions.

FIGURE 7. Output labels for several trajectories with an assigned
misclassified label.

We adopted ten pre-trained deep neural networks of dif-
ferent sizes to classify trajectories. The rationale of using
ten models is to identify the best performing models for
accurate classification of trajectory movements. Moreover,
complex networks are often beyond the limit of hardware
capacity and computational power. So, it is crucial to show
the prediction performance of different models so that the
best performing model based on hardware capacity can be
chosen for the users’ benefit. These models were trained
using a massive number of very high-quality images to clas-
sify images into one of many predefined categories. The
selected pretrained model used in this formula are described
in following TABLE 2.
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FIGURE 8. Some abnormal trajectories of intersection vehicle movements.

In the transfer learning technique, the pre-trained models
discussed in Table 2 are finetuned. All the layers are kept
frozen, and only the fully connected layer is changed based
on the number of movement classes of our current study.
To create deep transfer learning models, we needed a labelled
dataset with a very large number of intersection movements.
The ground truth labels are critical to justify the model
accuracy and performance. So, at first, we pick a portion of
ICVP data with 19202 trajectory movement incidents which
is initially labelled using a map matching approach. Then we
convert them into image datasets and correct the mislabeled
images by inspecting them visually. Also, we create the
abnormal trajectory movement class as the fifth class in the
image dataset so that we can identify them separately. Consid-
erably, 19202 trajectory movements generated 19202 images
of trajectory movements. Among them, a training dataset is
created with 9496 images, and 10 pre-trained models were
built for classifying the trajectory movements accurately. The
remaining 9706 images are considered as the test dataset.
Figure 9 shows examples of 5 different class data used for
training and evaluation.

First, we proceed with image augmentation with random
flip, random rotation (0-360 degree) and input shear from
-10 to 10 to increase the variety of datasets. This adds more
noises in training data and helps the model understanding
better situation assessment. We also up-sample the abnor-
mal trajectory and U-turn images in the training dataset.
Gaussian noises are also augmented with U-turn images
and up-sampled. After up-sampling, the image dataset for
all classes during training and testing is illustrated in the
following TABLE 3.

Also, we convert the image size to model specific input
size: 224 × 224 for all pre-trained models except 227 × 227
for Alexnet. For trajectory movement classification, the train-
ing and testing of pre-trained models were performed in
python using Pytorch library. It was run on high configured
PC with intel i7 10th generation 3.6GHz processor, 16 GB
RAM. We use a GPU Nvidia GeForce RTX 3060 Ti which

TABLE 2. Pre-trained model description summary.

have 8GB GPU memory and 3584 CUDA cores, to help in
faster parallelisation of our classification accuracy by classes.
We split the training data into 90% for training and 10%
for validation. As hyperparameter tuning, we tune the batch
size, optimiser and learning rate using Random hyperpa-
rameter search tuning with optuna python library which we
have found very flexible to integrate with Pytorch library.
As an optimiser, we use Adam optimiser for all models
except Shufflenet shows better performance in stochastic
gradient descent (SGD) with a momentum of 0.9 Learning
rate 0.0001 as default works well for all models, and we run
the training and validation for around 25 epochs with early
stopping criteria on best validation accuracy. After tuning,
the selected hyperparameters for trained models are shown
in following TABLE 4.

V. RESULT & DISCUSSION
After training the pre-trained models with training images
datasets, they are tested with the remaining test dataset
of 9706 sample images. The overall model accuracy is mea-
sured as well as the prediction accuracy of individual move-
ment classes. The accuracy of all ten models are shown in
following TABLE 5, including their test accuracy for each
individual intersection trajectory movement class.

From the result, it is clearly identifiable that DenseNet169
gives the highest performance. The maximum testing accu-
racy (99.73%) is achieved from the Densenet169 model,
and the result shows satisfactory accuracy for individual
classes: straight (99.85%), turn left (99.59), turn right (99.25),
u-turn (100%), abnormal (98.63%). Only, Alexnet outper-
formsDenseNet169 in classifying the TurnRight class, which
is slightly higher (0.25%). Also, Googlenet performs best in
classifying Straight movements, but the performance differ-
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FIGURE 9. Trajectory images used as training and testing models:
(a) straight (b) turn left (c) turn right (d) U-turn (e) abnormal trajectory.

TABLE 3. Dataset summary.

ence between Googlenet and Densenet169 in identifying the
straight movement is very narrow. Among the other models,
Vgg16 shows comparatively superior performance classify-
ing all movement classes.

Figure 10 shows Densenet169 as the best performing
model with the highest overall prediction accuracy and
reliability for all movement classes. However, comparing
models based on accuracy is not sufficient to justify the
model performance. For the variation of test dataset size
for different classes, confusion metrics, precision, recall,
f1-score is required to understand the performance of the
model in real-time implementation. The Confusion Metrics
of the best four models is illustrated in TABLE 6

Confusion metrics show a clear view of predicted vs
actual sample movements and help compare the predicted

output of different classes of different models. Analysing
Table 6, Densenet169, Alexnet and Googlenet models
correctly classify the highest number of turn left (724), turn
right (792), and straight (8088) movements, respectively. The
correct classification rate of the abnormal trajectory (72) and
u-turn movement (11) is equivalent to the best four models.
However, overall, Densenet169 and VGG16 are reliable with
the accurate classification of all movements. Alexnet and
Googlenet models classify turn right and straight movement
in the highest number, but their performance is less reli-
able for classifying other classes. Instead, Densenet169 and
VGG16 models have correct classification rates for all move-
ments. For further evaluation of model performance, the
performance metrics of the best four models are shown
in TABLE 7.

TABLE 4. Model Hyper-parameters chart.

Performance metrics in Table 7 shows the precision,
recall and f-1 score of the best four models for each
individual movement class. All of them shows 100%
precision, recall and f-1 score for u-turn classification. For
identifying abnormal trajectory, Densenet169 shows highest
precision (98.63%), recall (87.8%) and f-1 (92.9%) score.
Densenet169 and VGG16, both models, perform accurate
classifying straight movement, and their precision, recall
and f1-score is 99.86%, 99.96% and 99.91% equivalently.
Googlenet model has a higher precision score (99.88%),
but the recall score is reduced to 99.95%, and the f1 score
remains similar (99.91%) to the f-1 score of Densenet169 and
Vgg16. Densenet169 also shows best precision (99.59%),
recall (99.45%) and f-1 score (99.52%) for turn left classifica-
tion. For right turn classification, Alexnet shows the highest
precision score (99.50%), whereas VGG16 shows the highest
recall (99.49%) and f-1 score (99.37%). Densenet169 also
shows better precision (98.99%), recall (99.37%), f-1 score
(99.18%) in classifying right turn movement, which is very
close to the highest measured precision (99.50%), recall
(99.49%) and f-1 score (99.37%). The comparison of perfor-
mance metrics among the best four models is visualised in the
following Figure 11 along with the precision, recall and the
f-1 score of models for individual movement classes.

Based on the performance metrics comparison of the best
four models, DenseNet169 is considered the best performing
model for our current study. Overall, Dense169 classifies
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TABLE 5. Model performance table.

FIGURE 10. Comparison of classification accuracy among different models.

the trajectory movement for accurate labelling of mislabelled
data and identifying abnormal movements.

In this study, a limited number of U-turn samples and
abnormal trajectories are tested, evaluating model perfor-
mance as the dataset was collected from naturalistic driv-
ing and field operational tests. Also, the study classifies
abnormal trajectories which only found in the field operation
test of the ICVP project. So, model performance may vary
if abnormal trajectories of different categories are required
to be tested except found in the ICVP projects. However,
the methodology of this study is beneficial in solving such

limitations. If the model is trained with different categories
of erroneous or abnormal trajectories found in a particu-
lar experiment, it can successfully classify any intersection
movements and abnormal trajectories. This model has suc-
cessfully classified over 1000,000 trajectory movements of
the C-ITS intersection data collected by the ICVP project.
It removed a substantial amount ofmanpower that would have
been required to classify the movements with a high level of
accuracy. Although we are using transfer learning the model,
it still needs a significant number (around 19000) of manually
labelled trajectories for training the model. Recent advanced
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TABLE 6. Confusion metrics of best 4 models.

AI technologies like using Generative Adversarial Network
may help in producing similar trajectory images of multiple
classes and reduce the burden of manual data labelling for
supervised learning techniques [27]. In our proposed study,
the four best models are explained, and they can be used
for different applications. For any cases of memory short-
age in testing phases, a smaller network that supports the
hardware can be chosen. The methodology of this study has
future potential for automated data labelling and scenario
analysis of various domains using artificial intelligence tech-
niques. Especially, our prediction models can be directly used
labelling big data for supervised machine learning techniques
and filtering erroneous data in predicting drivers’ turning
behaviour. Moreover, the proposed methodology is useful for
automated data labelling applications or classifying scenarios
of industrial purposes and field operation tests in a large scale.

VI. IMPLICATION
The proposed methodology defines a simple approach of
labelling trajectory movements at intersections. It is highly
recommendable for connected vehicle pilot studies with its
accurate classification performance. The selected model is
currently being used in our ICVP project.

Any co-operative transport assistance and prediction at
an intersection require accurate ground truth labelling to
measure the accuracy between actual vs predicted values.
Especially for turning movement prediction at intersections,
red-light running behaviour prediction or stop-go prediction
at amber light requires accurate labelling of vehicle move-
ment at intersections. In the case of a big, connected vehicle
dataset, a small accuracy loss may cause mislabelling of
huge vehicle movement events at intersections. Even a good
prediction accuracy will not be considered reliable when the
ground truth is not properly labelled. This will jeopardise the
quality of evaluation for the implementation of connected
vehicle technology on roads. Our proposed framework is
highly accurate (near 100%) for the practical implementation
of connected vehicle pilot studies. In most case scenarios,
commercial tool like Google direction API is potentially
used to identify the vehicle trajectory movement informa-
tion through geo-location and maps. However, the ICVP
project would like to develop our own intersection trajectory
movement labelling tools so that we do not need to rely on
any commercial product. Moreover, Google direction API
has its expenses in license sharing and peruse on data; and
this expense is noticeable for large datasets of connected
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FIGURE 11. Performance metrics comparison of top 4 models.

TABLE 7. Performance matrix of best 4 models.

vehicle pilot studies. Our proposed methodology is free of
cost and ensures accurate trajectory movement classification.
For research purposes at pre-processing data stage, abnormal
trajectories and missing information in data are needed to
be disregarded as data cleaning [28]. Identifying abnormal
trajectories due to CAM message error is crucial to potential

data analysis and understanding. Our proposed classification
model also helps to identify abnormal trajectories which are
created due to CAMmessage error and unable to be matched
with regular straight or any turning movements.

VII. CONCLUSION
This research demonstrates a dual methodological approach
to classify vehicle trajectory movement at intersections. It is
capable of handling big, connected vehicle datasets of a
pilot study by proposing an automated approach of trajectory
movement labelling using a simple map matching algorithm
and deep transfer learning. The proposed methodology is
also cost-effective rather than using expensive commercial
tools for identifying vehicle geo-location dynamically and
trajectory movement labelling. Also, it helps in data cleaning
problems and dataset error identification. The accurate pre-
diction rate of our proposed model in this research defines the
potential to use this methodology in the real-time application
for trajectory movement labelling of big, connected vehicle
data
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