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ABSTRACT A comprehensive and well-structured review on the application of deep learning (DL) based
algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar
signal processing is given. The following DL application areas are covered: i) radar waveform and antenna
array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic
target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and synthetic
aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. Although DL
is unanimously praised as the ultimate solution to many bottleneck problems in most of existing works
on similar topics, both the positive and the negative sides of stories about DL are checked in this work.
Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), limited
training samples and adversarial examples, are thoroughly examined. By investigating the relationship
between the DL-based algorithms proposed in various papers and linking them together to form a full picture,
this work serves as a valuable source for researchers who are seeking potential research opportunities in this
promising research field.

INDEX TERMS Deep-learning, radar waveform recognition, synthetic aperture radar (SAR), automatic
target recognition (ATR), adversarial examples, jamming recognition.

I. INTRODUCTION
In recent years, top researchers around the world have been
increasingly resorting to deep learning (DL) based algorithms
to solve bottle-neck problems in the field of radar signal
processing [1], [2]. The amount of publications on ‘‘deep
learning for radar’’ have been increasing rapidly. To illustrate
radar engineers’ soaring interests in DL, the number of publi-
cations on the topic of ‘‘deep learning for radar’’ from 2016 to
2020 are plotted in Fig. 1 (IEEE Xplore database).
Specifically, a comprehensive survey of machine learning

algorithms applied to radar signal processing is given in [3],
where six aspects are considered: i) radar radiation sources
classification and recognition; ii) radar image processing; iii)
anti-jamming & interference mitigation; iv) application of
machine learning in research fields other than i) - iv); v)
promising research directions. In [4], Zhu et al. provided
a comprehensive review on deep learning in remote sens-
ing, which is focused on automatic target recognition (ATR)
and terrain surface classification based on synthetic aperture
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FIGURE 1. Publications on ‘‘deep learning for radar’’ (2016–2020, IEEE
Xplore database).

radar (SAR) images. In [5], Zhang et al. presented a technical
tutorial on the advances in deep learning for remote sensing
and geosciences, which is also focused on image classifica-
tion.

In this work, we conduct a comprehensive review on the
application of DL-based algorithms in radar signal process-
ing, which includes the following aspects:

a) DL for waveform and array design, which is an
enabling technology for cognitive radar & spectrum
sharing;
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b) DL-based radar waveform recognition, which could
potentially 1) boost the possibility of intercepting and
recognizing the signals transmitted from the low prob-
ability of interception (LPI) radar; and 2) improve the
direct-path signal estimation accuracy for passive radar
applications;

c) DL-based ATR based on high range resolution
profiles (HRRP) profiles, Doppler signatures, SAR
images, and other characteristics (e.g. RCS); two lim-
iting factors of the real-life performance of DNNs are
emphasized: limited training samples and adversarial
examples (note that these two factors are also applica-
ble to DNNs in other application areas in addition to
ATR);

d) DL-based algorithms for jamming/clutter identification
and suppression.

The major contributions of this work are summarized as
following:

� A comprehensive review of various DL-based algo-
rithms for radar signal processing is provided. The
papers reviewed in this work are ‘‘hand-picked’’ high-
quality research works and are neatly grouped based
on the pre-processing methods, DNN structure, main
features, dataset, etc.

� Both the positive and the negative sides of stories
about DL are checked. In contrast, in many existing
reviews/surveys on this topic, DL has been unanimously
praised as a ‘‘marvelous’’ tool that can overcome all
the barriers that preventing radar systems reaching the
ideal performance goal. In this work, considerable pages
are spent on the ‘‘negative’’ side, e.g. the devastating
effects of carefully-crafted adversarial examples on an
otherwise ‘‘well-trained’’ DL network.

� The relationship between the algorithms proposed in
various papers is thoroughly investigated. Generally,
a ‘‘novel’’ algorithm doesn’t always pop out from
nowhere. By analyzing the evolution process from one
algorithm to another by comparing different research
works rather than taking the contribution claims made
in each paper based on their face values, one can get
much deeper insights into the problem at hand and the
real contribution of a paper. Specifically, in the field
of DL, open-source Matlab/Python codes are free for
downloads on many websites. The true value of a spe-
cific research paper can only be determined by linking
everything together as a full picture and then make
observations regarding the position of this particular
paper within the whole picture.

The general structure of this review paper is plotted in
Fig. 2. The techniques/applications investigated in this work
are listed inFig. 3, with themost popular network architecture
and application highlighted. The rest of this work is organized
as following. In Section II, a couple of DL-based radar wave-
form & array design algorithms are reviewed. In Section III,
we focus on the radar signal recognition problem for LPI

FIGURE 2. Structure of this review.

radar and passive radar. In Section IV, automatic target
recognition based on radar HRRP, micro-Doppler signature,
and SAR images with DL-based algorithms is investigated.
Moreover, two challenging problems for DL-based radar
signal processing, namely the lack of training data and the
adversarial attacks, are also analyzed. In Section V, various
DL-based jamming and clutter suppression algorithms are
compared and analyzed. Some final remarks are offered in
Section VI.

II. DEEP LEARNING FOR RADAR WAVEFORM AND
ARRAY DESIGN
A. DL FOR SPECTRUM-SHARING
With the ever-increasing demand for spectrum resource from
wireless communications systems, technologies enabling
spectrum-sharing between radar and communications sys-
tems have grabbed the attention of researchers from both
fields. In [7]–[11], the DL-based algorithms have been
employed to prevent mutual interference between radar and
communications systems that share the same frequency band.
In [7], Smith et al. proposed a novel DNN structure made
of the actor network, which performs actions based on the
current environment state, and the critic network, which is
responsible for judging if the actor’s behavior is appropriate.
Deep deterministic policy gradient (DDPG)-based reinforce-
ment learning strategy is adopted, and waveforms containing
power spectrum notches are designed to constrain interfer-
ences from radar to communications systems. In [8]–[9],
Thornton et al. proposed a novel Double Deep Recurrent
Q-Network, which combines the double Q-learning algo-
rithm and the long-short term memory (LSTM), so that
radar learns to avoid sub-bands containing interference sig-
nals in a spectrum co-existence scenario. DL-based algo-
rithms are also increasingly adopted to solve the problem of
target-tracking in congested-spectrum environments. Specif-
ically, researchers from the U.S. Army Combat Capabilities
Development Command (DEVCOM) developed a DL-based
strategy for radars to autonomously learn the behavior of
interferences from co-existing communication systems so
that clean spectrum is identified & radar waveforms are
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FIGURE 3. Techniques/Applications investigated in ‘‘deep learning for radar’’ (2016–2020).

modified accordingly [10]. In [11], Kozy et al. models the
problem of radar tracking in the presence of interference
as a Markov Decision Process, and applies deep-Q learning
to balance the signal-to-interference-plus-noise ratio (SINR)
and the bandwidth usage so that the mutual interferences
between radar and the co-existing communications systems
is minimized.

B. DL FOR OPTIMIZED WAVEFORM SYNTHESIS
DL-based algorithms are also increasingly adopted in the
fields of radar waveform optimization under specific con-
straints, especially for MIMO radar. In order to separate
the echo signals caused by the illuminating signals from
different transmitting facilities of MIMO radar for further
processing at the receiving end and achieve the waveform
diversity gain, the waveforms from different transmitting
antennas have to be near-orthogonal [12]. Hence the cross-
correlations between waveforms from different transmitting
antennas are to be minimized. To minimize the auto-/cross-
correlation sidelobes while meeting the constraints of con-
stant modulus, Hu et al. designed a deep residual neural
network consists of 10 residual blocks, each of which is
made of dual layers of 128 neurons [13]. Later, a deep
residual network similar to the one in [13] was adopted
in [14] to synthesize desired beampatterns while minimizing
the cross-correlation sidelobes under the constraints of con-
stant modulus. In [15], Zhong et al. proposed a feed-forward
neural network with ten hidden layers to maximize the
SINR of MIMO radar under the constraints of constant
modulus and low sidelobe levels. many research works
are focused on the problem of the minimization of cross-
correlation sidelobe levels. In [16], the problem of multi-
target detection was considered assuming unknown target
positions, where deep reinforcement learning based strat-
egy was adopted for waveform synthesis to maximize the
detection capabilities of MIMO radar. Finally, the waveform
generation and selection problem for multi-mission airborne
weather radar was discussed in [17], where a feedforward
neural network with varying number of hidden layers was
designed to synthesize nonlinear frequency modulated wave-
forms (NFMW) with pre-determined bandwidth and pulse
length.

C. DL FOR ARRAY DESIGN
DL-based algorithms have also been employed to realize cog-
nitive selection and intelligent partition of antenna subarrays.
For example, in [18], a CNN with multiple convolutional
layers, pooling layers and fully connected layers (referred
to as ‘‘Conv’’, ‘‘POOL’’, and ‘‘FC’’, respectively, for sim-
plicity in the rest of this work) was utilized for cognitive
transmit/receive subarray selection based on the development
of the surrounding environment. Moreover, DL-based algo-
rithms could potentially boost the performance of subarray-
based MIMO (Sub-MIMO) radar, which could be regarded
as a hybrid of phased-array radar and MIMO radar. The
essence of Sub-MIMO radar is to transmit correlated wave-
formswithin the same subarray, which resembles the working
mechanism of the conventional phased-array, while the wave-
forms from different subarrays designed to be orthogonal,
so that they could be separated at the receiving end for wave-
form diversity gain [19]. It follows naturally that the partition
of subarrays for Sub-MIMO radar plays a key role in deciding
the balance between the coherent processing gain and the
waveform diversity gain. In [20], a novel CNN was proposed
for interleaved sparse array design for phased-MIMO radar.
Specifically, the parallel lightweight structure (i.e. PL mod-
ule), which is based on theMobileNet-V2 structure, was used
to divide feature matrices into parallel branches. Meanwhile,
the scale reduced convolution structure (i.e. SR-module) was
used as an alternative to the conventional pooling layer for
feature matrix dimension reduction. Simulation results show
that compared with uniform antenna array partition, the pro-
posed CNN provides transmit beampatterns with narrower
mainlobe and lower sidelobes, more accurate direction of
arrival (DOA) estimation, and higher output SINR.

The structures of the DNNs proposed in [7]–[20] and their
distinctive features are summarized in TABLE 1.

III. DL FOR LPI OR PASSIVE RADAR WAVEFORM
RECOGNITION
The DL-based radar waveform recognition is also gaining
popularity in recent years. Various neural networks and algo-
rithms have been developed, which include the deep con-
volutional neural networks (CNNs) [21]–[23], auto-encoders
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TABLE 1. DL-based radar waveform and array design.

[24]–[26], and recurrent neural networks (RNNs) [27]–[29].
These techniques could potentially 1) boost the possibility
of intercepting and recognizing the signals transmitted from
the low probability of interception (LPI) radar [30]–[31];
and 2) improve the direct-path signal estimation accuracy for
passive radar applications [43]–[45]. However, as is pointed
out in [46], [47], DL-based signal classification algorithms
are vulnerable to adversarial attacks, which are expected to
be more powerful than classical jamming attacks.

A. DL FOR LPI RADAR
Most modern radar systems have been designed to emit LPI
waveforms to avoid interception and detection by enemies.
Therefore, automatic radar LPI waveform recognition has
become a key counter-countermeasures technology. In lit-
eratures, dozens of DL-based waveform recognition tech-
niques have been proposedwithin the past five years. Usually,
the raw radar data are first pre-processed with time-frequency
analysis (TFA) techniques, such as Choi-William distribution
(CWD) [30]–[35], Fourier-based Synchrosqueezing trans-
form (FSST) [36],Wigner Ville distribution (WVD) [37], and
short-time Fourier transform (STFT) [38]–[40], to obtain the
time-frequency images. After that, various DNN structures,
mostly CNN, could be designed for feature extraction and
waveform classification.

In [30]–[35], the TFA technique (CWD) was used
to generate time-frequency images in the pre-processing
step. In [30], the sample averaging technique (SAT) was
adopted for signal pre-processing to reduce the computational
cost, after which a 9-layer CNN was proposed. In [31],
a 7-layer CNN alongwith a novel tree structure-based process
optimization tool (TPOT) classifier was designed. In [32],
Ma et al. employed two different DNN structures to approach
the waveform classification problem: a 11-layer CNN and a
bidirectional LSTM, with the former exhibiting better perfor-
mance. In [33], transfer learning was employed to counter the
problem of limited training data. The network was pretrained

with five different existing high-performance CNN architec-
tures: VGG16, ResNet50, Inception-ResNetV2, DenseNet,
and MobileNetV2, with VGG-16 proved to offer the highest
classification accuracy.

Twelve different types of radar waveforms have been used
to test the performance of various CNN structures proposed
in [30]–[33], which include the linear frequency modu-
lated (LFM) waveform, the BPSK, the Frank-coded wave-
form, the Costas-coded waveform, the P1-P4 phase-coded
waveforms, and the T1-T4 time-coded waveforms. Although
the performances of different DNNs in [30]–[33] are noncom-
parable due to training/test data difference, the classification
accuracy offered by these DNNs for SNR = −4 dB are all
higher than 90%. In [34]–[35], the performances of DNNs
were tested with less than 8 different types of waveforms.
In [34], networks (Inception-v3 and ResNet-152) pretrained
with ImageNet were used to reduce the training cost. In [35],
instantaneous autocorrelation function (IAF) was used for
denoising via atomic norm as a pre-processing step, following
which a CNN structure was proposed for the classification of
the LFM, the Costas-coded, and the P2-P4 coded waveforms.

Although the CWD is a widely adopted TFA technique,
it also involves high computational complexity, which makes
the researchers to seek computationally-effective alternatives.
The FSST was used in [36] as a substitute for CWD in the
pre-preprocessing step, following which a multi-resolution
CNN with three different kernel sizes was proposed. In [37],
the WVD was adopted, and a VGG16 variant pretrained
with ImageNet was used to reduce the training cost. More-
over, the STFT was adopted in [38]–[40] to obtain the
time-frequency diagram of radar data. In [38], Ghadimi et al.
proposed two CNN structures based the GoogLeNet and
AlexNet, respectively, for the classification of LFM, P2-P4,
and T1-T4 waveforms. In [39], Wei et al. proposed a novel
squeeze-and-excitation network for feature extraction in time,
frequency, and time-frequency domains, and the recognition
results of all the domains are fused subsequently. In [40],
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TABLE 2. DL for radar waveform recognition.

a simple CNN with three convolution layers and one fully
connected layer was used to classify of 20 different types
of signals, which include frequency-modulated waveforms
with various bandwidth and pulsewidth and phase-modulated
waveforms.

Finally, it is worth mentioning that some research works
on this topic didn’t employ TFA techniques for signal pre-
processing. For example, in [41], an adaptive 1D CNN with
four hidden layers and two dense layers was proposed for
the classification of continuous and pulsed waveforms (sinu-
soidal, LFM, bi-phase coded, frequency-stepped).

The preprocessing procedures, the DNN structures, and
the radar waveforms used for performance evaluation
in [30]–[40] are summarized in TABLE 2.

B. DL FOR PASSIVE RADAR
Another potential application area for the DL-based
automatic waveform recognition algorithms is passive radar.
Passive radar utilizes the signals from illuminators of oppor-
tunities (IOs) (e.g. base stations of wireless communica-
tions systems) for target detection, imaging, and tracking,
which could increase the radar coverage area while avoiding
the high infrastructure cost and the spectrum-crowdedness
caused by the construction of new dedicated radar transmit-
ters. However, since the waveforms from the IOs are usually
unknown to radar receivers, the performance of passive radar
is usually much worse than the conventional active radar [42].
In [43]–[44], DL was used to realize simultaneous waveform
estimation and image reconstruction for passive SAR com-
posed of a ground-based IO at known position and an airborne
receiver. A recurrent neural network (RNN) was designed,
with which the scene reflectivity was recovered via forward

propagation, while the waveform coefficients were recon-
structed via backpropagation. Simulation results show that
the proposed RNN could learn the characteristics of quadra-
ture phase-shifted keying (QPSK) signals [43] and OFDM
signals transmitted from DVB-T [44], and perform the SAR
image reconstruction with low error. It was also shown that as
the number of layers of the RNN increases, the image contrast
improves at the cost of increased reconstruction error. In [45],
Wang et al. developed a novel DNN consisting of a two-
channel CNN and bi-directional LSTM, which is termed as
TCNN-BL, for waveform recognition for cognitive passive
radar, which could modify the sampling rate adaptively to suit
the task at hand.Moreover, a parameter transfer approach was
utilized to improve the network training efficiency.

C. CHALLENGES
According to [46], the DNNs are highly vulnerable to adver-
sarial attacks. Depending on the information that is available
to the attackers, adversarial attacks could be classified as
white-box attack (the model structure and the parameters of
the network are completely known a priori), grey-box attack
(known model structure & unknown parameters), and black-
box attack (unknown model structure & parameters). In most
cases, the detailed information regarding DNNs is unknown
to the attacker, who can only get access to the classification
results of the network. Although black-box attack is more
common and less devastating than the other two types of
attacks, white-box attack is often used in research works
to evaluate the worst-case scenario. In [47], Sadeghi et al.
showed that black-box attack can be designed to be approx-
imately as effective as white-box attack, which could lead to
dramatic performance degradation in DL-based radio signal
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classification. It is worth noting that most research works
on the topic of signal/waveform misclassification caused by
adversarial attacks target the wireless communication sys-
tems rather than radar. Nevertheless, the theory and mech-
anism of adversarial attacks for these two closely related
fields are identical. To encounter the challenges posted by
adversarial examples, various adversarial training and detec-
tion approaches have been developed. For example, in [48],
the 1D CNN used as RF signal classifier was pre-trained with
an autoencoder to migrate the deceiving effects of adversarial
examples, which has the potential to be extended to the 2D
image classification problem. In [49], two statistical tests
were proposed for the detection of adversarial examples.

IV. DL FOR ATR
Machine learning (such as k-nearest neighbor and dictionary
learning) has been employed for ATR long before the emer-
gence of DL [50], [51]. After AlexNet (one of the most pop-
ular deep CNNs) won the ILSVRC’12 contest [52], DL for
radar ATR has become an intensively researched subject.
Based on the amount of labeled data in the dataset used for
training the network, DL could be classified as unsupervised
learning, supervised learning, and semi-supervised learning
(SSL), with SSL being a halfway between the other two.
According to [53], in common cases, 1%-10% of the data
used for SSL training are labeled, while the rest are unla-
beled samples. Since most of the existing DL-based radar
ATR methods are supervised, the recognition/classification
accuracies of thesemethods are heavily limited by the amount
of labeled training data. In this section, we provide a compre-
hensive review of DL-based ATRmethods proposed in recent
published research works, which includes i) ATR using the
HRRP; ii) ATR using the micro-Doppler signatures; iii) ATR
for SAR; and iv) major challenges for DL-based ATR.

A. DL-BASED ATR USING HRR PROFILES
In order to perform ATR using the HRRP, some pre-
processing procedures are often required to eliminate
the sensitivities of the DL-based algorithm to time-shift,
amplitude-scaling, and aspect-angle. Commonly used sen-
sitivity removal approaches include time-shift compensa-
tion, energy normalization, and average processing [54]–[56].
The DNN structures used for radar HRRP target recogni-
tion include the deep belief network [54], [55], recurrent
attentional network [57], [58], concatenated neural network,
CNNs [62]–[64], stacked auto-encoder (SAE) [65], and con-
volutional LSTM [66], [67].

Some researchers used measured HRRP data for perfor-
mance evaluation. For example, the HRRP data from Yak-42
(large jet), Cessna Citation S/II (small jet), and An-26 (twin-
engine turboprop) were used in [54]–[58]; the HRRP data
from Airbus A319, A320, A321, and Boeing B738 were
used in [59]; the HRRP data from seven types of ship of
different sizes (length from 89.3 m to 182.8 m) were used
in [60]; the HRRP data from various types of ground vehicles
were used in [62], [66], [67]. Since most researchers only

have access to a limited mount of HRRP measurement data
associated with a handful of vehicles, many of them resort
to simulated HRRP data generated by software based on the
specific CAD models of vehicles for research purposes. For
example, in [63], Lundén et al. generated HRRP data for
8 fighters (F-35, Eurofighter, etc.) with POFACETS & 3D
facet models of aircrafts. In [64], the HRRP data for 6 mili-
tary and 4 civilian ship targets are simulated based on CAD
models assuming X-band maritime radar. Another feasible
alternative is data augmentation with generative adversarial
network (GAN). Specifically, in [62], GAN was adopted to
address the problem of unbalanced training samples, i.e. the
labeled training samples for some classes (majority classes)
significantly outnumber the other classes (minority classes).

The DNN structures of the DL-based ATR methods pro-
posed in [54]–[65] along with their distinctive features are
summarized in TABLE 3. The preprocessing procedures and
the dataset used for performance evaluation have also been
noted in the table. It is worthmentioning that some simulation
results regarding target recognition using a supervised DL
based on the HRRPs collected with MIMO radar have also
been presented [68]. However, since the DNN used to obtain
the results in [68] was not detailed, it is not included in
TABLE 3.

B. DL-BASED ATR USING MICRO-DOPPLER SIGNATURES
DL-based target detection/classification based on micro-
Doppler signatures has been gaining ground rapidly in the
field of automatic ground moving human/animal/vehicle tar-
get recognition [69]–[73] and drone classification [74]–[77].
In [69],MAFATdataset, which contains the echo signals from
humans and animals collected by different pulse-Doppler
radars at different locations, terrains, and SNR, was used for
the training of a six-layer CNN. To achieve higher classifi-
cation accuracy, the data was further augmented via random
frequency/time shifting, noise-adding, and vertical/horizontal
image flipping. In [70], a CNN composed of 5 dense blocks
(i.e. 3 × 3 Conv followed by 1 × 1 Conv) and 5 transition
blocks (i.e. 1 × 1 Conv followed by 2 × 2 POOL) was
proposed for human motion classification based on micro-
Doppler signatures, the performance of which was tested
with two datasets containing the echoes associated with
six human motions (walking, running, crawling, forward
jumping, creeping, and boxing) obtained via simulation and
measurement, respectively. The major feature of the human
motion recognition algorithm in [70] is that the proposed
network is more robust to the varying target angle aspect
than most classic CNN models, such as VGGNet, ResNet,
and DenseNet. In [71]–[73], Hadhrami et al. investigated the
problem of single-person/group/vehicle recognition based on
micro-Doppler signatures with DL. Pre-trained classic CNN
models (such as VGG16, VGG19, and AlexNet) and trans-
fer learning were adopted to improve the network training
efficiency. The RadEch human/vehicle targets tracking data
collected with Ku-band pulse-Doppler radar, which covered
typical scenarios like single-person/group walking/running
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TABLE 3. Radar HRRP target recognition with deep networks.

and truck moving, was used to test the performance of the
proposed network. Moreover, data augmentation (×16) with
image vertical flipping and circular shifting was employed to
compensate for the limited training data.

In [74] and [75], pretrained classic CNN models (e.g.
GoogLeNet) are used for drone classification. Specif-
ically, in [74], the micro-Doppler signatures and the

cadence-velocity diagrams obtained by 14 GHz fre-
quency modulated continuous wave (FMCW) radar in
indoor/outdoor experiments are merged as Doppler images,
based on which drones with different number of motors are
classified. In [75], both the pretrained GoogLeNet and the
deep series CNN with 34 layers are employed for in-flight
drone/bird classification. The RGB and the grayscale echo
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signal dataset collected by 24 GHz and 94 GHz FMCW
radars are used to train the two networks, respectively. One
distinctive feature of the networks presented in [75] is that
clutter and noises have been treated as two separate sub-
classes. In [76] and [77], Mendis et al. proposed a deep
belief network (DBN) formed by stacking the conventional
RBM and the Gaussian Bernoulli RBM (GBRBM), which is
similar to the one proposed in [54], to address the problem of
micro drone detection and classification. The classification
was based on the Doppler signatures of the targets of interest
and their spectral correlation function (SCF) (i.e. Fourier
transform of autocorrelation function) signature patterns.
The performance of the proposed DBN was tested with the
echo signals collected from three micro-drones (available at
supermarkets at a price lower than $100) by S-band CW
Doppler radar. The micro-Doppler signature based target
detection and classification approaches proposed in [69]–[77]
are summarized in TABLE 4.

Finally, it is worth mentioning that a comprehensive review
on the application of DL for UAV detection and classification
was provided in [78]. Although [78] covers the general topic
of drone detection with multi-types of sensors (which include
electro-optical, thermal, sonar, radar, and radio frequency
sensors) and does not focus specifically on drone classifica-
tion using the Doppler signatures collected by radar, it still
serves as a good reference work for readers who are interested
in the topic of drone/birds detection and classification.

C. DL-BASED ATR FOR SAR AND VIDEO SAR
In 2020, Majumder, Blasch, and Garren published a book
summarizing recently proposed DL-based approaches for
radar ATR, where DL for single and multi-target classifica-
tion in SAR imagery was considered [79]. Specifically, this
book focused on the ATR performances of various DNNs
evaluated with the popular MSTAR dataset, with MSTAR
stands for the Moving and Stationary Target Acquisition and
Recognition. The public release of theMSTARdataset, which
was collected by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL), consists of 20,000 SAR image chips covering 10
targets types from the former Soviet Union. It should be
noted that, although theMSTAR dataset has long been widely
adopted in research works to evaluate the performance of
traditional machine-learning based algorithms (e.g. SVM),
bywhich a classification rate of 97%-100%had been reached,
it has been shown in some papers that the ATR performance
of the algorithms trained/testedmerely on theMSTARdataset
usually degrade when trained/tested using other dataset (e.g.
the QinetiQ dataset [80], [81]). Nevertheless, in this section,
we will give a brief review of recently proposed DNNs for
ATR employing the MSTAR dataset [82]–[92] and other
SAR image datasets (e.g., TerraSAR-X). The limitation of
the MSTAR dataset and the possible counter solutions will
be covered later in Section IV-D.

In [82], Chen et al. proposed an all-convolutional net-
work (A-ConvNet) composed of 5 Conv and 3 × POOL.

Since only sparse connected Conv were used and the FC
was omitted, A-ConvNet is highly computational efficient.
The performance of A-ConvNet was evaluated under both
standard operating condition (SOC) and extended operat-
ing condition (EOC) (e.g. substantial variation in depression
angle/target articulation), which has been widely adopted as
the performance benchmark in research papers. In [83], a
normal multiview deep CNN (DCNN) was proposed, which
is a parallel network with multiple inputs (i.e. SAR images
from different views) requiring only a limited amount of
raw SAR images. The features learned from different views
are fused progressively toward the last layer of the network,
which leads to classification rates of 98% and 93% for SOC
and EOC, respectively. In [84], Furukawa et al. proposed
a CNN termed as verification support network (VersNet)
composed of an encoder and a decoder. A main feature of
the network is that the input SAR image could be of arbitrary
size and consisting of multiple targets from different classes.
In [85], Shang et al. added an information recorder, which
is a variant of the memory module proposed in [89], along
with a mapping matrix to the basic CNN. The resulting
memory CNN (M-Net) uses spatial similarity information of
recorded features to predict unknown sample labels. A two-
step training process (i.e. parameter transfer) was employed
to guarantee convergence of the results and to reduce the
required of training time. The CNNs proposed in [86]–[88]
are also worth brief mentioning. In [86], morphological oper-
ation was used to smooth edge, remove blurred pixel, amend
cracks, and the large-margin softmax batch normalization
was employed. In [87] and [88], the database was extended
with affine transformation in range, and a couple of SVMs
were used to replace the FC in CNN for final classification.

ATR based on SAR image sequence obtained from, for
example, single-radar observations along a circular orbit over
time or joint observation from different angles by multiple
airborne radars, has also been investigated in research works.
Considering that the sub-images in the SAR image sequence
obtained by the imaging radar over a period of time from the
same target often exhibit conspicuous variations, a spatial-
temporal ensemble convolutional network (STEC-Net) con-
sisting of 4 convolutional layers and 4 pooling layers was
proposed in [90]. Dilated 3D convolution was used to extract
spatial and temporal features simultaneously, which were
progressively fused and represented as the ensemble feature
tensors. To reduce the training time, compact connection was
used rather than fully connected layer. In [91], Zhang et al.
proposed a multi-aspect-aware bidirectional LSTM network
(MA-BLSTM) consisting of the feature extraction blocks,
the feature dimension reduction block, and 3-layer LSTM
block. The feature extraction block utilizes the Gabor filter
(orientation and rotation sensitive) in combination with the
three-patch local binary pattern (TPLBP) operator (rotation
invariant) to obtain global & local features, while 3-layer
MLP was employed for feature dimension reduction. In [92],
Bai et al. proposed a bidirectional LSTM network, the perfor-
mance of which was evaluated for two cases: clutter-present
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TABLE 4. DL-based target detection & classification using micro-Doppler signatures.

and clutter-free. Surprisingly, the presence of clutter lead to
higher classification accuracy than the clutter-free case. All
the DNNs proposed in [90]–[92] reported a target recognition
accuracy higher than 99.9%, but the performance is expected
to degrade in real-life application scenarios (note: ‘‘a machine
trained in one environment cannot be expected to perform
well when environmental conditions change’’—Pearl [93]).

According to [91] and [92], the LSTM network outper-
forms the hidden Markov models (HMMs), which has been
widely adopted to model the multi-aspect SAR images until
2000s [94], in modeling the stochastic sequences, especially
when the initial probability of states is unknown. However,
the LSTM is notoriously time-consuming to train (not to
mention that the training time of MA-BLSTM increases by
5 times with the decrease of training data [91]). Moreover,
auto-extracted features obtained with CNNs or other types
of unsupervised neural networks are not necessarily better
than the hand-crafted ones designed by human experts. Actu-
ally, many well-established researchers hold doubts against
the ‘‘black-box’’ process of ‘‘automatic’’ feature extraction,
which makes a network extremely vulnerable to adversarial
attacks (more details regarding this problem will be provided
in Section IV-D).

Except for the CNNs and the LSTM networks mentioned
above, other DL-based networks such as the autoencoders
and Capsule Networks (CapsNets) have also been investi-
gated as feasible solutions to the ATR problem. In [95],
Deng et al. proposed a network composed of stacked auto-
encoders (SAE). To avoid overfitting, restriction based on
Euclidean distance was implemented (i.e. samples from the
same target at different aspect angles have shorter distance in
feature space) and a dropout layer was added to the network.

In [96] and [97], Geng et al. proposed a deep supervised &
contractive neural network (DSCNN), which consists of 4
layers of supervised and contractive autoencoders. Multiscale
patch-based feature extraction was performed with three fil-
ters: the gray-level gradient cooccurrence matrix (GLGCM)
filter, the Gabor filter, and the histogram of oriented gradi-
ent (HOG) filter. The graph-cut-based spatial regularization
was applied to smooth the results. Moreover, unlike the other
networks discussed in this subsection, which have all been
trained and tested using theMSTAR dataset, the DSCNNwas
tested with three datasets, the TerraSAR-X, the Radarsat-2,
and the ALOS-2 data. A comprehensive review of autoen-
coder and its variants for target recognition in SAR images
could be found in [98]. In [99]–[102], various capsule net-
works (CapsNets) were proposed to address two problems in
SAR-image based ATR: limited training data and depression
angle variance. CapsNets are composed of capsules which
are vectors of information about the input data, with the
magnitude representing the probability of the presence of an
entity and the direction representing the pose and position
of the entity. Due to page limitation, this minority group of
CapsNets based networks won’t be detailed here. The DNNs
discussed in this section for ATR using SAR images are
summarized in TABLE 5.

Finally, note that DL could also be used for video-SAR
moving target indication. Specifically, Ding et al. proposed
a faster region-based CNN in [103], which is a variant of
the algorithm proposed by Ren et al. in [104]. To reduce
the training burden, the features were extracted with per-
tained CNN models such as AlexNet, VGGNet, and ZFNet.
The Density-based Spatial Clustering of Application with
Noise (DBSCAN) algorithm was developed to reduce false
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TABLE 5. DL-based target classification using SAR images.

alarms, and the Bi-LSTM was used to improve the detection
probability. The performance of the proposed network was
evaluated with both simulated video SAR data and real data
released by Sandia National Laboratory, which was further
augmented with rotation and cropping.

D. MAJOR CHALLENGES FOR DL-BASED ATR
In Section IV-C, we reviewed many DNNs trained and tested
with the MSTAR dataset. In this subsection, we will look into
two limiting factors which have been keeping the unanimous
adoption of DNNs for radar ATR tasks on battle fields from
becoming true: the limited amount of training data and the
potential security risk posted by carefully crafted adversarial
attacks.

1) LACK OF TRAINING DATA
Although classification rates of higher than 99% have been
reported in many papers covering DNNs trained for radar
ATR using the MSTAR dataset, the accuracies of these net-
works are expected to degrade dramatically when tested with
SAR images taken at depression angles that are very different
from the ones used to obtain the training dataset or other
SAR image datasets, e.g. the QinetiQ dataset [80], [81].
As pointed out by J. Pearl, the neural networks usually cannot
perform well if the environment they are tested in is differ-
ent from the one they are trained with [93]. However, the
DL-based approaches will simply lose all their glamor if we
must train the network from the very beginning with large
amount of qualified training data for every new classification
task.What’s worse, unlike other ordinary image classification
tasks (e.g. cat/dog classification), the SAR images used for
radar ATR are usually very scarce, especially when the targets
are military vehicles employed by other countries. Therefore,
machine learning with small training data sets is key to the
success of radar ATR using SAR images. In the following,
we will examine various neural networks that are designed to
meet this challenge.

Since these networks have all been trained using the
MSTAR dataset, the classification accuracies of these net-
works and the number of samples involved in the training
process are comparable. Before we move on, we will first
provide some details on the MSTAR dataset, so the readers
could get a clear picture of what is happening. As was men-
tioned before, the MSTAR dataset consists of 20,000 SAR
image chips covering 10 targets types from the former Soviet
Union (BMP2, BTR70, T72, BTR60, 2S1, BRDM2, D7, T62,
ZIL131, ZSU23/4). These targets were measured over the
full 360◦ azimuth angles and over multiple depression angles
(15◦, 17◦, 30◦, and 45◦), and the SAR images are 128 ×
128 pixels in size and of 1 foot × 1 foot resolution. In most
of papers, to demonstrate the robustness of the proposed
networks to the variation of angles, the SAR images used
for training and testing usually correspond to two different
depression angles (e.g. 15◦and 17◦).

a: SUPERVISED LEARNING
For comparison purpose, we first look at the application of
traditional machine learning method to address this prob-
lem. The topic has been thoroughly reviewed in [105]. More
recently, in [106], Clemente et al. utilizedK-nearest neighbor
for ATR against compound Gaussian noise, which was added
to the MSTAR datasets manually. The features were repre-
sented by Krawtchouk moments, and the selection of test-
ing/training samples were randomized in each Monte Carlo
run. Using only 191 training samples, the network proposed
in [106] reached an accuracy of 93.86%.

b: SEMI-SUPERVISED LEARNING
Since the manual feature extraction usually induces high
computational complexity while the auto feature extraction
is a time-consuming process requiring a large amount of
labeled training samples, some researchers resort to semi-
supervisedmachine learning. In [107], Hou et al. introduced a
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semi-supervised online dictionary learning algorithm, where
the SAR images were modeled with complex Gaussian dis-
tribution (CGD). The dictionary was updated by adding sam-
ples to the training process in a progressive way, and the
Bayesian inference was employed to learn the dictionary.
In [108], Wang et al. used dual-networks and cross-training
(i.e. the Siamese network) to improve the classification rate
with limited training data. Specifically, the pseudo-labels
generated by one network were used to fine-tune the other
network, and an iterative categorical cross-entropy function
was designed as the loss function of the dual-networks for
contrastive learning. Although a high accuracy of 97.86%
was obtained in [108] with only 400 training samples, it is
worth noting that the Siamese network is famous for its
sensitivity to input variations and weak generalizability. Fea-
ture augmentation, i.e. combining complementary features
extracted by optimally-selected multi-level layers rather than
utilizing the high-level features only, is another solution to
improve the accuracy with limited training samples. In [109],
Zhang et al. proposed a CNN composed of 5 Conv layers,
5 pooling layers, and 2 FC layers. The features from the
Conv layers were concatenated, and the AdaBoost rotation
forest (RoF) was used to replace the original softmax layers.
With 500 training samples, the networks proposed in [109]
reach a classification rate 96.3%. Note that other supervised
classifiers, such as SVM and random forest, could also be
used as substitutes for the softmax layers of a classic CNN to
improve the accuracy.

c: UNSUPERVISED LEARNING
One way to realize unsupervised learning with limited train-
ing data samples is to employ transfer learning. In [110],
Huang et al. proposed a DNN composed of stacked con-
volutional auto-encoders, which was trained with unlabeled
SAR images for the subsequent transfer learning rather than
the commonly used ImageNet, which contains optical images
that are far different from SAR images. In [111]–[118], data
augmentation was performed to boost the training dataset in
addition to transfer learning to further improve the classifica-
tion accuracy. Specifically, in [111], Zhong et al. employed
three classic CNNs, namely CaffeNet, VGG-F, and VGG-M,
that have been pretrained with the ImageNet dataset. The
data augmentation method used in [82] was adopted, and
2700 images for each class were obtained via randomly sam-
pling 88× 88 patches from the 128× 128 SAR image chips.
With network pruning (a maximum of 80% filters pruned)
and recovery employed, the networks presented in [111] is
3.6 times faster than the A-ConvNets proposed in [82] at the
cost of 1.42% decrease in accuracy. In [112], Ding et al.
an all-in-one 6-layer CNN was proposed, and three types
of data augmentation, namely posture synthesis, translation,
and noise-adding were combined. With training samples aug-
mented to 1000 per class, the network in [112] reached a test
accuracy of 93.16%. In [113], Yu et al. proposed a 13-layer
CNN, with the input data preprocessed with Gabor filters.
The center 88× 88 pixels of the SAR images were cropped to

reduce the computational burden, and the training dataset was
augmentedwith the approach proposed in [112]. By replacing
1%-15% pixels in target scene with randomly generated sam-
ples, the anti-noise performance of the proposed network was
demonstrated. In [114], data augmentation was performed by
first using improved Lee sigma filtering to remove speckles
and then adding random noises. The proposed 9-layer CNN
reached a high accuracy of 98.7%with 1900 training samples.

In [115] and [116], Lewis and Scarnati pointed out that
the synthetic SAR images obtained by simply manipulating
the real SAR images as the ordinary optical images are of
poor quality (despite of the resemblance between them in
‘‘appearance’’), and using only the synthetic data in the train-
ing process could lead to dramatic performance degradation.
For example, the SAR ATR CNN in [117] achieved only a
19.5% accuracy when trained with synthetic data and tested
with real data. Therefore, in [115] and [116], 3DCADmodels
of targets were used to synthesize the Synthetic and Mea-
sured Paired and Labeled Experiment (SAMPLE) dataset.
The input data was preprocessed with t-SNE for dimension
reduction, and variance-based joint sparsity was employed
for denoising. Moreover, the clutter was transferred from
real to synthetic SAR images via task masks. With 50% real
data from the MSTAR dataset and 50% synthesized data
generated with the GAN, the modified DenseNet proposed
in [115] reached an accuracy of 92%. In [118], dual parallel
GAN (DPGAN) made of a generator with 4 convolution
layers and 4 deconvolution layers and a discriminator with
4 convolution layers was proposed. The raw images with
opposite azimuth were merged together for shadow com-
pensation. With 300 GAN-augmented training samples, the
5-layer CNN proposed in [118] reached a high accuracy
of 99.3%.

The networks proposed in [106]–[118] along with the
number of MSTAR samples used for training and the cor-
responding accuracies are summarized in TABLE 6, where
‘‘AUG’’ represents training data augmentation. Since transfer
learning plays a key role in improving the accuracy of DNNs
with limited training data while reducing the training time,
the readers are also referred to [119], in which how to apply
transfer learning in SAR ATR were discussed in detail (note
that it was concluded in [119] that simple ‘‘domain adaption
based transfer learning’’ by applying aDNNmodel pretrained
with natural optical images, e.g. ImageNet, directly to the
problem of SAR image classification/recognition does not
work well). Finally, although the MSTAR data set has been
widely used for the training of SAR ATRDNNs [106]–[118],
some researchers resort to a few SAR image datasets obtained
by TerraSAR-X that have been made available to public,
which include the landscape mapping dataset [120], the ship
detection dataset [121], [122], and the vehicle detection
dataset [123].

2) ADVERSARIAL ATTACKS
According to literatures, one most intriguing feature of adver-
sarial attacks is that by slightly changing some pixels of a
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TABLE 6. Techniques for machine learning with small training dataset.

picture (changes so trivial that humans can’t even notice),
the DL-based image classification algorithm will be fooled to
make unbelievable mistakes. For example, if we add a toaster
sticker to a banana, it could be misclassified as toaster by a
DL-based classifier [46]. Based on the adversary’s knowledge
on the network to be attacked, adversarial attacks could be
classified as white-box, grey-box and black-box attack (see
Section III-C for details). Moreover, an adversarial attack
is said to be ‘‘targeted’’ if the adversarial examples have
been designed to be misclassified as a specific type of target
and ‘‘nontargeted’’ otherwise. The research in the field of
adversarial attacks resembles a cat-and-mouse game: many
algorithms are designed to misguide the existing DNNs into
misclassification, while the others are developed to improve
the robustness of theDNNs to adversarial examples via adver-
sarial training, adversarial detection, gradient-masking, etc.
In this subsection, we will give a brief introduction to several
highly-cited adversarial attack algorithms proposed in recent
years. Before we move on to introduce original research
works on this topic, we will first provide some background
information on commonly used attack methods that are read-
ily available as Python toolboxes free for download [124].

The adversarial attacks widely adopted by DNN attack-
ers generally belong to three categories: the gradient-based
attacks, the score-based attacks, and the decision-based
attacks.

The gradient-based attacks utilize the input gradients to
obtain perturbations that the model predictions for a specific
class are most sensitive to. The fast gradient sign method
(FGSM), the Basic Iterative Method (BIM), the iterative
least-likely class method (ILCM), the Projected Gradient
Descent (PGD) and the DeepFool are some of the most
famous attackmethods belong to this group [124]. TheFGSM
proposed by Goodfellow et al. [126] utilizes the loss function
with respect to the input to create an adversarial example
that maximizes the loss so that it will be misclassified. The
BIM, which is also referred to in literatures as the iterative
fast gradient sign attack method (I-FGSM), and the ILCM
were all proposed by Kurakin et al. in [127]. The BIM is a
straightforward extension of the FGSM method, which seeks
to maximize the cost of the true class along small steps in
the gradient direction in an iterative manner. In contrast,

the ILCM iteratively maximize the probability of specific
false target class with lowest confidence score for clean
image. The PGD-based attack method [128] is essentially
the same as the BIM except that for PGD, the example is
initialized at a random point in the ball of interest determined
by the l∞ norm. TheDeepFoolmethod proposed byMoosavi-
Dezfooli [129] first computes the minimum distance it takes
to reach the class boundary assuming that the classifier is
linear, then makes corresponding steps towards that direction.

The score-based attacks do not require gradients of the
model or other internal knowledge about the networks to be
attacked, but need to know the probability that the input sam-
ples belong to a certain class, i.e. the probability labels. It is
less popular than the gradient-based attacks. The single-pixel
attack proposed by Narodytska and Kasiviswanathan [130]
in 2017 is a typical score-based attack. It probes the weakness
of a DNN by changing single pixels to while or black one at a
time. In 2019, an alternative single-pixel based approach was
proposed in [131], which relies on the differential evolution
algorithm and achieved a high successful-misguiding rate by
only modifying less than 5 image pixels. In contrast, the
decision-based attacks rely only on the class decision made
by the targeted networks and does not require any knowl-
edge regarding gradients or probabilities. This last category
of adversarial attacks includes the boundary attack [132],
the noise attack, and the blur attack (for images only) [124].

In the following, we will concentrate on the application
of adversarial attacks in radar ATR. In [133], Huang et al.
proposed four algorithms to misguide multi-layer perceptron
(MLP) and CNN designed for radar ATR using HRRP. Two
of them are fine-grained perturbations (i.e. the adversarial
sample to be updated according to the input), while the
other two are universal perturbations (i.e. image-agnostic).
These algorithms and their main features are summarized in
TABLE 7. Simulation results show that the proposed algo-
rithms are highly aggressive when conducting both white and
black attacks. In [134], Huang et al. considered the problem
of adversarial attacks on radar ATR using SAR images. First,
the I-FGSM was employed to generate adversarial exam-
ples for white-box and black-box nontargeted attacks on
three classic CNN models: AlexNet, VGGNet, and ResNet.
After that, the ILCM algorithm and the DBA algorithm were
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TABLE 7. Adversarial attacks on ATR.

used to create adversarial examples for targeted white-box
and black-box attack, respectively. The characteristics of
these three algorithms are briefly introduced in TABLE 7.
Simulation results show that using the adversarial examples
generated with the I-FGSM, the success rate of VGGNet
and ResNet in target recognition dropped from 95% to 7%
when black-box attack was conducted. In addition, under
the targeted white-box attack from ILCM, the confidence
level of ResNet for the true class label decreased from 99%
to 61.4%. Meanwhile, under the targeted black-box attack
from decision-based attack, the confidence levels of AlexNet,
VGGNet, and ResNet for the true class label were as low as
22.4%, 15.9%, and 23.2%, respectively. In [135], Lewis et al.
tested five white-box adversarial attacks to fool the DL-based
radar classifier: FGSM, DeepFool, NewtonFool, BIM, and
PGD. In [136], the nontargeted black-box universal adversar-
ial perturbation (UAP) was employed to fool the CNNs, for
which the success rate in misguiding the network was higher
than 80%.

As was mentioned before, although the mainstream
research in the field of adversarial examples aims to ‘‘attack’’,
a considerable number of researchers work on the ‘‘defence’’
side, i.e. to improve the robustness of the DNNs to adversar-
ial examples via adversarial training, adversarial detection,
gradient-masking, etc. For example, in [138], the competitive
overcomplete output layer (COOL) was designed to replace
the commonly used softmax layer for improved robustness
of the CNN against the adversarial examples generated by
DeepFool.

V. DL FOR RADAR INTERFERENCE SUPPRESSION
Jamming and clutter are two types of interferences that limit
the performance of modern radar systems. In this section,
various DL-based jamming recognition and anti-jamming
algorithms are reviewed. The technical trends in using the
DNNs to address the challenging problem of marine target
detection in sea clutter are also discussed.

A. JAMMING
In [145]–[151], various DNNs were designed for jamming
signal classification, with the majority of them being CNNs.
The main features of these networks are summarized in
TABLE 8, along with the types of jamming signals that
have been used for network training and performance test-
ing. Specifically, In [146] and [147], an improved Siamese-
CNN (S-CNN) was proposed, which is composed of two 1-D
CNNs for feature extraction from the real and the imagi-
nary parts of the data, respectively. This network only needs
500 training samples for each target class, and its perfor-
mance were compared with various machine learning meth-
ods (e.g. the SVM). In [148] and [149], the 1-D jamming
signals were transformed to 2-D time-frequency images via
time frequency analysis so that they could be processed with
CNN. In [149], a DNN based on the bilinear EfficientNet-
B3 and the attention mechanism was proposed. The model
parameters of EfficientNet-B3 obtained in the pretraining
process using the ImageNet dataset were used as the initial
weights of the proposed network. Note that EfficientNet-B3
belongs to a large family of EfficientNet algorithms (named
as EfficientNet-B0 to B7) [150]. Although the accuracy of
EfficientNet-B3 is 4% lower than that of EfficientNet-B7,
the amount ofmodel parameters involved in the former is only
1/5 of the latter, which indicates less training time. In [151],
a VGG-16 variant was developed for barrage jamming detec-
tion and classification for SAR, where the statistical charac-
teristics of SAR echo signals was exploited.

Except for the works discussed above, using the DL-based
approaches to perform target classification in the presence of
jamming [152], to choose the optimum anti-jamming strategy
for radar [153], [154], to analyze the probability of radar
being jammed [155], and to adaptively select the best method
to jam an enemy radar [157] have also been investigated. The
DNN structures proposed in these works and their distinctive
features are summarized in TABLE 8. Finally, a detailed
discussion regarding the application of artificial intelligence
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TABLE 8. DL for jamming recognition and suppression.

in electronic warfare systemswas presented in [158], which is
also recommended for readers who are interested in the recent
trends of DL-based jamming/anti-jamming techniques.

B. CLUTTER
Marine target detection is a much more challenging task for
radar than ground moving target detection due to the highly
nonhomogeneous and time-varying clutter incurred by the
sea. An early attempt of using machine learning methods
for target detection in the presence of sea clutter was made
in [159], where k-Nearest-Neighbor and SVM were used
for marine target/clutter classification using the data col-
lected by the S-band NetRAD system jointly developed by
the University College London and the University of Cape
Town [160].

With DL gaining popularity in recent years, many
researchers resort to DNNs to further improve the detec-
tion performance of marine radars [161]–[164]. Specifically,
in [161], Pan et al. used the Faster R-CNN proposed by
Ren et al. in [104] for target detection using the sea clutter
dataset collected with the X-band ground-based Fynmeet
marine radar by the council for scientific and industrial
research (CSIR). In [162], Chen et al. proposed a dual-
channel convolutional neural network (DCCNN) made of
LeNet and VGG16, for which the amplitude and the time-
frequency information were used as two inputs, and the fea-
tures extracted from the two channels were fused at the FC
layer. One distinctive characteristic of [162] is that softmax
classifier with variable threshold and SVM classifier with
controllable false alarm rates were designed. The perfor-
mance of the proposed network was tested with two datasets,

the Intelligent PIXel processing radar (IPIX) dataset collected
by the fully coherent dual-pol X-band radar for floating
target and the CSIR dataset for maneuvering marine target.
In [163], a fully convolutional network (FCC) with 20 layers
were proposed for ship detection in SAR images collected by
Gaofen-3 and TerraSAR-X. It is worth mentioning that pixel
truncation was implemented as a preprocessing procedure
assuming that the potential ship pixels are brighter than the
clutter, which is not necessarily true. Finally, in [164], a
DL-based empirical clutter model named as the multi-source
input neural network (MSINN) was proposed to predict the
sea clutter reflectively. This model was tested with the sea
clutters collected by ground-based UHF band polarized radar
and was proven to fit the measurement data better than the
existing empirical sea clutter models.

Although most research papers in this field focus on sea
clutter, DNNs have also been designed to address other types
of clutter. For example, in [165], Cifola et al. considered
the problem of clutter/target recognition for drone signals
polluted by wind turbine returns. A denoising adversarial
autoencoder was designed, the performance of which was
tested with the micro-Doppler signatures of drones and wind-
turbines measured with X-band CW radar. In [166], Lep-
etit et al. used U-Net, a CNN variant that was originally
proposed for medical image segmentation, to remove clut-
ter from precipitation echoes collected by weather radar.
150,000 images collected by the Trappes polarimetric ground
weather radar in Météo-France were used for network
training.

The DNN structures presented in [161]–[166] and their
main features are summarized in TABLE 9. Note that
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TABLE 9. DL for clutter estimation and suppression.

except for the works mentioned above, deep convolutional
autoencoders were proposed for target detection in sea clutter
in [167], [168], and a LSTM-based network was designed
for sea clutter prediction in [169]. Since these networks were
tested only with simulated data, they are expected to exhibit
noticeable performance degradation in real-life detection
scenarios.

VI. CONCLUSION
In this work, we consider the application of DL algorithms
in radar signal processing. With the DL gaining popular-
ity rapidly in recent years, DL for radar signal recogni-
tion, DL for ATR based on HRRP/Doppler signatures/SAR
images, and DL for radar jamming recognition & clutter sup-
pression have been explored thoroughly bymany researchers.
Although classification accuracies of 98%-100% have been
reported in many research works on radar ATR with DL
networks using the MSTAR dataset, it should be emphasized
that there is a long way to go before the DL approaches
become qualified substitutes for the classic radar ATR meth-
ods. Firstly, DL networks demand large amount of training
data. Unlike the typical problem of image classification, for
which large amounts of training data are available online,
representative real-world HRRPs and SAR images that are
labelled with accurately verified targets are simply not readily
available for everyone at demand. Not to mention that a
network trained under a specific environment doesn’t work
the same way when the environment changes. Secondly,
although some DL networks reach high accuracies with
limited training data, most of them were tested with only
the MSTAR dataset, which has also been used to prove
the high -accuracy performance (above 97%) of traditional
machine learning based ATR methods 20 years ago. More-
over, the ever-evolving adversarial attacks also post great
security risk to the DNNs. This work provides a full picture
of numerous potential research opportunities and grave chal-
lenges in applying the DL-based approaches to address the
existing problems in radar signal processing, which serves
as a good reference work for researchers interested in this
field.
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