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ABSTRACT In spite of the good performance of convolutional neural network (CNN) and graph neural
network (GNN) in 3D point cloud classification and segmentation at present, to aggregate local information
of point clouds and improve the robustness of geometric transformation are still challenging problems.
In order to tackle the problems, we propose Geometry Feature Aggregation Network (GFA-Net), which
can effectively learn the context information of each point to aggregate local information, so as to enhance
the robustness of rotation and translation. Compared with the current popular method GNN that convolves on
nearby points in Euclidean space, GFA-Net can better aggregate the geometric features around the points.
GFA-Net uses the Laplacian feature mapping to reduce dimensions, and aggregates the nearest neighbor
features in the space after dimensionality reduction, and fuses them with the nearest neighbor features of
Euclidean space, so as to better obtain the geometric features of each point. Then, points are grouped with
geometric features, so that nearby points are insensitive to geometric transformations such as rotation and
translation. This method allows GFA-Net to better obtain holistic geometry features, such as symmetry.
In addition, we use attention mechanism instead of pooling, so that important neighborhood information can
be learned automatically and information loss can be reduced. We conduct extensive experiments on public
datasets ModelNet40 and ShapeNet Part. The experimental results show that GFA-Net achieves very good
performance, which is very close to the current state-of-the-art methods, and GFA-Net has better robustness.

INDEX TERMS Geometry feature, Laplacian feature, Euclidean space, attention mechanism, point cloud.

I. INTRODUCTION

At present, with the development of computer vision and
artificial intelligence, point cloud classification and segmen-
tation has become a very challenging and important problem
in 3D vision. As robot control [1], automatic driving, remote
sensing [2], [3], reconstruction of 3-D buildings [4] and other
fields have the need to interact with the real scene. For the past
years, tremendous progress in the automatic classification of
ALS point clouds has been achieved in the community of
remote sensing and photogrammetry [5].

At present, deep learning and convolutional neural net-
work (CNN) show great brilliance in the field of 2D
images [6], [7]. 3D point cloud is non-ordered, that is,
the change of point order will not affect its meaning, while
deep neural networks require input data with regular struc-
ture. Moreover, 3D point cloud is irregular, so it is not easy
to apply deep learning to 3D point cloud. In this paper,
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we consider to handle point cloud classification and segmen-
tation. The traditional method to solve such problems is to
extract the geometric features of point clouds with hand-made
features [8], [9]. In recent years, deep learning has made
great progress in LIDAR point cloud analysis, and many deep
learning-based point cloud classification and segmentation
methods have been proposed [10], [11]. The deep learning
method to handle such problems is converting 3D point cloud
data into a voxel form with regular shape [12], [13], and then
using 3D CNN for feature learning to process point cloud
data. However, such conversion consumes expensive com-
puting and memory costs, which increases network overhead
and is not conducive to the use of large-scale point cloud
scenarios. Then, deep neural network designed to process
the raw point cloud data directly is presented. PointNet [14]
is the pioneer of neural network that directly processes the
raw point cloud data. By learning the information coding of
each point and aggregating the features of each point into the
global features, PointNet [14] uses the MaxPooling function
to realize the permutation invariance of the points, but this
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lose the local information of each point. In order to tackle the
problem that PointNet [14] fails to extract local information,
PointNet++ [15] is proposed. PointNet++ [15] adopts the
strategy of stratified sampling and uses neighborhood balls
to get subregions. Then, PointNet [14] is used to extract local
features of different scales of the network.

In order to enhance the learning ability of each point to
local features, PointWeb [16] calculates the influence among
all points in the local region by considering the interaction
among all points in the local region to obtain features. So a
Adaptive Feature Adjustment (AFA) module is designed in
PointWeb [16], which connects all points in the region and
finally forms a local fully connected network. Recent work
has focused on designing some unique convolution opera-
tions for irregular 3D point cloud. ConvPoint [17] proposed
by Boulch in 2020 utilizes the concept of convolution. Multi-
layer perceptron (MLP) is used to learn the continuous weight
of adjacent points in each point, and then the density of each
point is calculated to solve the problem of uneven sampling
of point cloud. RS-CNN [18], a convolutional network based
on geometric relations, proposed a novel convolutional oper-
ator RS-Conv that learns from relations. RS-Conv extracts
the topological constraint relationship from the point cloud,
so the weight of the convolutional network is also constrained
by the topological relation in learning. This method extends
the convolutional networks based on ordered information
to the convolutional networks which adapt to unorganized
information, thus improving the shape perception and robust-
ness to a great extent. Similarly, to aggregate information
in Euclidean space, DGCNN [19] proposed a new convolu-
tion method, EdgeConv. EdgeConv uses K-Nearest Neigh-
bors (KNN) algorithm to construct directed graph of point
clouds. Then, the adjacent points in Euclidean space are recal-
culated with the directed graph of point cloud, and the new
graph structure is passed to the next layer for processing, so as
to realize the dynamic graph structure. However, in Euclidean
space, DGCNN [19] only considers the nearby neighborhood
points and fails to consider the points that may have the
same geometric structure at the far end. Point2Node [20]
proposed a learning network with a high-dimensional node
graph model, which can fuse self, local and non-local cor-
relation information between nodes on 3D point cloud, and
designed adaptive aggregation features information of Gate
Mechanism at channel level.

The above methods only consider the local features of
each point extracted from the Euclidean space. However,
the geometry of many objects may be symmetric, with points
moving away from each other. If only the local structure of
adjacent points is considered, the features of points with the
same geometric structure cannot be obtained, and even the
overall geometric structure will be lost. In order to capture
points with similar geometrical structure and share the infor-
mation of points with similar geometrical structure, the fea-
tures of points cannot be extracted only from Euclidean space.

Inspired by the above work, we propose a Geometric Fea-
ture Aggregation Network (GFA-Net). This network not only
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gathers the eigeninformation of points in Euclidean space,
but also the eigeninformation of points in eigenspace after
dimensionality reduction of Laplace matrix. The Laplace
matrix is calculated by constructing the fully connected point
cloud graph. Then, the geometric features of each point can
be learned through Laplace eigenmapping, so that points with
similar geometric characteristics can exchange information.
It makes up for the shortage of remote points with similar
characteristics but unable to exchange information. We fuse
the feature map calculated in Euclidean space with the feature
map obtained in Laplacian eigendimension reduction space.
This step takes into account not only nearby points but also
points with similar geometrical structures. We also improve
the pooling operation. For the information of local points,
instead of simple pooling operation, the weight of local infor-
mation carried by each point is calculated by attention mech-
anism, that is, the degree of influence on the central point is
used for fusion calculation. Different from other methods that
mostly deal with point cloud features in Euclidean space, our
method deals with point features in Laplace feature space and
makes full use of all point information to extract local infor-
mation. Since we need to consider the relationship between
all points, not only will the calculation be complicated, but
also the learning rate will sometimes be reduced because of
the redundancy of points.

We conduct extensive experiments to explore the effective-
ness of GFA-Net for point cloud classification and segmenta-
tion. The experiments demonstrate that our method achieves
the same performance as the current state-of-the-art methods
on both ModelNet40 [36] and ShapeNet [37].

Overall, three key contributions of this paper can be sum-
marized as follows:

o« We propose a novel geometric feature aggregation
Geometry Feature Aggregation (GFA) module, which
effectively extracts the geometric features between
points, and integrates with the features obtained from
Euclidean space, so as to better extract the local and
global geometric features.

« We prove that the neighborhood features obtained from
the feature space of Laplacian dimension reduction are
invariant in rotation and translation.

o Our GFA-Net achieves the state-of-the-art performances
on datasets ModelNet40 and ShapeNet.

Il. RELATED WORKS

A. METHOD BASED ON MULTIPLE VIEWS AND VOXELS
MVCNN [21] uses two-dimensional rendering images of
multi-view 3D objects as training data, and recognized 3D
objects based on CNN. Later, Qi et al. [22] propose a voxel-
based CNN point cloud identification method, which raster
the point cloud data to form the voxel structure, and then
process it through 3D convolution operation, and introduce
auxiliary training tasks to reduce overfitting. The auxiliary
training task is to use partial subvolumes to predict the type
of the object. Only partial subvolumes need to be collected
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without any additional manipulation. The higher the reso-
lution of the data, the better the effect is achieved by this
method, so the effect is not obvious for the data with lower
resolution. There are also some approaches to regularize the
point cloud data by using the tree structure, for example,
OctNet [23] makes use of the sparse input data and uses a
group of unbalanced octree to stratify the space, and modifies
and realizes the convolution operation, so as to adapt to the
mixed grid octree data structure. The KD-Net [24] proposed
by Roman Klokov et al. uses KD tree to divide the point cloud
space, and its hierarchical structure is used as different feature
forms.

B. POINT-BASED NETWORKS

In addition to PointNet [15] and PointNet++ [16], much of
the new work involves extracting local features of each point
by designing complex network modules. Slice pooling layer
proposed by RSNet [25], it is to map the features of disor-
dered point cloud data from x, y, z directions to the sequence
of ordered feature vectors, and then use bidirectional RNN to
update the features, so as to extract local correlation features.
The computational complexity of extracting local correlation
features is relatively small. SONet [26] simulates the spatial
distribution of point cloud by constructing self-organizing
map. Based on SOM, SO-Net is used to extract layered
features from single point and SOM node. Finally, a feature
vector is used to represent the input point cloud. There are
also some methods to design a unique convolution for point
cloud data [27], [28]. Pointwise [29] proposes a new point-
by-point convolution method for 3D point cloud data. Point-
wise [29] convolution is very similar to ordinary convolution.
The difference is that point clouds are irregular, but they also
use fixed-size convolution kernel to convolution. Pointwise
convolution is the multiplication of the points in each small
square of the convolution kernel with the weight to get the
average value of each small square. After that, the average
value of each small square is added to get the output of this
layer. There are also some very clever convolution methods.
FPConv [30] is a flattening convolution method, and maps
each point and its neighborhood into a plane by attention
mechanism, and uses a convolution method similar to 2D
images to carry out sliding convolution on the flat point cloud
data. PointCNN [31] uses X-Conv operator to re-encode and
weight input points and features to make point cloud data into
a canonical order, and then processes the reconstructed points
through conventional convolution.

C. OTHER METHODS

Most studies focus on the calculation of adjacent regional
points from Euclidean space, while GS-Net [32] finds that
features of distant points with similar geometric features
could not be obtained only in Euclidean space, so the Geom-
etry Similarity Connection (GSC) module is designed. GSC
module obtains the similar geometric features of distant
points in the feature space, and then fuses them with the
features of neighboring points obtained from Euclidean space
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FIGURE 1. Visualization of feature points sets. Red is the anchor point.
The selected adjacent points in Euclidean space are green, while the
selected points in the dimension reduction feature space of Laplace
mapping are yellow. Obviously, the yellow points have higher geometric
similarity with the anchor point and are far away from the anchor point,
which are not included by the adjacent points in Euclidean space.

to get local feature descriptors. Recently, there has also been
some work using transformer for 3D point cloud [33], [34].
PCT [34] proposes a new transformer-based point cloud
learning framework PCT, which avoids the disorder of point
cloud data by using transformer’s inherent order invariance
and carries out feature learning through the attention mecha-
nism.

lil. METHOD

In this part, we introduce point cloud segmentation and clas-
sification network GFA-Net. GFA-Net is in three layer struc-
ture. Each layer consists of GFA module and attention mech-
anism. In each layer, geometric feature aggregation module is
used to enrich local geometric information, and then attention
mechanism is used to learn and select the extracted geomet-
ric features of surrounding points. The output features of
attention mechanism are the input of the next GFA module.
Finally the whole feature descriptor is obtained, sending it to
the corresponding classification and segmentation network to
segmentation and classification task.

A. GFA
Considering that in the Euclidean space to aggregate infor-
mation of nearby points will lose the information of distant
points with similar geometric features, while in the feature
space, it is unstable to extract the geometric features of distant
points, and sometimes feature chaos may occur. So we con-
struct the fully connected graph of the points and compute
their Laplace matrix. The Laplacian eigenspace is used to
obtain the geometric features of distant points, and then the
features of neighboring points in Euclidean space are inte-
grated with them to better collect local features. As shown
in Figure 1, the GFA module can not only identify adjacent
points from Euclidean space, but also identify distant points
with similar geometric features, such as symmetric geometric
points.

In this section, we introduce Geometry Feature Aggrega-
tion (GFA) module. As we have presented in Figure 2 is
its structure. We enter a three-dimensional point cloud

VOLUME 9, 2021



Y. Wang et al.: Geometry Feature Aggregation Method for Point Cloud Classification and Segmentation

IEEE Access

Euclidean
space

Point cloud

Laplace
eigenspace

Laplace
Matrix

NxN Eigen
Decomposition

\4

g —> NxN

I Concatenate
Operator

MLP I___|

—_—— —

Sort

Y Nx2  —P> MLP —Pp KNN —P NxK

FIGURE 2. Geometry Feature Aggregation (GFA) module. The local features are collected by calculating the adjacent points in the Euclidean space and the
Laplacian mapping space, and then the local features are recoded by using the Multi-layer Perceptron (MLP). In the Laplace mapping space, the full
connection graph is constructed and the Laplace matrix is calculated. The Laplace matrix is decomposed into eigenvectors, sorted according to the size of
eigenvalues, and the eigenvectors corresponding to the first two smallest eigenvalues are obtained. MLP is used to learn the selected eigenvectors.

with N points, denoted by X = {x1,...... ,xy. The
three-dimensional features represent the x, y, and z coor-
dinates of each point, x; = {x;,y;, zi} . K-Nearest Neigh-
bors (KNN) search algorithm is used to obtain K nearest
neighbors x;, ...... , X;; of each point x; in Euclidean space,
so as to obtain local features of the point in Euclidean space.
We define the local features of the point in Euclidean space
as E = {xj —xi,...... , Xy —x;} . Then, Laplace eigen-
mapping is used to reduce dimensions. The graph structure
G = {V, E, W} of the point cloud is first constructed, where
V is a vertex set composed of N points, E represents the
undirected edge between points, and W is a NxN symmetric
matrix. We define a; j as the weight of edge of the connecting
vertices i and j, where ¢ is a hyperparameter and we choose
its value in experiment.

k=1
ajj=e t . (1)

The Laplacian matrix is defined from the adjacency matrix.
In different variants of Laplacian matrices, we define the
combinatorial graph Laplacian used in [30] as L, = D — W,
where D is the degree matrix—a diagonal matrix with d; ; =

ZJN: 1 aij- We define normalized graph Laplacian matrix as

1 1 .. .
L = D7 2L.D™ 2. That matrix is used in the sequel due to
its normalization property. Full connection graph, connecting
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each point to all the other points in the point cloud, gets rela-
tionships between all the points. To calculate the eigenvalues
and eigenvectors of the obtained Laplace matrix:

Ly = ADy. 2)

To sort the eigenvalue and select the feature vectors corre-
sponding to the two smallest feature values as the output after
mapping to obtain the feature map F = {f, ...... .fv} € R2.
We define a basic sort function as sort({1q,...... , AN} tO
get two smallest feature values.

M, Ay = sort ({Aq,...... JAND 3)
Ly; = A Dyy, Ly, = A2Dy;. 4)

Multi-layer Perceptron (MLP) is used to learn the mapped
features and gets a new feature map F € R%. So we define it
as MLP = wX + b, where w, b are learnable parameters and
X is input features.

F = MLP (F). 5)

In the new feature space, the KNN algorithm is used to
obtain K adjacent points f;;,...... .f i, for each point x;.
By aggregating the features of adjacent points obtained in
Euclidean space and Laplace mapping feature space and the
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features of anchor point, the output of anchor point can be
expressed as:

5= 30 bl 6., ©

where hy is for contacting features.

In order to aggregate local geometric features and global
geometric features, we choose the following structure for
aggregation function hy (x;, x;, f;):

ho (. 0) = o (s~ o5 =) (D)

B. ATTENTION AGGREGATION MECHANISM

MaxPooling or AvgPooling are usually directly used to
integrate the features of all neighborhood points. However,
the Pooling operation maintains a global fairness, that is,
it regards each neighborhood point as equally important, so a
lot of information is lost, and it is unfair to the points carrying
more geometric features. To handle this problem, attention
mechanism is used to replace pooling for learning. In this
way, points carrying more information will be given greater
weight, so that they can play a greater role in local feature

aggregation.
Computing Attention Scores: Given a set of local features
F=1{f,...... ,fix }, a shared function g(), consisting of a

shared MLP followed by softmax, is used to learn a unique
attention score for each feature. Shared function g() is for-
mally defined as follows:

diy =g (fy W), ®)

where W is the learnable weights of a shared MLP.
Finally, the weighted sum operation is carried out for the
features of all selected neighborhood points:

K
fi=Y_(fi - dy). ©)
j=1

To sum up, given the input point cloud p, for the i point
pi, the geometric patterns and features of its K nearest points
are aggregated by Attentive Pooling units, and finally get an
informative feature vector f;.

C. NETWORK STRUCTURE

The GFA-Net network composed of GFA module and atten-
tion mechanism for point cloud classification and segmen-
tation is shown in Figure 3. This model is in three layer
network. The GFA module at each layer can effectively col-
lect local geometric feature information for each point, and
then attention mechanism learns and selects the extracted
geometric features of surrounding points, so that neighboring
points carrying more geometric features can play a greater
role.

1) CLASSIFICATION MODEL

With n points as input, the local geometric features of each
point are collected by GFA + attention in three layer. Then the
MaxPooling operation is carried out for all points information
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to form a global descriptor. Finally, the global descriptor is
input into the classification network model to get a classifi-
cation score.

2) SEGMENTATION MODEL

The 1D global descriptor for each point and the output of
GFA+ attention for each layer (used as a local descriptor) are
cascading to extend, the resulting features are copied to each
point through repeat operation, and then the classification
score for each point is obtained through MLP.

IV. EXPERIMENTS

A. DATASETS

We studied and evaluated our proposed approach in the pub-
lic datasets ModelNet40 [36] and ShapeNet [37]. Model-
Net40 [36] was used to evaluate and test the point cloud
classification task. ModelNet40 [36] contains 12311 models
of mesh CAD from 40 categories, including 9843 models
for training and 2468 models for testing. The objects in
this data set are complete, without any occlusion or back-
ground. ShapeNet [37] was used to evaluate and test the point
cloud segmentation task. ShapeNet [37] contains 16,881 3D
shapes from 16 object categories, with a total of 50 parts
are labeled. Each object has 2 to 6 parts, among which the
training sample number is 12,137 and the test sample number
is 2,874.

B. CLASSIFICATION

1) EXPERIMENT SETTING

We followed the experimental scheme of the model such as
PointNet [14]. 1024 points were uniformly sampled from the
mesh surface, and the 3D coordinates of each sampling point
were used as the input data. Three layer GFA + attention
extracts the local geometric features, in which the output
of each GFA module was weighted by attention mecha-
nism learning as the input to the next GFA module. For the
selection of the hyperparameter, we chose the neighborhood
value K = 25, and the calculation of the weight of the
Laplace matrix, the hyperparameter + = 20. The feature
dimensions output by each layer of GFA + attention were
respectively 64, 128 and 256, which were then concatenated
with the 3D coordinate features of the initial input point
cloud to obtain the complete local features, then the Max-
Pooling was used to obtain the final global features, and
finally three fully connected layers (512, 256, C) were used
to classify the global features and obtain the classification
score C. We used Dropout and L2 regularization to pre-
vent overfitting and leakyRelu as the activation function.
Pytorch framework was used to build the network model,
set epoch = 200, batchSize = 8, and the training was car-
ried out on the NVIDIA Tesla V100 16GB GPU. Using
the SGD optimizer, the initial learning rate was 0.01, and
the learning rate decreased by 0.75 decay rate for every
40 epochs.
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FIGURE 3. Geometry Feature Aggregation Network structure for 3D point cloud classification and segmentation. The network inputs N points, each of
which has only three dimensional coordinates as its feature as input. In each layer, geometric feature aggregation module is used to enrich local
geometric information, and then attention mechanism is used to learn and select the extracted geometric features of surrounding points. In addition,
the output of each layer is the input of the next layer, and finally the output of the three layers is integrated into a global feature descriptor. For
segmentation model, the feature descriptor of each point is concatenated with the global feature descriptor and the classification score of each point is
M semantic labels. For classification model, the Pooling operation of the global feature descriptor is drawn into one-dimensional vector, and then input

into the fully connected neural network to get a classification score.

TABLE 1. Classification results on ModelNet40.

TABLE 2. Comparison of different K nearest neighbors and
hyperparameter .

Method Mean Class Overall
etho Accuracy Accuracy K ¢ Mean Class Overall
3DShapeNet[37] 77.3 84.7 Accuracy Accuracy
MVCNN[21] 79.5 90.1 15 15 87.0 89.2
PointNet[14] 86.0 89.2 20 15 89.1 90.3
PointNet++[15] - 90.7 20 20 89.3 90.5
PointCNN([31] 88.1 92.2 25 15 89.5 91.6
Pointweb[16] 89.4 92.3 25 20 90.4 93.2
DGCNN[19] 89.3 92.7 30 20 90.0 92.7
I:E(Clz:\‘;ggi : g;g TABLE 3. Ablation study of architecture design (%).
Ours 90.4 93.2 Mean Class Overall
K — nn space
Accuracy Accuracy
2) EXPERIMENT ANALYSIS X = X; 89.7 92.0
We tested the mean classification accuracy (MA) and over- X~ f 89.9 92.1
all accuracy (OA) on ModelNet40. The results are shown X = XX~ 8.4 92.4
in Table 1. It can be seen that our proposed method has *i Xy Xi = Zgg ::g
achieved very competitive results, with the OA accuracy Xi, Xi — X, fj i .

reaching 93.2%, 0.5% higher than DGCNN [19]. It can be
seen that GFA-Net is the mainstream point cloud identifica-
tion method in the classification task at present.

In addition, we tried to use different neighborhood
numbers K and different hyperparameters ¢t to carry out
comparative tests to find the influence of different neigh-
borhood numbers K and hyperparameters on the experiment.
As shown in Table 2, when the neighborhood number K is
25, the performance is better. When K is less than 25, there is
insufficient extraction of local points. If K is greater than 25,
there may be too many neighborhood points, leading to local
feature redundancy. We tested the hyperparameter ¢ with the
fixed value of K, and found that the performance is obviously
better when ¢ gets 20 than other values.

3) ABLATION STUDY
We performed ablation analysis on the components in the
classification task on ModelNet40. All experiments in the
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ablation analysis used 1024 points, the neighborhood value
K = 25, and the hyperparameter ¢+ = 20 for testing. The
selection of features is a factor that affects the local geometric
features information and the relationship between each point,
so how to select features is important. In order to extract the
most appropriate eigenvalues, we tried four settings, as shown
in Table 3. It can be seen that only using the three-dimensional
coordinates of Euclidean space, the performance is greater
than 92.0%, while fusing the Euclidean space and the Lapla-
cian eigenmapping space reaches 92.4%, and adding the
original three-dimensional features into it reaches 93.2%.
In summary, the ablation analysis prove that the dimension
reduction using Laplace eigenspace is effective.

4) COMPLEXITY ANALYSIS
We evaluated the complexity of the model in terms of
model size and running time in Table 4. The experiment
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FIGURE 4. Compare part segmentation results. We visualize the results. For each set, from left to right: DGCNN [19], ours
and ground truth. The differences in the figure have been circled in red.

TABLE 4. Complexity analysis of GFA in classification.

Model Forward

Method Size(MB) Time(ms)
PointNet[14] 13.4 30
PointNet++[15] 7.0 603
DGCNN[19] 7.2 73
Ours 11.2 329

was performed on an NVIDIA Tesla V100 16GB GPU with
8 batches to calculate Forward Time (ms). Other conditions
were the same as the hardware environment, and the model
was implemented by PyTorch. The results show that the
size of our model is second only to DGCNN [19], but in
Forward Time(MS), the Time efficiency is not high because
the Laplacian characteristic graph needs to be constructed.

C. SEGMENTATION

1) EXPERIMENT SETTING

The segmentation experiment was carried out on ShapeNet
[37]. GFA + attention were used to extract the local geo-
metric features in each layer, then the 1D global descriptor
was connected in series with the respective outputs of the
three layers, and finally the classification output of each
point was calculated by the shared MLP (256,128). We also
used Dropout and L2 regularization to prevent overfitting
and leakyRelu as the activation function. The same train-
ing settings as the classification task were used to train on
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TABLE 5. The results of part segmentation on ShapeNet.

EAR

Model MEAN AREO BAG CAP CAR CHAIR PHONE GUITAR KNIFE
#SHAPES 2690 76 55 898 3758 69 787 392
PointNet[14] 83.7 83.4 78.7 825 74.9 89.6 73.0 915 85.9
PointNet++[15] 85.1 82.4 79.0 87.7 773 90.8 718 91.0 85.9
Kd-Net[24] 823 80.1 74.6 743 703 88.6 735 90.2 87.2
PointCNN[31] 86.1 84.1 86.45 86.0 80.8 90.6 79.7 92.3 88.4
DGCNN(19] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5
Ours 86.3 84.1 81.8 84.9 81.6 89.8 76.9 93.3 80.6
SKATE
Model MEAN LAMP LAPTOP ~ MOTOR MUG PISTOL ROCKET  BoARD TABLE
H#SHAPES 1547 451 202 184 283 66 152 5271
PointNet[14] 83.7 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++[15] 85.1 83.7 953 716 94.1 813 68.7 76.4 826
Kd-Net[24] 823 81.0 94.9 57.4 86.7 78.1 518 69.9 80.3
PointCNN([31] 86.1 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
DGCNN[19] 85.2 82.8 95.7 66.3 94.9 811 63.5 74.5 82.6
Ours 86.3 85.5 95.7 75.6 95.6 84.0 61.1 76.3 83.1

the NVIDIA Tesla V100 16GB GPU. The same evaluation
scheme as DGCNN [19] was adopted. The IoUs of a shape
was calculated by averaging the IoU of the different parts
that appeared in the shape, and the IoUs of that shape was
obtained by averaging the IoUs of all shapes that belonged to
that category. At last, the mean IOU (mIOU) was calculated
by averaging the IOUs of all test shapes.

2) EXPERIMENT ANALYSIS

We compared the results with the network models of Point-
Net [14], PointNet++ [15], PointCNN [31], DGCNN [19],
and KD-Net [24], and the results are shown in Table 5. It can
be seen that our method’s result reaches the state-of-the-
art performance in some objects’ segmentation. However,
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in some categories such as Cap, Bag, Rocket and other objects
with small training samples, they may be inferior to other
methods. The main reason is that due to the small number
of samples, our method may not learn enough point features,
leading to segmentation errors. In order to show the perfor-
mance of our method more intuitively, Figure 4 shows the
direct comparison between our method and DGCNN [19] and
the ground truth.

V. CONCLUSION

We propose a novel network structure GFA-Net for point
cloud feature aggregation. It consists of GFA module and
attention mechanism. GFA-Net gathers the information of
the same geometric feature points, which makes up for the
deficiency that only the features of nearby points can be
considered in Euclidean space, thus improving the robustness
of rotation and translation of point clouds.

Experiments show that GFA-Net has state-of-the-art per-
formance, can better collect local geometric features, and
has strong robustness. In future work, we hope to apply our
method to processing large point cloud data with more feature
information.
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