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ABSTRACT In this paper, we propose various quantitative information-theoretic bit security reduction
measures that correlate the statistical difference between two probability distributions with the security level
gap for two cryptographic schemes. We derive tighter relations between information-theoretic measures
for quantifying the precision and guarantee the security level of the cryptographic scheme implemented
over a precision-restricted environment. Further, the generalized versions of previous security reductions are
devised by relaxing the constraints on the upper bounds of the information-theoretic measures. This makes
it possible to estimate bit security more reliable and improves the security level. We also estimate the effects
on the security level when the κ-bit secure original scheme is implemented on a p-bit precision system.
In previous studies, p was fixed as κ2 ; however, the proposed schemes are generalized such that the security
level κ and precision p can vary independently. This results in a significant difference. Moreover, previous
results cannot provide the exact lower bound of the security level for p 6= κ

2 . However, the proposed results
can provide the exact lower bound of the estimation value of the security level as long as the precision
p satisfies certain conditions. We provide diverse types of security reduction formulas for the six types
of information-theoretic measures. The proposed schemes can provide information-theoretic guidelines
regarding the difference between the security levels of two identical cryptographic schemes when extracting
randomness from two different probability distributions. In particular, the proposed schemes can be used to
quantitatively estimate the effect of the statistical difference between the ideal and real distributions on the
security level.

INDEX TERMS Bit security, Hellinger distance, information-theoretic measures, Kullback-Leibler diver-
gence, λ-efficient measure, max-log distance, relative error, Rényi divergence, security reduction, statistical
distance.

I. INTRODUCTION
The security of almost every modern cryptographic prim-
itive depends on randomness, which is extracted from a
specific probability distribution (e.g., a lattice-based cryp-
tographic scheme extracts its randomness from a discrete
Gaussian distribution). In other words, the probability distri-
bution of the cryptographic scheme has an important influ-
ence on its security. From this perspective, many studies
have been conducted to analyze the way that the secu-
rity level changes when the probability distribution for the
randomness of the cryptographic scheme is replaced by
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another probability distribution. Traditionally, the ‘‘proba-
bility preservation property (PPP)’’ [4], [6], [14] has been
widely used to correlate the difference between two statis-
tical distributions based on the probability of a successful
adversary attack. This type of security reduction enables us
to compare the relative security levels among cryptographic
schemes. However, we cannot obtain any detailed quantita-
tive information regarding the security level using the PPP
alone. In light of this, several researchers have conducted
studies to enable quantitative security analyses.

Micciancio and Walter [1], [2] are considered as leaders in
this field. They suggested various quantitative security reduc-
tions through information-theoretic measures, and expressed
security reductions in terms of bit security. However, there is
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a problem in that several information-theoretic measures are
used for estimating the bit security of a cryptographic scheme,
and the upper bounds required for each information-theoretic
measure are different. In particular, when the bit security
concept is applied in an actual cryptographic scheme, even if
the bit security is designed at a specific level or higher, if the
precision in the real system is limited to a higher degree than
the security level, the security of the implemented scheme is
affected. Micciancio and Walter proposed how to determine
the relationship between information-theoretic measures for
quantifying the precision and guaranteed the security of the
cryptographic scheme implemented in a precision-restricted
environment. However, note that their results provide clear
information in only limited cases, for which similar types of
limitations can be found in [12] and thus they can further be
improved.

The contributions of this study are as follows: First,
we derive tighter security reduction bounds compared with
the works by Micciancio andWalter [1], [2]. Second, we pro-
pose further generalized versions of both Micciancio and
Walter’s [1] and Yasunaga’s [12] security reductions by relax-
ing the constraints on the upper measurement bounds, such
as λ-efficient measures and the Hellinger distance. Using
these approaches, we propose methodologies for elaborately
estimating the effects on the security level of the crypto-
graphic scheme when the κ-bit secure original scheme is
implemented on a p-bit precision system, where p can be set
to any value as long as certain conditions are satisfied. Third,
we provide various types of security reduction formulas for
the six types of information-theoretic measures: statistical
distance, Rényi divergence, Kullback-Leibler divergence,
max-log distance, relative error, and Hellinger distance.
These measures are often used in cryptography for security
reduction analyses.

The remainder of this paper is organized as follows.
In Section II, we briefly introduce concepts necessary for
understanding our results. In Section III, we provide three
main approaches: tighter security reductions for crypto-
graphic schemes, further generalized andmore accurate secu-
rity reductions, and various forms of security reductions
expressed by six types of information-theoretic measures.
Finally, in Section IV, we provide conclusions and directions
for future research.

II. PRELIMINARIES
A. INFORMATION-THEORETIC MEASURES
Several widely known information-theoretic measures are
used to analyze a security reduction in the cryptographic
schemes.

1) STATISTICAL DISTANCE (1SD)
For any two discrete probability distributions P and Q, the
statistical distance between P and Q is defined as

1SD(P,Q) =
1
2

∑
x∈Supp(P)∪Supp(Q)

|P(x)− Q(x)|,

where Supp(·) denotes the support set of the probability dis-
tribution.

2) RÉNYI DIVERGENCE (RDα)
For any two discrete probability distributions P and Q such
that Supp(Q) ⊆ Supp(P), the Rényi divergence of order α
between P and Q is defined as follows:

a) α ∈ (1,∞): RDα(Q||P) = (
∑

x∈Supp(Q)

Q(x)α

P(x)α−1
)

1
α−1

b) α = 1: RD1(Q||P) = exp(
∑

x∈Supp(Q)
Q(x) log Q(x)

P(x) )

c) α = ∞: RD∞(Q||P) = max
x∈Supp(Q)

Q(x)
P(x) .

Here, RDα satisfies many attractive features such as probabil-
ity preservation, multiplicative properties, and data process-
ing inequality [4], [5], [7].

3) KULLBACK-LEIBLER DIVERGENCE (1KL)
For any two discrete probability distributions P and Q such
that Supp(Q) ⊆ Supp(P), the Kullback-Leibler divergence
between P and Q is defined as

1KL(Q||P) =
∑

x∈Supp(Q)

Q(x)log
Q(x)
P(x)

.

4) MAX-LOG DISTANCE (1ML)
For any two discrete probability distributions P and Q over
the same support (i.e., Supp(P) = Supp(Q)), the max-log
distance between P and Q is defined as

1ML(P,Q) = max
x∈Supp(Q)

|lnP(x)− lnQ(x)|.

Note that we should apply1ML only when the support sets
of the two distributions are the same.

5) RELATIVE ERROR (δRE )
For any two discrete probability distributions P and Q, the
relative error between P and Q is defined as follows [3]:

δRE (P,Q) = max
x∈Supp(P)

|P(x)− Q(X )|
P(x)

.

6) HELLINGER DISTANCE (HD)
For any two discrete probability distributions P and Q over
the same support �, the Hellinger distance between P and Q
is defined as [12]

HD(P,Q) =

√
1
2

∑
x∈�

(
√
P(x)−

√
Q(x))2.

B. SPECIAL TYPES OF MEASURES
Micciancio and Walter defined two special types of
measures [1], i.e., a ‘‘useful measure’’ and a ‘‘λ-efficient
measure.’’ We reuse their definitions.

1) USEFUL MEASURE
Any measure δ that satisfies the following three properties is
called a useful measure:
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a) Probability preservation property: For any event E
over the random variable X , we have PrX←P[E] ≥
PrX←Q[E] − δ(P,Q), where X ← P (respectively,
X ← Q) denotes that X is sampled from the probability
distribution P (respectively, Q). This property makes it
possible to determine the probability of an event occur-
ring under distribution P in terms of the probability of
the same event occurring under distribution Q and the
measured value δ(P,Q). It is not difficult to prove that
this property is equivalent to the bound 1SD(P,Q) ≤
δ(P,Q). This fact implies that δ = 1SD satisfies this
property.

b) Sub-additivity for joint distributions: Let (Xi)i and (Yi)i
be two lists of discrete random variables over the support∏

i Si, and let us define X<i = (X1, . . . ,Xi−1) (simi-
larly for Y<i). Then, δ((Xi)i, (Yi)i) ≤

∑
imaxa δ([Xi|X<i

= a], [Yi|Y<i = a]), where the maximum value is taken
over a ∈

∏
j<i Sj.

c) Data processing inequality: δ(f (P), f (Q)) ≤ δ(P,Q) for
any two probability distributions P, Q and function f (·),
i.e., the measure δ does not increase under an additional
function application.

2) λ-EFFICIENT MEASURE
Consider a measure δ that satisfies the above two properties
b) and c). We call this a ‘‘λ-efficient measure’’ if it satisfies
the following property d) instead of the above property a):

d) Pythagorean probability preservation property (with
parameter λ): For any joint distributions (Pi)i and (Qi)i
over support

∏
i Si, if δ(Pi|ai,Qi|ai) ≤ λ is applied

for all i and ai ∈
∏

j<i Sj, then 1SD((Pi)i, (Qi)i) ≤
||(max

ai
δ(Pi|ai,Qi|ai))i||

2
.

C. NEW NOTION OF BIT SECURITY
Bit security has long played a crucial role in measuring and
estimating the quantitative security level of cryptographic
primitives. The traditional definition of bit security is sim-
ple and is defined as minA{log2

TA
εA
}, where for an arbitrary

adversary A, TA and εA are the resources and attack success
probability of the adversary, respectively. Micciancio and
Walter defined a new notion of bit security by designing a
new concept of a security game [2]. Using their newly devised
security game, they redefined the advantage of an adversary
in terms of information-theoretic quantities. We cite their
definitions as follows:
Definition 1 (Definition 5, [2]): An n-bit security game is

played by an adversary A who is interacting with a challenger
C. At the beginning of the game, the challenger chooses a
secret c, which is represented by a random variable C ∈
{0, 1}n, from a distribution DC . At the end of the game, A
outputs a value that is represented by the random variableA.
The adversary’s goal is to output a value a such that R(c, a),
where R is a relation. In addition, A may output a special
symbol ⊥ such that R(c,⊥) and Rc(c,⊥) are both false.

Definition 2 (Definition 7, [2]): For any security game
with the corresponding random variables C and A(C),
the advantage of the adversary is advA = I (C;Y)

H (C) =

1 − H (C|Y)
H (C) , where I (·; ·) is the mutual information between

two random variables, H (·) is the Shannon entropy of a
random variable, and Y(C,A) is the random variable with
marginal distributions Yc,a = {y|C = c,A = a}, which are
defined as follows:

a) Yc,⊥ = ⊥, for all c
b) Yc,a = c, for all (c, a) ∈ R
c) Yc,a = {c′← DC |c′ 6= c}, for all (c, a) ∈ Rc.

Definition 3 (Definition 10, [2]): For a search game,
the advantage of the adversary A is advA = αAβA, whereas
for a decision game, it is advA = αA(2βA − 1)2, where
αA = Pr[A 6= ⊥] is the output probability, and βA =
Pr[R(C,A)|A 6= ⊥] is the conditional probability of success.

III. MAIN RESULTS
Micciancio andWalter found quantitative security reductions
between two identical cryptographic schemes with all other
conditions being equal and differing only in the probabil-
ity distributions by which the schemes extract randomness
[1], [2]. Their studies made it possible to estimate the security
loss that would occur when the given probability distribution
was replaced by another distribution. In other words, their
approaches have provided information-theoretic guidelines
of the security level of the system (i.e., how the statisti-
cal difference between two distributions affects the security
level of the cryptographic scheme). However, their results
might provide clear information only in a limited number of
cases and can be generalized. That is, their results provide
detailed information only when the information-theoretic
measure values between two probability distributions are
upper-bounded by a specific fixed value. Owing to these
problems, it is necessary to bring about tighter and more
generalized security reductions. Our first approach is a tighter
version of Lemma 3 in [1], which is proved by using a similar
approach to that in [1] as follows:
Theorem 1: Let SP and SQ be standard cryptographic

schemes with black-box access to probability distribution
ensembles Pθ and Qθ , respectively. If SP is κ-bit secure and
δ(Pθ ,Qθ ) ≤ 2−

κ
2 for some 2−

κ
2 -efficient measure δ, then SQ

is (κ − log2
2

3−2e−1−
√

5−4e−1
) ≈ (κ − 2.374)-bit secure.

Further, we have the following:

i) For λ ≤ 1/3: If SP is κ-bit secure and 1ML(Pθ ,Qθ ) ≤
2−

κ
2 (≤ 1/3), then SQ is (κ − 2.374)-bit secure.

ii) For λ ≤ 2/9: If SP is κ-bit secure and 1KL(Qθ ||Pθ ) ≤
2−

κ
2 (≤ 2/9), then SQ is (κ − 2.374)-bit secure.

iii) For λ ≤ 1/3: If SP is κ-bit secure and δRE (Pθ ,Qθ )

≤ 1− e−2
−
κ
2 (≤ 1− e−

1
3 ), then SQ is (κ − 2.374)-bit

secure.

Proof: First, we prove the main statement of this the-

orem. Suppose that TA
ε
Q
A
< 2

κ−log2
2

3−2e−1−
√

5−4e−1 is satisfied
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when an adversary A satisfies TA
εPA
≥ 2κ . Now, let us define the

following notations:

a) GPS,A (respectively, GQS,A): Security game defining an
event in which an adversary A succeeds in breaking
the scheme SP (respectively, SQ) with the probability
εPA = Pr(GPS,A) (respectively, ε

Q
A = Pr(GQS,A))

b) [GPS,A]
n (respectively, [GQS,A]

n): Independent n copies of
GPS,A (respectively, GQS,A)

c) εPAn (respectively, εQAn ): Probability that A will win the
security game [GPS,A]

n (respectively, [GQS,A]
n) at least

once
d) TAn : Required resources for A to win the security game

[GPS,A]
n (respectively, [GQS,A]

n) at least once
e) q: Number of queries of adversary A

Applying the probability preservation property and data
processing inequality of 1SD, we have the following:

εPAn ≥ ε
Q
An −1SD([GPS,A]

n, [GQS,A]
n)

≥ ε
Q
An −1SD((θi,Pθi )i, (θ

′
i ,Qθ ′i )i).

Here, (θi)i (respectively, (θ ′i)i) is the sequence of queries
made during the game [GPS,A]

n(respectively, [GQS,A]
n). Note

that at any point during the game, conditioned on event Ei,
(θj,Pθj )j<i and (θ ′j ,Qθ ′j )j<i take the same specific value, and
the adversary behaves identically in the two games up to
the point that it makes the i-th query. In particular, the con-
ditional distributions (θi|Ei) and (θ ′i |Ei) are the same, and
δ((θi|Ei), (θ ′i |Ei)) = 0. This is followed by sub-additivity for
the joint distributions in which

δ((θi,Pθi |Ei), (θ
′
i ,Qθ ′i |Ei))

≤ δ((θi|Ei), (θ ′i |Ei))+ δ(Pθ ,Qθ )

≤ 0+ 2−
κ
2 = 2−

κ
2 .

This ensures that we can apply the Pythagorean probability
preservation property, and thus we can guarantee that the
following inequalities are also true:

εPAn ≥ ε
Q
An −1SD((θi,Pθi )i, (θ

′
i ,Qθ ′i )i)

≥ ε
Q
An −

√
q× δ(Pθ ,Qθ )2

≥ ε
Q
An −

√
TAn × δ(Pθ ,Qθ )2

≥ ε
Q
An −

√
TAn × 2−

κ
2 .

At this point, without a loss of generality, we assume that
q ≤ TAn . Now, we set ε

Q
A =

1
n and note that TAn ≤ n × TA.

We then have

ε
Q
An −

√
TAn × 2

−κ
2 ≥ ε

Q
An −

√
nTA
2κ

= ε
Q
An −

√
TA

2κεQA
.

From the first assumption in the proof, the following
inequalities,

εPAn ≥ ε
Q
An −

√
TA

2κεQA

> ε
Q
An −

√
2
−log2

2

3−2e−1−
√

5−4e−1

= 1− (1− εQA )
n
−

√
2
−log2

2

3−2e−1−
√

5−4e−1

> 1− e−1 −

√
2
−log2

2

3−2e−1−
√

5−4e−1

≈ 0.1929

are satisfied from ε
Q
A =

1
n and (1− εQA )

n
= (1− 1

n )
n < e−1.

Meanwhile, considering a union bound, we can observe
that εPAn ≤ n × εPA , and recalling the initial assumption
εPA ≤

TA
2κ , we have the following:

εPAn ≤
nTA
2κ
=

TA

2κεQA

< 2
−log2

2

3−2e−1−
√

5−4e−1

≈ 0.1929.

Summarizing the above results, we obtain

1− e−1 −

√
2
−log2

2

3−2e−1−
√

5−4e−1 < εPAn

< 2
−log2

2

3−2e−1−
√

5−4e−1 .

After a simple computing verification process, we can
conclude that the upper and lower bounds of εPAn are the same.
This is clearly a contradiction, which must be based on the
first incorrect assumption. Thus, we finally have

TA

ε
Q
A

≥ 2
κ−log2

2

3−2e−1−
√

5−4e−1 .

That is, we show that SQ preserves at least
(κ − log2

2
3−2e−1−

√
5−4e−1

)-bit security. Thus, we prove the

main statement of this theorem.
Meanwhile, it is well known that 1ML and 1KL are

λ-efficient measures for λ ≤ 1
3 and λ ≤ 2

9 , respectively [1],
[2]. Thus, we can easily derive i) and ii) from the main
statement of the theorem. Moreover, from Lemma 6 in [1],
we have the relation 1ML(P,Q) ≤ − ln(1− δRE (P,Q)), and
we can naturally derive iii) from i). �
Remark 1: In a previous work [1], Micciancio and Wal-

ter suggested a (κ − 3)-bit security-preserving reduction.
We propose a (κ − 2.374)-bit security-preserving reduction
in the above theorem. Our result is almost 1-bit tighter than
that of the previous reduction. Although a 1-bit improvement
may seem minimal, this improvement will be enhanced in
the later results, that is, for up to 2.5-bit security gains in
Theorem 2 and the generalized result in Theorem 3.
In a previous study [9], Genise and Micciancio proposed

a novel sampling algorithm for G-lattices for any modulus
q < bk (where the positive integers b ≥ 2 and k ≥ 1
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are implicit parameters of the algorithm). Their proposed
sampler SAMPLEG outputs a sample with a distribution sta-
tistically close to D3⊥u (gT ),s (which denotes the ideal discrete
Gaussian distribution defined on the lattice coset 3⊥u (g

T )).
In Section 3.2 in [9], a quantitative security analysis is pro-
vided regarding the extent to which security loss will occur
when using SAMPLEG instead of D3⊥u (gT ),s. Assuming that a
cryptographic scheme using a perfect sampler for D3⊥u (gT ),s
is κ-bit secure, they concluded that swapping D3⊥u (gT ),s with
SAMPLEG yields approximately κ−2 log(tb2)−3log log q−5
bits of security (where t is a tail-cut parameter) under the
given conditions. Deriving this result, they used Corollary 1,
Proposition 1, and Lemma 3 in [1]. Note that they applied
Lemma 3 in [1] to obtain this result. Because Theorem 1 pro-
vides an almost 1-bit tighter security reduction than that of
Lemma 3 in [1], we can expect to obtain additional security
gains if we apply Theorem 1 in place of this lemma.

In [2], Micciancio and Walter supported and justified their
new ‘‘bit security’’ definition by proving a number of tech-
nical results, including an application to the security analysis
of indistinguishability primitives (e.g., encryption schemes)
making use of (approximate) floating point numbers (refer to
Section 5.3 in [2]). Corollary 2 and Theorem 8 in [2] are the
main results. In this paper, we make both the results tighter
than those in [2]. The following lemma is an improved version
of Corollary 2 in [2].
Lemma 1: For any adversary A with resource T attacking

SP and any event E over the output of A, the probability of
E is denoted by γP. The probability of E over the output of A
when attacking SQ is denoted by γQ. If the efficient measure

δ is
√
γQ
T

√
( 2×2y

3−2e−1−
√

5−4e−1
)
−1
-efficient and

δ(Pθ ,Qθ ) ≤

√
γQ

T

√
(

2× 2y

3− 2e−1 −
√
5− 4e−1

)
−1
,

then

γQ ≤
2× 2y

3− 2e−1 −
√
5− 4e−1

× γP ≈ 5.184× γP,

where y is a sufficiently small positive real number,
i.e., y→ 0+.

Proof: Let us consider the contraposition of Theorem 1,
that is, we introduce a value k that satisfies the following
equation

2
k−log2

2

3−2e−1−
√

5−4e−1
−y
=

T
γQ

(< 2
k−log2

2

3−2e−1−
√

5−4e−1 ),

where y is a sufficiently small positive real number.
For proof through a contradiction, suppose

γQ >
2× 2y

3− 2e−1 −
√
5− 4e−1

× γP.

We then have

2
k−log2

2

3−2e−1−
√

5−4e−1
−y
=

T
γQ

< T/(
2× 2y

3− 2e−1−
√
5− 4e−1

×γP),

which implies

2k <
T
γP
. (1)

Meanwhile, according to the contraposition of Theorem 1,
if

T
γQ

< 2
k−log2

2

3−2e−1−
√

5−4e−1

holds, then either 2k > T
γP

or δ(Pθ ,Qθ ) > 2−
k
2 should be

true. Now, let us recall the original condition of Lemma 1 such
that δ satisfies

δ(Pθ ,Qθ ) ≤

√
γQ

T

√
(

2× 2y

3− 2e−1 −
√
5− 4e−1

)
−1

and the value k also satisfies

2
k−log2

2

3−2e−1−
√

5−4e−1
−y
=

T
γQ
.

These facts imply that δ(Pθ ,Qθ ) ≤ 2−
k
2 holds for

the selected k . Therefore, based on the contraposition of
Theorem 1, 2k > T

γP
should be held; however, this contradicts

(1), which implies that the initial assumption must be false.
Thus, we have

γQ ≤
2× 2y

3− 2e−1 −
√
5− 4e−1

× γP.

�
Remark 2: Corollary 2 in [2] suggested the relationship

between γP and γQ as γQ ≤ 16× γP if the efficient measure

δ satisfies δ(Pθ ,Qθ ) ≤
√

γQ
16T (=

√
γQ
T × 0.25). However,

Lemma 1 proposes the relation between γP and γQ as γQ ≤
5.184 × γP if the efficient measure δ satisfies δ(Pθ ,Qθ ) ≤√
γQ
T

√
( 2×2y

3−2e−1−
√

5−4e−1
)
−1

(≈
√
γQ
T × 0.44). We manage to

derive more than three times tighter relations between γP and
γQ, even though the upper bound of δ(Pθ ,Qθ ) is larger than
that of Corollary 2 in [2]. This implies that Corollary 2 in [2]
provides a slightly loose reduction.

Using Lemma 1, we can derive the following theorem that
provides tighter (κ−5.54)-bit security reduction than (κ−8)-
bit security reduction of Theorem 8 in [2]. The following
theorem can be used to analyze the security of indistinguisha-
bility primitives: This proof is similar to that in [2].
Theorem 2: Let SP and SQ be a 1-bit secrecy game with

black-box access to probability ensembles (Pθ )θ and (Qθ )θ ,
respectively, and δ be a λ-efficient measure for any λ ≤√
( 2
3−2e−1−

√
5−4e−1

)−1(≈ 0.44). If SP is κ-bit secure and

δ(Pθ ,Qθ ) ≤ 2−
κ
2 , then SQ is (κ − log2

18
3−2e−1−

√
5−4e−1

−

y) ≈ (κ − 5.544)-bit secure, where y is a sufficiently small
positive real number, that is, y→ 0+.

Proof: Consider an arbitrary adversary A of SP, whose
resource is upper-bounded by T A. We define the output
probability of A as αAP , and its conditional success proba-
bility as βAP . From the κ-bit security of SP, the inequality
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αAP(2β
A
P − 1)2 ≤ TA

2κ is satisfied. For proof through contra-
diction, suppose the following:

αAQ(2β
A
Q − 1)

2
> T A/2

κ−log2
18

3−2e−1−
√

5−4e−1
−y
.

From Lemma 1, we have

αAP ≥ (
2× 2y

3− 2e−1 −
√
5− 4e−1

)
−1

× αAQ.

We can apply Lemma 1 because δ is a√
γQ

TA( 2×2y

3−2e−1−
√

5−4e−1
)
−1 -efficient measure, and the following

inequalities are satisfied:√
(
3− 2e−1 −

√
5− 4e−1

2
)

>

√
(

2× 2y

3− 2e−1 −
√
5− 4e−1

)
−1

>

√
αAQ

T A

√
(

2× 2y

3− 2e−1 −
√
5− 4e−1

)
−1

≥

√
αAQ(2β

A
Q − 1)2

T A

√
(

2× 2y

3− 2e−1 −
√
5− 4e−1

)
−1

=

√
γ AQ

T A

√
(

2× 2y

3− 2e−1 −
√
5− 4e−1

)
−1

>

√
2
log2

18×2y

3−2e−1−
√

5−4e−1 × 2−
κ
2

×

√
(

2× 2y

3− 2e−1 −
√
5− 4e−1

)
−1

= 3× 2−
κ
2 > 2−

κ
2 ≥ δ(Pθ ,Qθ ).

Now, consider ŜP and ŜQ, which are slightly modified ver-
sions of SP and SQ. They are almost the same as SP and SQ,
with the only difference being that adversary A can restart the
game with completely fresh randomness whenever it wants.
Consider an adversary B against Ŝ, which simply runs A until
A 6= ⊥ (restarting the game ifA = ⊥) and outputs whatever
A returns. If we define α as α = min(αAP, α

A
Q), the resource

T B of adversary B then satisfies T B < T A/α. The output
probability of B is αBP = αBQ = 1, and the conditional
success probability, i.e., the case that successfully solves the
distinguish problem is βBP = β

A
P (or βBQ = β

A
Q) for Ŝ

P (or ŜQ,
respectively). Based on the properties of λ-efficient measures
δ and 1SD, we have

βBP ≥ β
B
Q −
√

T Bδ(Pθ ,Qθ ) ≥ βBQ −

√
T B

2κ
.

Thus, we have

2βBP − 1 ≥ 2βBQ − 1− 2

√
T B

2κ
.

From the condition given in the theorem, we also have

2βAP − 1 ≤

√
T A

αAP × 2κ
,

that is,√
T A

α × 2κ
≥

√
T A

αAP × 2κ
≥ 2βAP − 1

≥ 2βBQ − 1− 2

√
T B

2κ
> 2βBQ − 1− 2

√
T A

α × 2κ

⇒ 3

√
T A

α × 2κ
> 2βBQ − 1 = 2βAQ − 1.

If αAQ ≤ α
A
P , then we have α = αAQ. Considering our proof

based on a contradiction assumption, we have

2κ <
9T A

αAQ(2β
A
Q − 1)2

< 9× 2
κ−log2

18×2y

3−2e−1−
√

5−4e−1 .

After some computations, we can simplify the above
inequality to

1 < y+ 1 < log2(3− 2e−1 −
√
5− 4e−1) < −1.374,

which is a contradiction. If αAQ > αAP , we then have α = αAP ,
and we know that the following inequalities are valid as

(
2× 2y

3− 2e−1 −
√
5− 4e−1

)
−1

× αAQ

≤ αAP <
9T A

2κ (2βAQ − 1)2

<
αAQ(3− 2e−1 −

√
5− 4e−1)

2y+1
.

We can observe that the upper and lower bounds of αAP
are the same. This fact implies that the inequalities can be
reduced to 1 < 1; thus, this case is also a contradiction. The
above process indicates that our initial assumption is false,
and finally we have

αAQ(2β
A
Q − 1)

2
≤ T A/2

κ−log2
18

3−2e−1−
√

5−4e−1
−y
,

and the theorem is clearly proven. �
Remark 3: We propose a 2.5-bit tighter security reduction

than that of Theorem 8 in [2]. This can be interpreted as being
six times more accurate in terms of an adversary’s number of
attack trials. We believe that this finding is by no means an
insignificant improvement. This finding can provide a more
reliable security measurement when implementing a security
system in an imperfect and precision-restricted environment.
We not only improve the tightness of a security reduction
but also extend the possible ranges of the λ value. Although
Theorem 8 in [2] can be applied for λ, which satisfies λ ≤ 1

4 ,
we extend its allowed range to λ ≤ 0.44.

Theorem 1 improves the approach in [1]. However, it still
has significant limitations owing to its universal use because
we can obtain the exact lower bound of the estimation value of
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the security level by applying Theorem 1 only when an effi-
cient measure δ satisfies δ(Pθ ,Qθ ) ≤ 2−

κ
2 . In other words,

we can only obtain inaccurate relative information about the
security level by applying Theorem 1. There are many prac-
tical situations in which δ(Pθ ,Qθ ) is much smaller or larger
than 2−

κ
2 . We need more general criteria and methodologies

that provide theoretical guidelines on how statistical differ-
ences affect the security level of cryptographic primitives.
This motivation enables us to derive the following theorem:
Theorem 3 (Generalization of Theorem 1): Let SP and

SQ be standard cryptographic schemes with black-box
access to probability distribution ensembles Pθ and Qθ ,
respectively. If SP is κ-bit secure and δ(Pθ ,Qθ ) ≤

2−
f (κ)
2 for some 2−

f (κ)
2 -efficient measure δ, then SQ is

(2 log2(
√
1+ 2f (κ)−κ+2(1− e−1) − 1) − f (κ) + 2κ − 2)-bit

secure. Here, f (κ) should satisfy f (κ) ≥ −2 log2(1 − e
−1
−

2−κ ), where κ is the security level of SP.
Proof: The overall flow of the proof is similar to that

in Theorem 1. Considering an arbitrary adversary A, suppose
that if TA

εPA
≥ 2κ is satisfied, then TA

ε
Q
A
< 2f (κ)−g(κ) is also

satisfied. Here, without a loss of generality, we assume that
g(·) is a monotonically increasing function. We can suppose
that this is because we are only interested in the value g(κ),
not the original form of the function g(·). Our purpose is to
find g(κ), which should be expressed by κ and f (κ). We then
use the same notations a), b), c), d), and e) in the proof of
Theorem 1.

Applying the probability preservation property and data
processing inequality of 1SD, we have

εPAn ≥ ε
Q
An −1SD([GPS,A]

n, [GQS,A]
n)

≥ ε
Q
An −1SD((θi,Pθi )i, (θ

′
i ,Qθ ′i )i).

Here, (θi)i(respectively, (θ
′
i)i) is the sequence of queries

made during the game [GPS,A]
n(respectively, [GQS,A]

n). Note
that at any point during the game, conditioned on the event
Ei in which (θj,Pθj )j<i and (θ

′
j ,Qθ ′j )j<i take the same specific

value, the adversary behaves identically in the two games up
to the point at which it makes the i-th query. In particular,
the conditional distributions (θi|Ei) and (θ ′i |Ei) are the same
and δ((θi|Ei), (θ ′i |Ei)) = 0. This is followed by sub-additivity
for joint distributions such that

δ((θi,Pθi |Ei), (θ
′
i ,Qθ ′i |Ei))

≤ δ((θi|Ei), (θ ′i |Ei))+ δ(Pθ ,Qθ )

≤ 0+ 2−
f (κ)
2 = 2−

f (κ)
2 .

This ensures that we can apply the Pythagorean probability
preservation property, and thus we can guarantee that the
following inequalities are also true:

εPAn ≥ ε
Q
An −1SD((θi,Pθi )i, (θ

′
i ,Qθ ′i )i)

≥ ε
Q
An −

√
q× δ(Pθ ,Qθ )2

≥ ε
Q
An −

√
TAn × δ(Pθ ,Qθ )2

≥ ε
Q
An −

√
TAn × 2−

f (κ)
2 .

At this point, without a loss of generality, we assume that
q ≤ TAn . Now, we set ε

Q
A =

1
n and note that TAn ≤ n × TA,

and we then have

ε
Q
An −

√
TAn × 2

−f (κ)
2 ≥ ε

Q
An −

√
nTA
2f (κ)

= ε
Q
An −

√
TA

2f (κ)εQA
.

Now, from the first assumption TA
ε
Q
A
< 2f (κ)−g(κ) in this

proof, the following inequalities are satisfied:

εPAn ≥ ε
Q
An −

√
TA

2f (κ)εQA

> ε
Q
An −

√
2−g(κ)

= 1− (1− εQA )
n
−

√
2−g(κ)

> 1− e−1 −
√
2−g(κ)

from ε
Q
A =

1
n and (1− εQA )

n
= (1− 1

n )
n < e−1.

Meanwhile, considering the union bound, we can observe
that εPAn ≤ n×ε

P
A . With the initial condition εPA ≤

TA
2κ , we have

εPAn ≤
nTA
2κ
=

TA

2κεQA
< 2f (κ)−g(κ)−κ .

Summarizing the above results, we have the following:

1− e−1 −
√
2−g(κ) < εPAn < 2f (κ)−g(κ)−κ . (2)

Note that if the inequality

1− e−1 −
√
2−g(κ) ≥ 2f (κ)−g(κ)−κ (3)

holds, (2) becomes a contradiction. We want to find a suffi-
cient condition to derive the contradiction in the proof to draw
out the contradiction under the first assumption. Because we
assume that g(·) is an increasing function, the left-hand side
of (3) monotonically increases as g(κ) increases. By contrast,
for a fixed value f (κ), the right-hand side of (3)monotonically
decreases as g(κ) increases. Thus, the left- and right-hand side
equations meet at a single point. This inequality is reversed
at that point. This implies that if we consider the equality
in (3), we can have the most extreme case. By manipulating
the equations, we can solve the equality equation in (3) as
follows:

1− e−1 −
√
2−g(κ)

= 2f (κ)−g(κ)−κ

⇐⇒ 2f (κ)−κ × 2−g(κ) +
√
2−g(κ) − (1− e−1) = 0

⇐⇒

√
2−g(κ) =

√
1+ 2f (κ)−κ+2(1− e−1)− 1

2f (κ)−κ+1

⇐⇒ −g(κ) = 2{log2(
√
1+ 2f (κ)−κ+2(1− e−1)− 1)

− (f (κ)− κ + 1)}

= 2 log2(
√
1+ 2f (κ)−κ+2(1− e−1)− 1)

− 2f (κ)+ 2κ − 2.
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Thus we have

f (κ)− g(κ)

= 2log2(
√
1+ 2f (κ)−κ+2(1− e−1)− 1)− f (κ)+ 2κ − 2.

We can therefore conclude that SQ preserves at least
(2log2(

√
1+ 2f (κ)−κ+2(1− e−1) − 1) − f (κ) + 2κ − 2)-

bit security. It is not difficult to show that the inequality
2log2(

√
1+ 2f (κ)−κ+2(1− e−1) − 1) − f (κ) + 2κ − 2 ≤ κ

is satisfied. This is because the following inequalities are
satisfied:

2log2(
√
1+ 2f (κ)−κ+2(1− e−1)− 1)− f (κ)+ 2κ − 2 ≤ κ

⇐⇒ log2(
√
1+ 2f (κ)−κ+2(1− e−1)− 1) ≤

f (κ)− κ + 2
2

⇐⇒

√
1+ 2f (κ)−κ+2(1− e−1) ≤ 2

f (κ)−κ+2
2 + 1

⇐⇒ 1+ 2f (κ)−κ+2 − e−12f (κ)−κ+2

≤ 1+ 2f (κ)−κ+2 + 2
f (κ)−κ+4

2 .

In addition, to maintain Theorem 3, the security level
obtained should be non-negative. Thus, the condition
f (κ) − g(κ) ≥ 0 should be satisfied. This implies that the
following inequalities are also satisfied:

f (κ)− g(κ) ≥ 0

⇐⇒ 2 log2(
√
1+ 2f (κ)−κ+2(1− e−1)− 1)

≥ f (κ)− 2κ + 2

⇐⇒

√
1+ 2f (κ)−κ+2(1− e−1)≥2

f (κ)−2κ+2
2 +1

⇐⇒ 2f (κ)−κ+2(1− e−1) ≥ 2f (κ)−2κ+2

+ 2
f (κ)−2κ+4

2

⇐⇒ 2
f (κ)
2 −κ+2(1− e−1 − 2−κ )≥2−κ+2

⇐⇒ 2
f (κ)
2 ≥

1
1− e−1 − 2−κ

⇐⇒ f (κ) ≥ −2 log2(1− e
−1
− 2−κ ).

Thus, we can conclude that f (κ) should satisfy the
condition

f (κ) ≥ −2log2(1− e
−1
− 2−κ )

for the theorem. Once this condition is satisfied, we can
arbitrarily set f (κ) to whatever value we want. The detailed
application of Theorem 3 will be addressed in the following
remark. Thus, we have completed the proof. �
Remark 4: It is not difficult to show that Theorem 3 can be

reduced to Theorem 1 when we substitute f (κ) = κ . It only
requires some mathematical manipulations as follows:

f (κ) = κ

H⇒ κ − 2+ log2(
√
1+ 4(1− e−1)− 1)

= κ − log2
2

3− 2e−1 −
√
5− 4e−1

≈ κ − 2.374.

Table 1 indicates the guaranteed security level of SQ

with respect to the security level parameter κ and pre-
cision parameter f (κ), which is obtained by applying

FIGURE 1. Security level of SQ with respect to κ and f (κ).

Lemma 3 in [1] and Theorem 3. From Table 1, we can deduce
the following. First, Theorem 3 provides additional (approxi-
mately) 2.5-bit security gains (particularly for p > κ

2 , that is,
f (κ) > κ) compared with Lemma 3 in [1]. Considering the
case f (κ) > κ in Table 1, we can conclude that only (κ−3)-bit
security may be preserved if we apply Lemma 3 in [1]. By con-
trast, if we apply Theorem 3, we can conclude that almost all
κ-bit securities may be preserved. Second, it should be noted
that Lemma 3 in [1] cannot provide the exact lower bound
of the security level of SQ for the case f (κ) 6= κ , and can
only provide relatively inaccurate information. By contrast,
Theorem 3 without exception provides the exact lower bound
of the estimation value of the security level of SQ as long as
f (κ) satisfies the condition f (κ) ≥ −2log2(1 − e

−1
− 2−κ ).

Theorem 3 deserves sufficient recognition for its contribution
by simply removing the constraints imposed on precision in
the previous study (in [1], the precision was fixed).
Summarizing the discussion thus far, we can interpret The-

orem 3 as follows: Through Theorem 3, we can estimate the
effects on the security level when the original κ-bit secure
scheme is implemented on the f (κ)

2 -bit precision system. In a
previous study [1], f (κ) was fixed as κ , but Theorem 3 is
generalized to make it possible for the security level κ and
precision f (κ)

2 to vary independently. Theorem 3 can provide
a theoretical basis for how the security level of the 128-bit
security scheme may change if it is implemented on a 32 or
64-bit precision system. Figure 1 shows a three-dimensional
plot that indicates the security level of SQ determined by κ
and f (κ).

Until now, we have given tighter and more generalized
versions of Micciancio and Walter’s results, which were
introduced in [1], [2]. However, Theorems 1, 2, 3, and
Lemma 1 can only be applied with the λ-efficient measure
δ. There are several information-theoretic measures used to
analyze security reduction. Among them, only the max-log
distance 1ML and Kullback-Leibler divergence 1KL have
been proven to be λ-efficient measures. As we already con-
sidered in Theorem 1, we can apply Theorems 1, 2, and 3 with
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TABLE 1. Guaranteed security level of SQ by applying Lemma 3 in [1] and Theorem 3.

δRE from Lemma 6 in [1]. However, we cannot apply our
theorems with RDα , 1SD, and HD directly. Thus, we have
undertaken further research to obtain additional results for
other measures. These results are given in the last three
theorems. Theorem 4 deals with the infinity order of RD,
which is well known to be closely related to 1ML . Theo-
rem 4 considers only the case in which the adversary is in
a resource-restricted environment (such that the number of
attack trials of an adversary is limited). Such a premise is
not that impractical but is actually practically meaningful, for
example, consider a situation in which an adversary should
succeed within a limited time.
Theorem (Application to an Adversary in a Resource

Restricted Environment): Let SP and SQ be standard cryp-
tographic schemes with black-box access to probability dis-
tribution ensembles Pθ and Qθ , respectively. Consider the
adversary A, whose number of queries is upper bounded by
q (i.e., the attack resources of an adversary are restricted).
If SP is κ-bit secure and RD∞(Qθ ||Pθ ) ≤ 1+ 2−p(κ), then
SQ is (κ − q×2−p(κ)

ln 2 )-bit secure. Here, p(κ) should satisfy
p(κ) ≥ − log2(ln 2

κ )+ log2 q, where κ is the security level
of SP.

Proof: The notations are the same as the proofs of
the previous theorems. From the definition and probability
preservation properties of RD∞, we have

RD∞(G
Q
S,A||G

P
S,A) = max

x∈Supp(Q)
(
GQS,A(x)

GPS,A(x)
) ≥

ε
Q
A

εPA
.

Subsequently, by applying the multiplicative property and
data processing inequality of RD∞, we also have

RD∞(G
Q
S,A||G

P
S,A) ≥

ε
Q
A

εPA

⇐⇒ εPA ≥
ε
Q
A

RD∞(G
Q
S,A||G

P
S,A)

≥
ε
Q
A

RD∞(Qθ ||Pθ )q
.

Note that from the definition of the natural constant e,
the following inequalities are satisfied:

RD∞(Qθ ||Pθ )q ≤ (1+ 2−p(κ))
q
≤ eq×2

−p(κ)

= 2log2 e
q×2−p(κ)

.

From the given condition of Theorem 4, we know that
TA
εPA
≥ 2κ is satisfied, and thus we have the following

inequalities:

2−κ ≥
εPA

TA
≥

ε
Q
A

TA

1
RD∞(Qθ ||Pθ )q

≥
ε
Q
A

TA
× 2− log2 e

q×2−p(κ)

⇐⇒ 2−κ+log2 e
q×2−p(κ)

≥
ε
Q
A

TA

⇐⇒
TA

ε
Q
A

≥ 2κ−log2 e
q×2−p(κ)

⇐⇒ log2(
TA

ε
Q
A

) ≥ κ − log2 e
q×2−p(κ)

= κ −
q× 2−p(κ)

ln 2
.

Therefore, we can conclude that SQ preserves at least
(κ − q×2−p(κ)

ln 2 )-bit security. It is trivial that the inequality

κ −
q×2−p(κ)

ln 2 ≤ κ is satisfied. In addition, to ensure that
Theorem 4 is meaningful, the security level obtained should
be non-negative. Thus, the condition κ − log2 e

q×2−p(κ)
≥ 0

should be satisfied, and the following inequalities are
satisfied:

κ − log2 e
q×2−p(κ)

≥ 0

⇐⇒ κ ≥ log2 e
q×2−p(κ)

⇐⇒ 2κ ≥ eq×2
−p(κ)

⇐⇒ p(κ) ≥ − log2(
ln 2κ

q
)

= − log2(ln 2
κ )+ log2 q.

Thus, we can conclude that p(κ) should satisfy the condi-
tion

p(κ) ≥ − log2(ln 2
κ )+ log2 q

for the theorem. Now, we complete the proof. �
Remark 5: In Theorem 4, we derive the security reduction

formula in terms of RD∞. In fact, it may be possible to
derive a security reduction in terms of RD∞ as a corollary
of the security reduction in terms of 1ML because RD∞ and
1ML are closely related. However, we found that eliciting an
independent security reduction for RD∞ is also an interesting
research topic. To the best of our knowledge, Theorem 4 is the
first attempt to derive a security reduction in terms of RD∞.
Some security arguments using RD were proposed in [5]
but not for the case of RD∞. From the condition p(κ) ≥
− log2(ln 2

κ )+ log2 q, which should be satisfied when apply-
ing Theorem 4, we can observe that if the number of queries
of the adversary increases, p(κ) should also increase (i.e.,

VOLUME 9, 2021 140111



D.-H. Lee et al.: Bit Security Estimation Using Various Information-Theoretic Measures

the statistical similarity between Qθ and Pθ should be closer)
to achieve the same target security level. This fact fits well
with our general intuition. Note that a Rényi divergence-
based security analysis can provide significant gains when
the number of queries of the adversary is restricted and the
search problem is given.

However, the most widely used information-theoretic mea-
sure to analyze the security reduction between two crypto-
graphic schemes is the statistical distance 1SD. It is impor-
tant to estimate the extent to which 1SD values between
two different probability distributions affects the security
level. We can provide a theoretical guideline for the rela-
tionship between 1SD and security level in the following
theorem.
Theorem 4: Let SP and SQ be standard cryptographic

schemes with black-box access to probability distribution
ensembles Pθ and Qθ , respectively. If SP is κ-bit secure and
1SD(Pθ ,Qθ ) ≤ 2−h(κ), then SQ is log2

1
2−κ+2−h(κ)

-bit secure.
Here, h(κ) should satisfy h(κ) ≥ − log2 (1−

1
2κ ), where κ is

the security level of SP.
Proof: The notations are the same as the proofs of the

previous theorems. From the probability preservation prop-
erty of 1SD, we have

1SD(GPS,A,G
Q
S,A) ≥ ε

Q
A − ε

P
A .

Then, by applying the additive property, data process-
ing inequality, and q ≤ TA, we can derive the following
inequalities:

1SD(GPS,A,G
Q
S,A) ≥ ε

Q
A − ε

P
A

⇐⇒ εPA ≥ ε
Q
A −1SD(GPS,A,G

Q
S,A)

≥ ε
Q
A −1SD(Pθ ,Qθ )× q

≥ ε
Q
A −1SD(Pθ ,Qθ )× TA.

From the given condition of Theorem 5, we know that
TA
εPA
≥ 2κ is satisfied, and thus we have the following

inequalities:

2−κ ≥
εPA

TA
≥
ε
Q
A

TA
−1SD(Pθ ,Qθ ) ≥

ε
Q
A

TA
− 2−h(κ)

⇐⇒ 2−κ + 2−h(κ) ≥
ε
Q
A

TA

⇐⇒
TA

ε
Q
A

≥
1

2−κ + 2−h(κ)

⇐⇒ log2
TA

ε
Q
A

≥ log2
1

2−κ + 2−h(κ)
.

We can thus conclude that SQ preserves at least
log2

1
2−κ+2−h(κ)

-bit security. It is trivial that the inequality
log2

1
2−κ+2−h(κ)

≤ κ is satisfied. In addition, to main-
tain Theorem 5, the security level obtained should be
non-negative. Thus the condition log2

1
2−κ+2−h(κ)

≥ 0
should be satisfied, and the following inequalities are

FIGURE 2. Security level of SQ with respect to κ and h(κ).

satisfied:

log2
1

2−κ + 2−h(κ)
≥ 0

⇐⇒
1

2−κ + 2−h(κ)
≥ 1

⇐⇒ 2−κ + 2−h(κ) ≤ 1

⇐⇒ h(κ) ≥ − log2(1− 2−κ ).

Thus, we can conclude that h(κ) should satisfy the
condition

h(κ) ≥ −log2(1−
1
2κ

)

for the theorem. Now, we complete the proof. �
Remark 6: Theorem 5 proves several fundamental prop-

erties of 1SD. First, Theorem 5 indicates that a κ-bit system
implemented using a precision of p-bit closeness in1SD guar-
antees onlymin(κ, p) bits of security. Second, Theorem 5 indi-
cates that it is sufficient to select Qθ , which is close to Pθ
within 2−κ in 1SD, to preserve the bit security. Moreover,
to the best of our knowledge, Theorem 5 is the first attempt
to provide a generalized security reduction with arbitrary
precision in terms of1SD in a complete form. Similar to The-
orem 3, Theorem 5 can also be interpreted as follows: Theo-
rem 5 can estimate the effects on the security level when the
κ-bit secure original scheme is implemented on the h(κ)-bit
precision system. Figure 2 shows a three-dimensional
plot indicating the security level of SQ determined using
κ and h(κ).

From Theorem 5, we derive some corollaries. First, from
Pinsker’s inequality, for the relationship between 1SD and
1KL , the following inequality is satisfied:

1SD(P,Q) ≤

√
1
2
1KL(Q||P)

Using this formula, we can derive the following
corollary:
Corollary 1: If SP is κ-bit secure and 1KL(Qθ ||Pθ ) ≤

21−2h(κ), then SQ is log2
1

2−κ+2−h(κ)
-bit secure. Here, h(κ)

140112 VOLUME 9, 2021



D.-H. Lee et al.: Bit Security Estimation Using Various Information-Theoretic Measures

should satisfy h(κ) ≥ − log2 (1−
1
2κ ), where κ is the security

level of SP.
The above corollary can be easily derived from the fact

that 1KL(Qθ ||Pθ ) ≤ 21−2h(κ) implies 1SD(Pθ ,Qθ ) ≤ 2−h(κ)

(refer to Pinsker’s inequality).
In addition, in [1], the following relation was proved as

1KL(Q||P) ≤
8
9
δRE (P,Q)2.

From this formula, we can observe that δRE (Pθ ,Qθ ) ≤
3

2
√
2
2

1−2h(κ)
2 implies 1KL(Qθ ||Pθ ) ≤ 21−2h(κ). Therefore,

we can derive the following corollary:
Corollary 2: If SP is κ-bit secure and δRE (Pθ ,Qθ ) ≤
3

2
√
2
2

1−2h(κ)
2 , then SQ is log2

1
2−κ+2−h(κ)

-bit secure. Here, h(κ)

should satisfy h(κ) ≥ − log2 (1−
1
2κ ), where κ is the security

level of SP.
Finally, from Lemma 6 in [1], which provides the rela-

tion between 1ML and δRE , note that 1ML(Pθ ,Qθ ) ≤
ln( 3

2
√
2
2

1−2h(κ)
2 + 1) implies δRE (Pθ ,Qθ ) ≤ 3

2
√
2
2

1−2h(κ)
2 .

Thus, we can derive the following corollary:
Corollary 3: If SP is κ-bit secure and 1ML(Pθ ,Qθ ) ≤

ln( 3
2
√
2
2

1−2h(κ)
2 + 1), then SQ is log2

1
2−κ+2−h(κ)

-bit secure.

Here, h(κ) should satisfy h(κ) ≥ − log2 (1−
1
2κ ), where κ

is the security level of SP.
Yasunaga [12] recently revisited Micciancio and Walter’s

approaches [1], [2] by replacing λ-efficient measures with the
Hellinger distance. They proposed a security reduction (i.e.,
Theorem 1 in [12]) that is mostly similar to Lemma 3 in [1].
The only difference is that the Hellinger distance was used
and not the λ-efficient measures. Theorem 1 in [12] is mean-
ingful because it derives a security reduction in terms of
the Hellinger distance. However, similar to Lemma 3 in [1],
Theorem 1 in [12] has significant limitations in terms of its
universal use because we can obtain the exact lower bound
of the estimation value of the security level by applying
Theorem 1 in [12] only for precision p = κ

2 in terms of
the Hellinger distance. We can only obtain inaccurate relative
information about the security level for other cases by apply-
ing Theorem 1 in [12]. We successfully derive the general-
ized version of Theorem 1 in [12] based on this motivation,
thereby addressing the existing limitations. The result can be
found in the following theorem.
Theorem 6 (Generalization of Theorem 1 in [12]): Let

P = (Pi)i and Q = (Qi)i be probability distribution
ensembles over the same support

∏
i�i. In addition, let

SP be a primitive for which an n-bit security game GPS,A
is defined for n > 1 (i.e., search primitives). If SP is κ-
bit secure and HD(Pi|ai,Qi|ai) ≤ 2−

w(κ)
2 for any i and

ai ∈
∏

j<i�j, then SQ is (κ − log2 B)-bit secure, where

B = 1
1−e−1

+
2−w(κ)+κ

(1−e−1)2
+

√
2×2−w(κ)+κ

1−e−1

√
2w(κ)−κ
1−e−1

+
1

2(1−e−1)2

and w(κ) should satisfy w(κ) ≥ max{− log2(
ε
Q
A
TA
2(1 −

e−1)2),− log2(
(1−e−1)2

2 + 2−2κ−1 − (1− e−1)2−κ )}.

Proof: The overall flow of the proof is similar to that
of Theorem 1 in [12], and most notations are the same as the
proofs of the previous theorems. Because SP is κ-bit secure,

it holds that ε
P
A
TA
≤ 2−κ for any adversary A. In conclusion,

it is sufficient to show that ε
Q
A
TA
≤ 2−(κ−log2 B) is satisfied.

We consider l independent plays of GPS,A and define εPAl as
the probability that A succeeds in at least one of l plays of
GPS,A. In other words, ε

P
Al = 1− (1− εPA )

l , and we define εQAl
analogously. Because the number of queries to the distribu-
tion ensemble is at most TA during each play, it holds that

|εPAl − ε
Q
Al | ≤ 1SD(Pl,Ql) ≤

√
2lTA2−

w(κ)
2 ,

where Pl (respectively, Ql) is the l-fold product of P
(respectively, Q), the first inequality is from the data pro-
cessing inequality, and the second inequality follows from
Lemma 1 in [12]. From the definition of εPAl and ε

Q
Al , the

following inequality is satisfied:

(1− εPA )
l
≤

√
2lTA2−

w(κ)
2 + (1− εQA )

l .

Based on the fact that (1− x)l ≥ 1− lx for x ∈ [0, 1] and
setting l = 1

ε
Q
A
, it holds that

1−
εPA

ε
Q
A

≤

√
2TA2−w(κ)

ε
Q
A

+ (1− εQA )
1

ε
Q
A

<

√
2TA2−w(κ)

ε
Q
A

+ e−1,

where we use the relation (1 − 1
x )
x < e−1 for x > 0.

By rewriting the inequality, we obtain

(
√
ε
Q
A −

√
TA2−w(κ)

√
2(1− e−1)

)2 <
εPA

1− e−1
+

TA2−w(κ)

2(1− e−1)2
.

For sufficiently large w(κ), (i.e., for

w(κ) ≥ − log2(
ε
Q
A
TA
2(1− e−1)2)), it holds that√

ε
Q
A <

√
εPA

1− e−1
+

TA2−w(κ)

2(1− e−1)2
+

√
TA2−w(κ)

√
2(1− e−1)

.

Squaring both sides yields the following inequality:

ε
Q
A

TA
<

εPA

(1− e−1)TA
+

2−w(κ)

(1− e−1)2

+

√
2× 2−

w(κ)
2

1− e−1

√
εPA

(1− e−1)TA
+

2−w(κ)

2(1− e−1)2
.

Because εPA
TA
≤ 2−κ is satisfied, we have

ε
Q
A

TA
< 2−κ (

1
1− e−1

+
2−w(κ)+κ

(1− e−1)2

+

√
2× 2−w(κ)+κ

1− e−1

√
2w(κ)−κ

1− e−1
+

1
2(1− e−1)2

)

= 2−κB = 2−(κ−log2 B).
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TABLE 2. Guaranteed security level of SQ by applying Theorem 1 in [12] and Theorem 6.

We can thus conclude that SQ preserves at least
(κ − log2 B)-bit security. It is trivial that the inequality
κ − log2 B ≤ κ is satisfied. In addition, to maintain The-
orem 6, the security level obtained should be non-negative.
Thus the condition κ − log2 B ≥ 0 should be satisfied, and
the following inequalities are satisfied:

κ − log2 B ≥ 0

⇐⇒ 2κ ≥ B

⇐⇒ 22κ +
1

(1− e−1)2
−

2κ+1

1− e−1

−
2× 2−w(κ)+2κ

(1− e−1)2
≥ 0

⇐⇒ w(κ) ≥ − log2(
(1− e−1)2

2
+ 2−2κ−1

− (1− e−1)2−κ ).

Thus, for the theorem, we can conclude that w(κ) should
satisfy the condition

w(κ) ≥ max{− log2(
ε
Q
A

TA
2(1− e−1)2),

− log2(
(1− e−1)2

2
+ 2−2κ−1 − (1− e−1)2−κ )}

Now, we finish the proof. �
Remark 7: Table 2 indicates the guaranteed security level

of SQ with respect to the security level parameter κ and
precision parameter w(κ), which are obtained by applying
Theorem 1 in [12] and Theorem 6, respectively. From Table 2,
we can deduce the following facts. First, Theorem 6 provides
additional (approximately) 2.5-bit security gains (particu-
larly for the cases p > κ

2 , i.e., w(κ) > κ) in comparison
with Theorem 1 in [12]. Considering the case w(κ) > κ

in Table 2, we can conclude that only (κ − 3)-bit security
may be preserved if we apply Theorem 1 in [12]. By contrast,
if we apply Theorem 6, we can conclude that almost all
κ-bit security may be preserved. Second, it should be noted
that Theorem 1 in [12] cannot provide the exact lower bound
value of the security level of SQ for the case w(κ) 6= κ , and
can only provide relatively inaccurate information. By con-
trast, Theorem 6 always provides the exact lower bound of the
estimation value of the security level of SQ as long as w(κ)
satisfies the following condition:

w(κ) ≥ max{− log2(
ε
Q
A

TA
2(1− e−1)2),

− log2(
(1− e−1)2

2
+ 2−2κ−1 − (1− e−1)2−κ )}.

Theorem 6 deserves sufficient recognition for its contribu-
tion by removing the constraints imposed on the precision in
the previous study [12].
Summarizing the discussion thus far, we can interpret The-

orem 6 as follows: Through Theorem 6, we can estimate the
effects on the security level when the κ-bit secure original
scheme is implemented on a w(κ)

2 -bit precision system. In a
previous study [12], w(κ) was fixed as κ , but Theorem 6 was
generalized to make it possible for security level κ and preci-
sion w(κ)

2 to vary independently. Through Theorem 6, we can
provide a theoretical basis for how the security level of the
128-bit security scheme may change if it is implemented on a
32 or 64-bit precision system.

IV. CONCLUSION AND FUTURE WORKS
In this paper, information-theoretic security reductions from
the statistical difference between probability distributions
were derived in terms of various information-theoretic mea-
sures. We provided diverse types of security reduction
formulas for six types of information-theoretic measures:
1SD,RD∞, δKL ,1ML , δRE , and HD. In addition, we pro-
posed tighter and more generalized versions of security
reductions compared with previous studies [1], [2], [12].
These reduction results are expected to provide an
information-theoretic methodology to estimate the security
loss under such situations as a replacement with different
probability distributions.

In a future study, we intend to conduct further research to
prove or disprove whether the proposed quantitative security
reduction results achieve information-theoretic limits (partic-
ularly for those that are given in terms of the max-log and
Hellinger distances). We hope to answer the question, ‘‘Is
a tighter reduction than those proposed ones (particularly in
Theorems 2, 3, and 6) theoretically possible?’’ The second
research topic will be a further generalization of Theorem 4.
To date, Theorem 4 has only been able to deal with con-
strained adversaries and can even be applied to only RD of
an infinity order. We want to generalize Theorem 4 to cover
arbitrary (unbounded) adversaries and arbitrary orders. This
task requires entirely new derivation strategies, which may be
interesting topics for future research.
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