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ABSTRACT In order to balance the exploration and exploitation ability of differential evolution (DE),
different mutation strategy for different evolutionary stages may be effective. An adaptive differential
evolution with information entropy-based mutation strategy (DEIE) is proposed to divide the evolutionary
process reasonably. In DEIE, the number of Markov states deduced from the crowding strategy is determined
first and then the transition matrix between states is inferred from the historical evolutionary information.
Based on the above-mentioned knowledge, the Markov state model is constructed. The evolutionary process
is divided into exploration and exploitation stages dynamically using the information entropy derived
from the Markov state model. Consequently, stage-specific mutation operation is employed adaptively.
Experiments are conducted on CEC 2013, 2014, and 2017 benchmark sets and classical benchmark functions
to assess the performance of DEIE. Moreover, the proposed approach is also used to solve the protein
structure prediction problem efficiently.

INDEX TERMS Differential evolution, information entropy, mutation strategy, evolutionary stages, Markov

state model.

I. INTRODUCTION

Differential evolution (DE), proposed by Storn and Price [1],
is a competitive and popular population-based stochastic
search algorithm. DE and its variants have made remarkable
contribution to solving complex optimization problems [2].
Similar to other evolutionary algorithms, DE consists of
three operations, i.e., mutation, crossover, and selection. The
difference vectors of DE have adaptability for perturba-
tion to the natural scales of the objective landscape in a
random process [3]. This self-referential mutation provides
DE with a tremendous speed advantage at the early stage.
However, this property makes DE sensitive to the loss of
diversity, then resulting in poor exploitation at the later
evolutionary stage [4]. In terms of the mutation operator,
various mutation strategies show distinct advantages in DE.
Inappropriate mutation strategies may cause stagnation due
to overexploration or premature convergence because of over
exploitation [5].
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Hence, how to balance exploration and exploitation is still
an open issue in the evolutionary computation community.
For exploration and exploitation conundrum in DE, it may
be feasible to divide the evolutionary process into different
stages for the balance between exploration and exploitation.
Many approaches have been developed to improve the per-
formance of DE by the division of evolutionary stages. For
example, a fixed number of iterations are used as a division
criterion, such as two stages proposed by Liu et al. [6]
and three stages introduced by Cheng and Tran [7]. Subse-
quently, suitable mutation strategies are used in each stage.
Although the performance of DE may be improved, empirical
guidelines are sometimes unreliable and lack universality.
Yu et al. [8] focused on new metrics that represent the
relationship between the order of fitness value and distance
to divide evolutionary process into two stages with corre-
sponding parameter adjustment mechanisms and strategies.
Tang et al. [5] presented a variant with individual-dependent
mechanism, in which the search process is separated into
two stages to design mutation strategy for specific stages.
The algorithm enters the later stage according to the defined
success rate. Fan and Yan [9] introduced a self-adaptive DE
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called ZEPDE. After DE/rand/1 is employed at the first stage,
the mutation strategy with zoning evolution is assigned to
each individual in accordance with the selective probability
at the second stage. Zhan et al. [10] proposed master-slave
multipopulation distributed framework, three populations are
co-evolved which different populations adaptively choose
their suitable mutation strategies based on the evolutionary
state estimation. The evolutionary state is estimated into
two states by distance computations between two individuals
with the best fitness value and the median fitness value.
Li and Li [11] designed an evolutionary state estimation
method based on the correlation coefficient between the pop-
ulation distribution in objective space and solution space.
Then, the evolutionary process is divided into three kinds of
state. Zhou and Zhang [12] proposed the underestimate model
based on abstract convex theory, in which the variation in the
average estimation error is used to divide the evolutionary
process into three stages with corresponding strategy candi-
date pool.

Instead of being divided into irreversible multistage, it is
better to dynamically divide the evolutionary stage based on
the search behaviour of population. Therefore, better under-
standing is needed of the population dynamics. In the past
few years, entropy was utilized as an evaluation criterion to
measure certain properties of population or evolutionary pro-
cess as follows. Based on the diversity defined by the geno-
typic and phenotypic entropies, Naghib and Nobakhti [13]
designed a fully adaptive DE with the adaptive rule of
the parameters. Wu et al. [14] proposed a diversity metric
based on the crowding entropy to sustain the diversity of
Pareto optimality. Similarly, Zhang et al. [15] utilized entropy
diversity method to adaptively monitor population diversity.
Chen et al. [16] coupled DE algorithm with entropy to solve
multi-mode resource constrained project scheduling. Entropy
based on activity durations is used as a measure of uncertainty
to ensure the feasibility of the project despite the existence
of unexpected events. Ali ef al. [17] proposed a multi-level
thresholding achieved by integrating the DE algorithm and
Kapur entropy into image segmentation.

The motivation behind this research is to proposes an adap-
tive differential evolution with information entropy-based
mutation strategy (DEIE), which realize a dynamic division
of the evolutionary stages based on entropy and stage-specific
mutation strategies adaption to obtain the trade-off between
exploration and exploitation. To be specific, the Markov
states are obtained in our method, and Markov state model
is constructed by using the historical evolutionary informa-
tion across generations to describe the frequency of state
transition. Subsequently, the information entropy metric is
proposed to estimate the extent that the population explores
the solution space, which is mainly used for the dynamic
division of the evolutionary stages. Then, the stage-specific
mutation strategies are adopted to take their advantage based
on exploration or exploitation stage. Compared to other DE
variants, the contributions of this paper are: (1) Dynamic
division of evolutionary stages of DE based on information

146784

entropy metric is realized in the hope of getting a trade-off
between exploration and exploitation. (2) The information
entropy metric is designed by using the historical evolution-
ary information across generations. The switching of evolu-
tionary stage is realized in a statistical sense, while allowing
the population to choose strategies adaptively in individual
level. (3) DEIE can be extended to other real-life application.
On the basis of stage division, the corresponding mutation
strategies can be adjusted or replaced flexibly according to
different application scenarios. Moreover, the proposed DEIE
is tested on CEC 2013, 2014, and 2017 test sets, classical
benchmark functions and a real-world case.

Il. PRELIMINARY

A. DIFFERENTIAL EVOLUTION

DE consist of mutation, crossover, and selection opera-
tions [1]. Starting from a random initial population including
NP individuals, the better individual is retained whereas the
inferior individual is eliminated.

The main operations of one DE variant, namely DE/rand/
1/bin, are shown below.

1) Initialization: P8 = {x‘f S ,x‘ig e ,vap} called popu-
lation is randomly produced from the solution domain, xf?] =
(xfl,xfz, cee ,fo), where i € [1, NP], and g is expressed as
the gth generation.

2) Mutation: The two individuals randomly selected from
the population is used as the perturbation of the base vector,
and the perturbation is weighted to produce the mutant indi-
vidual vf.

v(ig = xfandl +F- (xfandz - xfandg) ey
where F > 0, rand;, rand,, and rands are chosen from
[1, NP], and they differ from i but also to each other.

3) Crossover: The binomial crossover operator copies the
Jjth parameter of the mutant individual v‘f to the corresponding
element in the trial individual u‘f according to the crossover
rate. Otherwise, it is copied from the corresponding target
individual x?.

g @

b X otherwise

{vfj, if rand(0, 1) < CR or j = jrand
where CR as the crossover rate is chosen from (0, 1);
rand(0, 1) is randomly generated from [0, 1];j € [1, D]; jrand
is a integer randomly yielded from [1, D].

4) Selection: If the trial individual u‘f achieves the better
function value than that of the target individual x7, uf will
replace xig in the next generation, otherwise the xf is still
preserved.

1
x5F

{ﬁ,ﬁfm%sﬂﬁ> o)

x‘f , otherwise

where f (ulfg ) and f (xf’ ) are the function value of u‘f and x‘f ,
respectively.
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B. INFORMATION ENTROPY

The concept of entropy derives from thermodynamics and
is successfully applied to the different fields of science and
engineering. Entropy introduced by Shannon [18] character-
izes the uncertainty related to the occurrence of a random
event, which is equal to its information content. In mathe-
matics, we let X = x;,i € n be a discrete random variable
that represents the event of its occurrence, and the prob-
ability is denoted by p;. Then, entropy function E can be
defined as

n
E ==Y pilnp; )
i

Information entropy increases with the increase in uncer-
tainty. As a result, the measure reaches a peak value when all
the outcomes are equiprobable. This implies that

1
pi= —,
n
1 1
E(p19"'9pn)§E(_v"'7_)=1nna (5)
n n

lIl. LITERATURE REVIEW

Although DE performs well on a wide variety of problems,
it has a series of problems related to stagnation, premature
convergence, and so on [3], [19]. One direction of improve-
ment is on the mutation scheme modification. Mutation is the
most important step of DE as it produces a new individual in
the population. Over the last few years, a lot of modifications
in mutation scheme have been proposed.

Many researchers have worked towards the new mutation
strategies, which helps to explore the search space by perturb-
ing individuals, substantially to influence the performance
of DE. Many different mutation strategies, such as ranking-
based [20], archive-based [21], niche-based [22], centroid-
based [12], and neighborhood mutations [23], have been
proposed to enhance the search capability of DE. However,
each of these mutation strategies, being more explorative or
exploitative, seems to work for different tasks. Therefore,
more attention has been paid to the multiple mutation oper-
ators which have strategies with both exploration ability and
development ability.

Many approaches have been developed to improve the
performance of DE by the cooperation of different mutation
strategies. These algorithms can be roughly classified into
three promising directions: 1) individual-specific strategy
techniques; 2) subpopulation-specific strategy techniques;
and 3) evolutionary stage-specific strategy techniques.

Methods in the first category aim to adaptively select
mutation strategies for each individual from the strategy pool.
These individual-strategy matching methods mainly include
probability model-based, surrogate-assisted, and so on. Prob-
ability model-based DE updates selection probabilities based
on successful historical experience [24]. The self-adaptive
DE (SaDE) [25], DE with ensemble of mutation strategies
and parameters (EPSDE) [26], DE with strategy adaptation
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mechanism (SaM) [27], and DE with adaptive strategy selec-
tion (CACDE) [28] can be considered to belong to the this cat-
egory. Surrogate-assisted DE utilizes valid simplified models
to approximate the fitness function and is thus computation-
ally inexpensive [29], [30]. These techniques of construct-
ing surrogate model include kernel density estimation [31],
Kriging model [32], abstract convex underestimation [33],
and so on.

Methods in the second category realize multiple oper-
ators of DE by utilizing various mutation strategies in
different subpopulations. The DE with self-adaptive multi-
subpopulation [34], [35], DE with three small indicator
subpopulations and one large reward subpopulation [36],
DE with role assignment [37], and SHADE (success-history
based adaptive DE) with subpopulation-based ensemble of
mutation strategies are belong to this category.

For methods in the last category, the main idea is to divide
entire searching process into multiple stages and select suit-
able mutation strategies for each stage. Some early works
divided the whole process by setting a fixed number of iter-
ations, such as two stages [6], three stages [7], and so on.
Although the performance of DE may be improved, empirical
guidelines are sometimes unreliable and lack universality.
In order to accommodate the search characteristics in the
evolutionary process of DE, researchers prefer to estimate
the evolutionary states to distinguish the different stages.
Yu et al. [8] discussed the relationship between the order of
fitness value and distance to divide evolutionary process into
two stages. Zhan et al. [10] proposed master-slave distributed
framework based on the evolutionary state estimation. The
evolutionary state is estimated to two states by distance com-
putations between two individuals with the best fitness value
and the median fitness value. Li and Li [11] designed an
evolutionary state estimation method based on the correlation
coefficient between the population distributions in objective
space and solution space. Then, the evolutionary process is
divided into three kinds of state.

It is distinct from the above evolutionary state-based adap-
tive operator selection methods realized by current population
distribution estimation. In the proposed DEIE, an information
entropy metric is designed by using the historical evolution-
ary information across generations, which reveal the trend
of the movement of individuals in the search space. It is
reasonable to estimate the extent that the population explores
the solution space and then divided evolutionary process into
two stages.

IV. DEIE ALGORITHM

This section introduces an adaptive differential evolution
with information entropy-based mutation strategy, named
DEIE, mainly including a dynamic stage division and a stage-
specific mutation strategy adaptation technique.

The emergence of local fitness landscape on the multi-
modality is due to the individuals in the population are scat-
tered at the exploration stage of evolution. The differences
between individuals to each other are gradually reduced and
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the distribution is concentrated. Thus, exploitation stage can
be determined by the property of the unimodal basins of
local fitness landscape [38]. Based on the above property,
it can be seen that search dynamics in DE induces basin-to-
basin transfer, where trial solutions may traverse from one
attraction basin to another one [39]. In consideration of the
search behaviour of DE, these basins are defined as Markov
states with respect to the partition of the solution space.
In this way, the Markov state model is constructed using
the historical evolutionary information across generations
to describe the frequency of state transition. Subsequently,
the information entropy metric is proposed to estimate the
extent that the population explores the solution space, which
is mainly used for the dynamic division of the evolutionary
stages. Moreover, the suitable mutation strategies are utilized
to update offspring individuals for the different stages.

A. THE DETERMINATION OF MARKOV STATES

Due to the search behaviour of basin-to-basin transfer, several
subdomains decomposed from the entire solution space are
defined as Markov states in this paper. Inspired by the auto-
matic clustering of the crowding strategy in the multimodal
method [40], a learning process is designed to guide the entire
population split into several subpopulations located different
optima. In this way, the multiple solution subspaces based on
final spatial positions of the individuals are generated, namely
Markov states.

The learning process consists of archiving, crowding and
clustering operations. After Gen iterations, K stable Markov
states can be obtained.

A population P8 = {x{},i = 1,2,--- NP is generated
after initial operation, where NP is population size and g is
generation count. The detailed procedure at one iteration is
performed as follows.

1. Archiving operation

Mutation and crossover operations act on the target indi-
vidual xf and generate the trial individual v‘ig CIf vf has the
minimum Euclidean distance from x/g compared with the
other individuals in P, then v{ is added to the archive Af
of x%. Repeating above steps for i from 1 to NP, all trial
individuals are fell into the corresponding archive.

2. Crowding operation

The purpose of crowding operation is to generate new
population.

For each archive Af, the final optimal individual ojg and the

corresponding radius rj‘.g are calculated.

of = argmin f ( 6)

=1,

g _ 0
rj - argmaxd( .t j)’ (7)

t=1,--,1
where Ag is ¢ th trial individual of archive Ag and f (A% t)
is the functron value for A}g P d(Ag g) is the Euchdean
distance between Ag and 0 , the size of Ag is [. Then, x/
is replaced by 0 in order to update populatlon

3. Clustermg operation
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FIGURE 1. Example of the learning of Markov states.

Objects to be clustered are individuals of new popula-
tion and the clustering criterion is based on their location.
Starting from the individual with minimum function value,
the clustering step is performed with x;"'H as the center and

SgH as the radius in turn according to the ascending order,
where s = 1,2, .-+, NP. Each individual xf“ of the new
population is assigned to the corresponding cluster on the
basis of a distance criterion.

g+l gt 1
defT x8y < gt (®)

g+1 g+1

where d(x; g+1) is the Euclidean distance between x;

and x5

The clustering process is completed when all the individu-
als are assign to a corresponding cluster. Denote these clusters
as the Markov states S represented by center and K as the
number of Markov states. After Gen iterations, the number K
tends to be stable.

Fig.1 shows the learning of Markov states of the
one-dimensional Rastrigin function at one iteration. The
population is composed of six individuals. the parent individ-
uals are represented by black circle P¢ = {1,2,3,4,5, 6},
whereas the trial individuals are marked in red circle
(1,2/,3,4',5,6'}. The indexes are used to mark their
respective order. Six archlves namely, ={1,2,5},A4% =
(2,4}, A5 = (3}, A% = (4,13 },A = {5,6/},A6 = {6},
with a parent individual and the corresponding trial individ-
uals are shown in Fig.1b. The population updated using the
optimal individuals, namely, P¢T! = {of : 5,05 : 2,
o§ 2 3, oi 2 4, o‘g 16, og : 6}, is the new population as
shown in Fig.1c. The new population is finally divided into
three subpopulations using clustering operation in Fig.1d.
Notably, the above-mentioned learning process is not strictly
the classical clustering method. In this part, we only focus on
dividing the entire population into several subpopulations and
define the final clustering partition as the Markov state.
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FIGURE 2. lllustration of the transition matrix.

B. THE TRANSITION MATRIX OF MARKOV STATE MODEL
These Markov states correspond to different solution sub-
spaces have been fixed, as discussed before. For the purpose
of building Markov state model, we take the population data
available and assign each individual in the population to a
Markov state according to the minimal Euclidean distance.
The state assignment of each individual in consecutive gener-
ations can be traced. The historical evolutionary information
across generations may reveal the trend of the movement of
individuals in the search space and can thus be used to guide
the evolutionary process.

The transition matrix of Markov state model is illustrated
in Fig.2. Considering that Markov states have been learned
in advance, the state assignments at each generation can
be obtained shown in Fig. 2a. In line with the temporal
ordering of state transition of individuals at the two adjacent
generations, a transition matrix can be constructed as shown
in Fig. 2b.

For a Markov state model with K states, the count of
states transition can be obtained using historical evolutionary
information across generations to build the transition matrix
T$. The element ¢} in row i and column j in this matrix
corresponds to the observed frequency of transitions from
state i at the (g— 1)th generation to state j at the gth generation.
Therefore, each element tl‘; in the transition matrix T can be
described as

¢ _N@E' > )

i NGy ®

where is an element in transition matrix T,

N@8~! — &) is the number of state transition from state i
at the (g — 1)th generation to state j at the gth generation,
and N(¢~1) is the number of individuals located in state i
at the (g — 1)th generation. For example, there are 3 red
individuals in state 2 at generation g—1 (N (28 —1y = 3), two of
which move to state 1 at generation g (N(28~! — 18) = 2).
So tzg] =2/3.

C. INFORMATION ENTROPY-BASED MUTATION

STRATEGY ADAPTION

It is well known that the important operation of DE is its
mutation operation [41]. The mutation strategy utilized by DE
largely governs its tendency to discover promising regions
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or detect the optima. The population behaviour in differ-
ent evolutionary stages influences the selection of mutation
strategies to a certain extent.

However, there is a problem that how to estimate the
evolutionary stages and employ the stage-specific mutation
strategy appropriately.

The mutation strategy adaption is performed as follows.

1) INFORMATION ENTROPY METRIC
The information entropy based on the Markov state model
describes the extent that the population explores the solution
space. Given the above-mentioned analysis, the information
entropy can be used to estimate the evolutionary stages.

On the basis of the transition matrix, the probability that
the evolutionary process is undergoing a transition between
any given pair of states can be estimated by

ol
Pi= % & ,

22 tn
m n

K K g
where } ;- Zj:lpij =1
Then, the information entropy E$ across all possible tran-
sitions can be calculated by summing the Shannon entropy
for each individual transition at each iteration

K K
E$=—=%"%"pinpf, (11)
i

where E$ is denoted as the information entropy of the gth
generation.

The value of Ef is normalized using Epax and Epi, as
follows

(10)

- E8 — Eni
ES = —m“" (12)
Emax - Emin
Shannon showed that this quantity achieves its maximum
value when pé are equal to each other, and the value of Ep,x

can be calculated using

1 1
Enax = —In —, 13
max K nK2 (13)
and Enin = O because individuals no longer have state

transition when the evolution process stabilizes or terminates.

2) STAGE ESTIMATION

In accordance with the aforementioned property of infor-
mation entropy, the evolutionary stages can be estimated as
follows:

if rand (0, 1) < E8
otherwise

exploration stage,

W= (14)

exploitation stage,
where W represents the estimated evolutionary stage.
There are several reasons for the above stage division.
(1) From the perspective of population, the different stages
may coexist in the same generation, and each individual stage
should be estimated separately.
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(2) The large E? caused by a case that the population
is frequently transferred between several states, which indi-
cates that the scope of solution space is explored extensively.
For this case, the individual stage is likely estimated to be
the exploration stage because the population explores dif-
ferent regions. The mutation strategy DE/rand/1 with good
exploration capability is more suitable for this stage. On the
contrary, the population concentrates on some parts of the
solution space for exploitation when the value of Ef is
small. The individual stage can be estimated to the exploita-
tion stage, and the mutation strategy DE/best/1 with good
exploitation capability can be employed to detect the optima.

(3) When the population is in a certain state (the local opti-
mal solution region), the individuals are no longer transferred
between states. In this case, the value of the information
entropy is zero, which results in rapid convergence of the
population.

3) MUTATION STRATEGY AND CONTROL
PARAMETER SELECTION
8 8 8 8
X rand, + Fi ' (xrandz - xrand3)’
¢ if ¢ in exploration stage
Vi =) .¢ g (8 8 (15)
Xpest + Fi ’ (xrandz - xrand3)’

% in exploitation stage

otherwise, x;

where mutant individual v$ is generated according to the
stage of target individual xé’ . When xf in exploration stage,
the mutation strategy DE/rand/1 is employed, when xf
in exploitation stage, the mutation strategy DE/best/1 is
employed. xgm is the best individual in the population at gen-
eration g. F;y € (0, 1] is scaling factor for xlg , randy, rands,
and rands are randomly chosen from [1, NP], and they differ
from i but also to each other.

A simple selection strategy for control parameters F and
CR based on current stage division inspired by [8] is designed
for comparison. An explorative individual will demand a high
F and CR, whereas an exploitative will require the opposite.
The F and CR values for each individual of gth generation
are assigned as follows.

F&' 4+ rand (0, 0.1)ES,

1
if x¢ in exploration stage

FE= {0 ¢ (16)
F> " —rand(0, 0.1)ES,

otherwise, xf

CRS™" + rand(0, 0.1)E?,

in exploitation stage

if x¥ in exploration stage

CR? = ! - 17
" RS = rand(0, 0.1)ES, a7

g

otherwise,  x;

in exploitation stage

D. DEIE ALGORITHM DESCRIPTION

The DEIE algorithm is described as Algorithm 1. After ini-
tialization, the K Markov states are learned firstly through
the learning process of Gen generations. In the following
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Algorithm 1 Pseudocode of DEIE Algorithm

Require: population size (NP), scaling factor (F'), crossover
rate (CR), learning period (Gen).

Ensure: Final population (P9$).

1: Initialization: generate initial population (g = 0, P§ =
{x‘f,x‘g S ,xi,P}), evaluate the function value of each
individual in P&, and set the relevant parameters of DEIE
algorithm;
while the termination criterion is not satisfied do

for g <= Gen do
Execute the learning process in Section 4.1;
end for
Obtain the number Markov states K ;
Determine Markov states of current population S =
{S1,-++ 8-+, Snph S € {1, -+, K}

NN R RN

8  Setinitial T¥ = 0 and ES = 0;
9: for g > Gen do
10: fori = 1to NP do
11: if rand (0, 1) < E& then
12: Generate mutant individual v‘f via muta-
tion strategy DE/rand/1;
13: else
14: Generate mutant individual vf via muta-
tion strategy DE/best/1;
15: end if
16: Generate trial individual #{ via binomial
crossover operation;
17: Select new individual x‘igJrl by compare trial
individual uf with target individual xlg ;
18: Assign xf“ to corresponding Markov state;
19: end for
20: Update T¢ and E¥;
21: g=g+1;
22: end for

23: end while

iteration process, the individuals in population have state
transition caused by the search behaviour of the population.
In line with the temporal ordering of state transition of indi-
viduals at the two adjacent generations, the state transition
probability is calculated, and further the information entropy
is calculated to observe the population dynamics. Based on
the information entropy metric, the evolutionary stages of
current individual can be estimated, then the suitable muta-
tion strategy is selected for different stages.

Notably, the Markov state is formed at the end of the learn-
ing process of Gen generation, and the number of Markov
states K and the representative center point are obtained,
where the DE/rand/1 mutation strategy is employed in the
learning process. Based on the K Markov states, the infor-
mation entropy is calculated in the following iteration pro-
cess. In addition, the infeasible solution is simply discarded
and replaced with a new solution regenerated within the
domain.
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TABLE 1. Results of mean and standard deviation of the function error obtained by SHADE, ZEPDE, IDE, SinDE, and DEIE for CEC 2013 benchmark set at
D = 30.
Fun D SHADE ZEPDE IDE SinDE DEIE
Mean(Std Dev) Mean(Std Dev) Mean(Std Dev) Mean(Std Dev) Mean(Std Dev)
P 30 | 0.00E-+-00(0.00E-+00)~ | 0.00E-+00(0.00E-+-00)~ | 0.00E-00(0.00E+00)~ | 2.27E—13(1.53E—28)" | 0.00E--00(0.00E-00)
F> 30 | 2.66E+04(1.13E4-04)— 1.97E+4-05(7.53E+04)~ 1.68E406(4.23E+05)" | 2.66E+06(8.33E+05)" | 2.40E-+05(1.44E+05)
F3 30 | 8.80E+05(1.96E+06)T 1.50E+4-06(2.07E+4-06)* 1.38E+05(1.85E+05)~ | 1.01E+05(3.77E405)~ | 5.88E+4-05(1.18E+405)
Fy 30 | 1.61IE—03(1.41E—03)~ | 7.66E—01(4.7SE—01)* | 6.85E+03(1.10E+03)T 8.28E+03(1.54E+03)T | 2.12E—03(1.76E—03)
Fs5 30 | 0.00E+00(0.00E+00)~ | 0.00E+00(0.00E+00)~ | 0.00E+00(0.00E+00)~ 1.14E—13(7.65E—29)* | 0.00E-+00(0.00E-4-00)
Fg 30 | 4.28E+01(5.52E+00)" | 4.34E+01(3.18E—13)" | 4.34E+01(2.62E—04)" | 4.34E+01(1.44E—14)" | 1.46E-01(1.68E+400)
Fr 30 | 2.33E+01(9.32E+00)* 1.37E+01(4.88E+00)t | 3.18E400(1.55E4-00)T | 6.10E—01(5.97E—01)~ | 2.89E4-00(1.42E4-00)
Fg 30 | 2.09E+01(1.68E—01)~ | 2.11E4+01(1.17TE—01)* | 2.11E401(2.44E—02)T | 2.11E+01(3.59E—02)" | 2.09E+01(4.76E—02)
Fy 30 | 5.54E+01(1.98E+00)t | 3.74E401(5.85E4+00)" | 3.56E+01(5.54E+00)~ | 3.48E+01(4.34E+00)~ | 3.58E-+01(1.28E+00)
Fio 30 | 7.37E—02(3.67E—02)* 1.37E—01(6.96E—02)* | 4.38E—02(2.17E—02)* | 7.93E—02(3.57E—02)* | 3.82E—02(9.73E—03)
Fi1 30 | 0.00E+00(0.00E+00)~ | 3.65E—01(6.12E—01)~ | 0.00E+00(0.00E-+-00)~ | 5.92E+00(2.86E+00)T | 5.06E+00(1.60E+00)
Fi12 30 | 5.86E401(1.11E401)~ | 6.04E4-01(1.76E401)~ | 6.89E+401(8.82E4+00)~ | 5.61E+01(1.41E+01)~ 1.79E+02(1.27E4-01)
F13 30 | 1.45E4-02(1.95E4+01)~ | 1.32E+402(3.62E+01)~ 1.34E+-02(2.28E+01)~ 1.39E+02(3.41E+01)~ 1.80E+02(1.19E4-01)
Fiy 30 | 345E—02(1.93E—02)~ | 4.83E+00(2.70E+00)* 1.17E4-02(8.38E+01)* | 2.34E402(9.23E+01)* 1.14E—01(2.45E—02)
Fi5 30 | 6.82E+03(4.41E+02)T | 6.59E+03(9.36E+03)T | 6.54E+03(5.91E+02)~ | 6.80E+03(1.00E+03)T | 6.58E+03(2.14E+02)
Fig 30 | 1.28E+00(2.07E—01)* | 7.82E—01(6.74E—01)~ 1.59E4-00(2.36E—01)* | 2.08E400(3.66E—01)* 1.02E+00(3.01E—01)
Fi7 30 | 5.08E4+01(4.27E—14)~ | 5.11E4-01(1.60E—01)T | 5.92E+01(1.41E+00)t | 6.52E401(3.47E4-00)T | 5.08E-+-01(3.69E-+-00)
F1g 30 | 1.37E+02(1.29E+0D)* | 1.03E4-02(1.19E+01)— 1.68E+02(1.27E+01)* 1.41E+02(2.27E+01)* 1.09E4+02(1.01E+01)
Fi9 30 | 2.64E400(2.83E—01)~ | 3.71E400(7.55E—01)~ | 2.24E+00(3.66E—01)— | 4.85E+00(8.82E—01)~ 1.12E4-02(1.13E4+00)
Fy 30 | 1.93E+01(7.70E—01)*+ 1.97E4+01(7.88E—01)*+ 1.93E+01(4.47E—01)* | 1.92E401(7.52E—01)~ | 1.92E+01(3.01E—01)
Fb1 30 | 8.45E+02(3.63E+02)T | 6.33E+02(4.48E+02)T | 7.32E+02(3.82E+02)T | 5.84E-+02(4.22E+02)* | 3.53E-+02(4.99E+-01)
Fss 30 | 1.33E+01(7.12E4+00)~ | 4.23E+02(5.75E+02)T | 6.88E+01(2.03E+01)~ | 3.51E+02(2.72E+02)T | 3.25E+02(5.44E+01)
Fb3 30 | 7.63E+03(6.58E+02)T | 7.02E+03(8.73E+02)~ | 7.32E+03(6.92E+02)~ | 6.59E+03(8.47E+02)~ | 7.56E+03(3.12E+02)
Foy 30 | 234E+02(1.01E+0D)T | 2.35E+02(1.09E+01)T | 2.02E+02(1.14E+00)T | 2.00E4+02(1.34E—01)~ | 2.00E--02(5.12E+-00)
Fys 30 | 3.40E+02(3.09E+01)* | 3.23E4-02(1.31E4+01)T | 3.03E+02(1.09E4+01)~ | 2.97E4+02(1.33E+01)~ | 3.09E+02(7.18E+400)
Fys 30 | 2.58E+02(8.08E+01)" | 2.27E+02(6.20E+01)T | 2.23E+02(4.46E+01)T | 2.76E+02(5.96E+01)* | 2.09E--02(3.00E4-01)
Fy7 30 | 9.36E+02(3.07E+02)t | 9.38E4-02(1.40E4+02)T | 3.58E+02(3.30E+01)~ | 4.75E+02(1.55E+02)~ | 5.91E+02(1.63E+402)
Fbs 30 | 4.58E+02(4.13E4+02)t | 4.00E4-02(0.00E+-00)~ | 4.00E-02(0.00E+00)~ | 4.00E4-02(0.00E+00)~ | 4.00E--02(0.00E-+-00)
+/ = /- 14/4/10 17/3/8 13/3/12 16/3/9
p-value 0.1615 0.0300 0.9571 0.0443

E. RUNTIME COMPLEXITY OF DEIE

Based on the above procedures, the runtime complexity of
DEIE depends on the following analysis. In terms of Markov
states, the runtime complexity O(NP - NP - D) comes from
calculating the Euclidean distance between NP individuals
to each other. For state assignments, there is O(NP - K - D)
for computing the Euclidean distance between K centers and
NP individuals. The generation of offspring individuals needs
O(NP - D) similar to the basic DE. For Markov state model
construction, transition matrix is constructed after statistics
with runtime complexity denoted as O(NP). O(K - K) runtime
is used to calculate the information entropy. Hence, the total
runtime complexity of DEIE is O(max(NP-NP-D - Gen, NP -
K -D - Gmax, NP-D - Gpax), NP - Gmax, K - K - Gmax). Given
that the number of states K is less than the population size NP,
the final runtime complexity is O(NP - K - D - Gpax). Gmax
is the maximum number of generations of whole algorithm.
The original DE algorithm is O(NP - D - Gpax). According
to the study in [43]-[45], the runtime complexity of DEIE
is relatively small compared with that of expensive function
evaluations. Therefore, the proposed DEIE is accepted for
the practical problems, especially for expensive-to-evaluate
problems.
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V. EXPERIMENTAL RESULTS

To evaluate the performance of DEIE, CEC 2013 [42], CEC
2014 [43], and CEC2017 sets [44] are utilized in the follow-
ing diverse experiments.

The experimental results are presented in four subsections.
In Section V-A, the performance of DEIE is evaluated against
that of eleven top-ranked DE variants. Section V-B presents
the experiment of component analysis. The parameter study
is described in Section V-C. Section V-D provides the real-life
application of DEIE. Moreover, just to show that the proposed
DEIE works well on different test sets, 21 classical bench-
mark functions [45] are also used to test the performance
compared with that of four state-of-the-art DE and three
classical EAs. Some experiments about classic benchmark
functions are shown in the supplementary file.

All algorithms cease when the number of function evalu-
ation (FEs) accumulates to exceed the maximum number of
FES (MaxFEs), or the function error reaches the predefined
accuracy within the given MaxFEs. (f (x) — opti) represents
the function error, where f(x) is expressed as the function
value of solution x generated by the current algorithm and opti
presents the global optimum. In the following experiments,
the predefined accuracy value is 1.00E — 08. The results
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TABLE 2. Results of mean and standard deviation of the function error obtained by L-SHADE, MC-SHADE, iLSHADE, ADDE and DEIE for CEC
2014 benchmark set at D = 30.

Fun D L-SHADE MC-SHADE iLSHADE ADDE DEIE
Mean(Std Dev) Mean(Std Dev) Mean(Std Dev) Mean(Std Dev) Mean(Std Dev)
F1 30 | 0.00E4+00(0.00E--00)~ | 2.92E+03(2.72E+03)T | 0.00E+00(0.00E--00)— | 0.00E+00(0.00E--00)— | 2.52E+03(7.40E+03)
Fy 30 | 0.00E400(0.00E+00)~ | 0.00E400(0.00E+00)~ | 0.00E+00(0.00E+00)~ | 0.00E+00(0.00E+00)~ | 0.00E-+00(0.00E+00)
F3 30 | 0.00E4+00(0.00E+00)~ | 0.00E400(0.00E+00)~ | 0.00E+00(0.00E+00)~ | 0.00E+00(0.00E+00)~ | 0.00E-+00(0.00E+00)
Fy 30 | 0.00E4+00(0.00E+00)~ | 7.82E—02(5.58E—01)~ | 0.00E+00(0.00E-+00)~ | 0.00E+00(0.00E+00)~ | 2.22E+00(1.62E+00)
Fs 30 | 201E4+01(3.72E—02)% | 2.02E4+01(2.39E—02)~ | 2.01E4+01(1.00E—01)~ | 2.03E4+01(2.85E—02)T | 2.01E401(2.54E—02)
Fs 30 | 1.38E—07(9.98E—07)~ | 1.23E+00(2.37E+00)T | 0.00E4-00(0.00E+00)~ | 1.85E—03(3.10E—02)~ | 6.65E—01(2.55E—01)
F; 30 | 0.00E400(0.00E--00)~ | 2.90E—04(2.07E—03)T | 0.00E4-00(0.00E--00)~ | 0.00E--00(0.00E4-00)~ | 0.00E-4-00(0.00E--00)
Fs 30 | 0.00E4+00(0.00E+00)~ | 0.00E+00(0.00E+00)~ | 0.00E400(0.00E-+00)~ | 0.00E+00(0.00E+00)~ | 5.72E-+00(1.08E+-00)
Fo 30 | 6.78E4+00(1.50E+00)~ | 1.95E+01(2.95E+00)T | 6.91E4+00(2.00E4-00)~ | 1.40E+01(2.87E+00)t | 8.64E4-00(4.11E4-00)
Fio 30 | 1.63E—02(1.59E—02)* | 1.10E—02(1.46E—02)T | 1.10E—02(1.27E—02)* | 3.39E—01(2.22E—01)T | 1.02E—02(9.47E—02)
Fi1 30 | 1.23E403(1.81E4+02)~ | 1.57E403(1.91E+02)~ | 1.17E4+03(2.80E+02)~ | 1.72E+03(3.27E402)~ | 6.20E4+03(2.75E+02)
Fi2 30 | 1.6IE—01(2.31E—02)* | 2.10E—01(2.98E—02)T | 1.48E—01(5.14E—02)* | 4.06E—01(6.44E—02)T | 1.35E—01(2.36E—02)
Fi13 30 | 1.24E—01(1.76E—02)* | 2.06E—01(3.00E—02)T | 9.50E—02(2.12E—02)* | 1.42E—01(1.53E—02)T | 3.13E—02(4.87E—02)
Fiy 30 | 242E—01(3.00E—02)* | 2.19E—01(3.59E—02)" | 1.98E—01(3.46E—02)" | 2.23E—01(4.22E—02)" | 1.93E—01(2.86E—02)
Fi5 30 | 2.15E+00(2.50E—01)* | 3.00E+00(3.91E—01)* | 1.84E+00(2.72E—01)t | 2.52E+00(6.21E—01)T | 1.84E+00(1.09E—01)
Fie 30 | 8.50E+00(4.62E—01)* | 9.42E+00(4.43E—01)T | 8.02E+00(9.81E—01)~ | 9.49E+00(2.77E—01)T | 8.12E+00(2.63E—01)
Fi7 30 1.88E+402(7.55E4+01)* 1.24E4+03(3.93E4-02)* 1.31E402(6.52E4-01)* 4.57TE4+02(2.13E4-02)* 1.05E+02(7.81E+00)
Fis 30 | 5.91E+00(2.92E4+00)~ | 7.81E+01(3.68E+01)~ | 3.78E+00(1.45E+00)~ | 1.85E+01(6.36E+00)~ | 5.59E+401(3.09E+01)
Fi9 30 | 3.68E+00(6.87E—01)t | 4.50E4-00(8.29E—01)T | 2.29E+00(7.55E—01)* | 3.64E4+00(5.23E—01)T | 2.20E+00(3.20E—01)
Fyo 30 | 3.08E4+00(1.48E4+00)~ | 1.99E4+01(1.27E4+01)~ | 2.41E+00(1.09E4+00)~ | 5.22E4+00(1.19E4-00)T | 3.91E4+01(3.83E401)
Fb1 30 | 8.68E+01(9.02E+01)* | 3.15E+02(1.58E+02)T | 5.07E+01(6.12E+01)~ | 7.69E+01(7.23E+01)T | 5.84E+01(9.58E+01)
Fss 30 | 2.76E+01(1.80E+01)T | 1.37E+02(6.64E+01)T | 2.90E+01(2.42E+01)T | 2.86E+01(4.60E+00)* | 2.32E+01(1.01E+4-01)
Fas 30 | 3.15E4+02(1.72E—13)¥ | 3.15E+02(0.00E+00)~ | 3.15E+02(0.00E+00)~ | 3.15E+02(0.00E+00)~ | 3.15E+02(4.06E—12)
Foy 30 | 224E+02(1.07E4+00)* | 2.25E+02(2.02E+00)T | 2.20E+02(6.09E+00)~ | 2.23E+02(4.60E+00)T | 2.20E+02(5.48E—01)
Fos 30 | 2.03E4+02(4.98E—02)~ | 2.05E4-02(1.80E400)T | 2.03E+02(4.17E—02)~ | 2.03E+02(4.76E+00)~ | 2.03E+02(2.41E—01)
Fys 30 | LOOE4+02(1.57E—02)~ | 1.02E4-02(1.40E4-01)T | 1.00E+02(2.06E—02)~ | 1.00E402(2.68E—02)~ | 1.00E-+02(1.64E—02)
Fp7 30 | 3.00E402(0.00E400)~ | 3.40E4-02(4.76E4-01)T | 3.01E+02(5.21E4+00)" | 3.00E402(0.00E+00)~ | 3.00E402(4.16E+400)
Fbs 30 | 8.40E+02(1.42E+01)t | 8.00E4-02(3.02E401)T | 8.44E+02(1.48E+01)" | 8.19E4-02(1.69E4+01)T | 7.87E4+02(9.57E+400)
Fy9 30 | 7.17E4+02(5.17E+00)t | 7.35E4-02(3.86E4+-01)T | 7.16E+02(3.31E4+00)*T | 7.17E402(2.68E400)T | 6.69E+02(1.30E+4-02)
F30 30 | 1.25E+03(6.18E+02)*t | 1.56E403(6.43E4+02)T | 1.20E+03(5.55E4+02)" | 8.16E+02(4.96E+02)~ | 9.84E+02(5.32E+402)
+/ = /- 14/8/8 21/4/5 12/8/10 16/7)7
p-value 0.6849 0.0049 0.6389 0.8078

are averaged using 51 independent runs for each function of
each algorithm. The parameters NP, F', and CR of DEIE are
set to 50, 0.5, and 0.5, respectively. The number of Markov
state K is determined automatically at the end of the learning
process. And the iteration number of learning process Gen
is set to 100. In addition, the parameters settings of other
algorithms are identical to their original papers.

A. COMPARISON OF DEIE WITH TOP-RANKED

DE VARIANTS

To evaluate the overall performance of DEIE on the CEC
2013 [42], CEC 2014 [43], and CEC2017 sets [44], sev-
eral top-ranked DE variants is used as the competitor algo-
rithms. In this experiment, the termination criterion are set to
MaxFEs = 10, 000 x D as suggested in [44].

First, DEIE is compared with four advanced DE variants
on the CEC 2013 set, namely, SHADE [46], ZEPDE [9],
IDE [5], and SinDE [47]. Table 1 reports the mean and
Std values of 30-D functions. DEIE produces good results
on 11 out of 28 functions compared to all competitors,
performs significantly better on 14, 17, 13, and 16 out
of 28 functions, and exhibits similar performance on 4, 3,
3, and 3 functions, respectively. SHADE, ZEPDE, IDE, and
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SinDE show remarkably better performance than DEIE on
10, 8, 12, and 9 functions, respectively. The last row of
Table 1 gives the analysis of the optimization performance
obtained by Wilcoxon's test. DEIE outperforms ZEPDE and
IDE (p-value < 0.05). SHADE, SinDE and DEIE performs
at the same level of optimization, but DEIE achieved best
14 and 13 cases than SHADE and SinDE.

Second, DEIE is compared with other four advanced DE
variants on the CEC 2014 set as shown in Table 2, namely,
L-SHADE [48], MC-SHADE [49], iLSHADE [50], and
ADDE [10]. DEIE obtains good results on 11 out of 30 func-
tions compared to all competitors. The results reveal that
DEIE may tend to perform better on unimodal and mul-
timodal functions. DEIE significantly outperforms others
on 14, 21, 12, and 16 functions, respectively. DEIE gets
equally good performance on 8, 4, 8, and 7 functions, respec-
tively, compared to other algorithms. However, L-SHADE,
MC-SHADE, iLSHADE, and ADDE are obviously better
than DEIE on 8, 8, 5, and 10 functions, respectively. Clearly,
DEIE is significantly better than MC-SHADE. Although the
significance test shows that DEIE has no significant advan-
tage over L-SHADE, iLSHADE and ADDE, it can obtain the
optimal results in 14, 21, 12 and 16 cases, respectively.
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TABLE 3. Results of mean and standard deviation of the function error obtained by LSHADE-cnEpSin, IDEbestNsize, jSO, EDEV and DEIE for CEC
2017 benchmark set at D = 30.

Fun D LSHADE-cnEpSin IDEbestNsize iSO EDEV DEIE
Mean(Std Dev) Mean(Std Dev) Mean(Std Dev) Mean(Std Dev) Mean(Std Dev)

P 30 | 0.00E+00(0.00E-+00)~ | 0.00E-+00(0.00E+00)~ | 0.00E+00(0.00E+00)~ | 8.36E—16(3.38E—15)" | 0.00E--00(0.00E+00)
F3 30 | 0.00E+00(0.00E-+00)~ | 4.05E4+00(3.07E4+00)" | 0.00E+00(0.00E+00)~ | 4.24E—11(3.03E—10)* | 0.00E--00(0.00E+00)
Fy 30 | 423E+01(3.07E+00)" | 2.42E+00(3.62E4+00)" | 5.90E+01(7.78E—01)T | 1.02E+00(1.75E+00)" | 3.30E—01(1.22E—01)
F5 30 | 1.23E4+01(2.34E+00)t | 2.27E401(5.03E4-00)" | 8.60E--00(2.10E4-00)~ | 3.05E+01(7.40E400)* 1.18E+01(6.51E+-00)
Fs 30 | 0.00E+00(0.00E+00)~ | 0.00E+00(0.00E+00)~ | 6.00E—09(2.71E—08)" | 1.09E—13(2.23E—14)~ | 2.88E—13(2.46E—13)
Fr 30 | 433E+01(2.17E+00)" | 5.15E+01(4.81E+00)" | 3.90E+01(1.46E-+00)~ | 6.42E+01(5.25E+00)* | 4.23E+01(6.81E—01)
Fg 30 | 1.29E+01(2.86E+00)~ | 2.36E+01(4.79E+00)T | 9.10E+00(1.84E+00)~ | 2.76E+01(7.96E+00)T 1.65E401(1.06E+00)
Fy 30 | 0.00E+00(0.00E+00)~ | 0.00E+00(0.00E+00)~ | 0.00E-+00(0.00E+00)~ | 1.69E—01(3.49E—01)* | 0.00E+00(0.00E+00)
Fio 30 | 1.39E+03(2.10E4+02)~ | 2.02E+03(3.85E+02)* 1.50E4+03(2.77E+02)* | 2.16E+03(4.88E-+02)* 1.43E4-03(2.69E+02)
Fi1 30 | 1.35E4+01(1.94E+01)T | 6.44E+00(2.78E+00)~ | 3.00E+00(2.65E+00)~ 1.88E+01(7.54E+00)* | 8.80E-+00(7.28E—02)
Fy2 30 | 3.72E+02(2.01E+02)~ 3.45E4+03(2.40E4+03)T | 1.70E+02(1.02E+02)~ | 5.72E+03(5.78E+03)* | 2.90E+03(9.12E+02)
Fi3 30 | 1.73E+01(1.02E401)~ | 3.09E+01(1.12E+01)~ | 1.50E+01(4.83E4-00)~ | 4.93E401(8.06E+01)~ | 5.80E4-01(1.02E4-01)
Fis 30 | 2.16B+01(2.26E+00)~ | 2.33E+01(9.69E+00)* | 2.20E4+01(1.25E4+00)" | 1.49E+01(1.08E+01)~ | 2.19E+01(6.17E400)
Fi5 30 | 3.24E400(1.98E400)~ | 7.58E+00(2.19E+00)" | 1.10E+00(6.91E—01)~ 1.17E4+01(1.02E401)* | 5.23E+00(3.22E—01)
Fig 30 | 229E+01(3.07E+01)~ | 1.79E+02(1.23E+02)* | 7.90E+01(8.48E+01)~ | 4.99E+02(1.70E+02)* | 1.68E+02(1.78E+02)
Fi7 30 | 2.86E+01(5.56E4+00)~ | 4.14E+01(1.21E4+01)* | 3.30E4-01(8.08E4-00)" | 4.69E+01(2.93E+01)* | 3.23E401(7.50E4-00)
Fig 30 | 2.11E401(7.52E—01)" | 3.21E+01(6.75E4+00)~ | 2.00E+01(2.87E-+00)~ | 5.25E-+01(1.34E+02)~ | 3.72E-+02(1.39E+02)
Fig 30 | 5.83E+00(1.92E+00)* | 9.18E+00(2.29E+00)T | 4.50E--00(1.73E+00)T | 7.71E-+00(4.99E+00)* | 4.12E+00(1.00E+00)
Fyo 30 | 3.03E+01(7.35E+00)" | 4.05E+01(2.24E+0D)T | 2.90E+01(5.85E+00)T | 3.31E+01(4.91E+01)* | 5.01E+00(2.41E+400)
Fo1 30 | 2.12E+02(2.56E+00)~ | 2.25E+02(4.59E+00)T | 2.10E+02(1.96E-+00)~ | 2.36E+02(7.86E+00)T | 2.17E+02(2.58E+00)
Faz 30 | 1.00E-+02(1.00E—03)~ | 1.00E+02(0.00E-+00)~ | 1.00E+02(0.00E+00)~ | 2.79E+02(6.20E+02)* | 1.00E+02(0.00E+00)
Fa3 30 | 3.56E+02(3.73E+00)T | 3.68E+02(6.74E+00)* | 3.50E+02(3.30E+00)~ | 3.83E+02(8.17E+00)* | 3.55E+02(3.35E+00)
Foy 30 | 4.28E+02(2.95E+00)~ | 4.37E+02(5.33E+00)~ | 4.30E4+02(2.47E+00)~ | 4.53E4-02(7.43E+00)~ | 5.73E4-02(9.77E+-00)
Fa5 30 | 3.87E+02(8.90E—03)~ | 3.87E+02(1.23E—01)~ | 3.90E+402(7.68E—03)* | 3.83E+02(6.63E+00)~ | 3.87E+02(7.31E—02)
Fae 30 | 9.49E+02(4.60E4+01)~ 1.05E403(2.95E4+02)* | 9.20E+02(4.30E+01)— 1.31E4+03(9.85E+4+01)* 1.01E+03(3.78E+-02)
For 30 | 5.04E402(6.70E+00)" | 4.96E+02(8.85E+00)" | 5.00E+02(7.00E+00)" | 5.00E+02(1.38E—04)T | 4.86E-+02(7.19E+00)
Fas 30 | 3.15E+02(3.86E+01)T | 3.17E4+02(3.90E4+01)t | 3.10E4-02(3.03E4+01)T | 4.44E+02(7.95E+01)t | 3.00E4-02(5.22E—05)
Fog 30 | 4.35E+02(7.36E+00)T | 4.55E+02(2.28E+01)T | 4.30E+02(1.36E+01)T | 4.09E+02(6.59E-+01)~ | 4.20E+02(1.86E+02)
F3p0 30 | 1.98E+03(4.17E+01)~ | 2.30E+03(1.84E+02)~ | 2.00E4+03(1.90E+01)~ | 2.23E402(2.19E+01)~ | 2.56E+4-03(1.97E+02)
+/~ /- 10/5/14 19/4/6 11/4/14 21/0/8
p-value 0.1531 0.0480 0.1578 0.0252
Last, DEIE is compared with other three advanced DE \ P P

variants on the CEC 2017 set as shown in Table 3, namely, 06 ' "

LSHADE-cnEpSin [51], IDEbestNsize [52], jSO [53], and o

EDEYV [54]. In the 30 CEC2017 benchmark functions, f2 has g

deleted in the updated version [55]. DEIE yields good results 504

on 9 functions compared to all competitors. It follows that §

DEIE may prefer unimodal and composition functions. DEIE g 02

performs better than the competitors on 10, 19, 11, and ‘é

21 functions, respectively. DEIE gets equally good perfor- 0.0

mance on 5, 4, 4 and O functions, respectively. LSHADE- 0 2 4" .

cnEpSin, IDEbestNsize, and jSO outperform DEIE on 14, FEs <10°

6, 14, and 8 functions, respectively. DEIE outperforms
IDEbestNsize and EDEV. LSHADE-cnEpSin and jSO obtain
best performance in 14 and 15 cases, but there is no signif-
icant difference compared with DEIE. In conclusion, DEIE
achieves better or at least comparable performance compared
to these top-ranked DE algorithms.

B. EFFECTS OF DEIE COMPONENTS

The effectiveness of the proposed DEIE maybe depends on
the evolutionary stage division based on entropy, the basic
mutation strategy DE/rand/1 and DE/best/1 are further used
in exploration and exploitation stages, respectively. To dis-
cuss the validity of the proposed DEIE, experiments are

VOLUME 9, 2021

FIGURE 3. Curves of information entropy.

conducted on benchmark CEC2017 set to identify the effect
of each component. The results are presented in Table 4,
where DEIE-rand and DEIE-best represent DEIE using only
DE/rand/1 strategy and DEIE utilizing only DE/best/1 strat-
egy, respectively. As shown in Table 4, DEIE significantly
outperforms the other DEIE variants on the majority of
functions.

Fig.3 shows the information entropy curves for seven clas-
sic functions(these formulas are shown in the supplementary
file Table S-I). The trend of rapid decline indicates that the
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TABLE 4. Results of mean and standard deviation of the function error

obtained by DEIE-rand, DEIE-best and DEIE for CEC 2017 benchmark set at

D = 30.

D

DEIE-rand
Mean(Std Dev)

DEIE-best
Mean(Std Dev)

DEIE
Mean(Std Dev)

F3o

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

495E—11(4.93E—11)T
1.91E—01(2.19E—01)*
8.31E+401(6.90E+00)*
1.66E402(1.22E+01)*
1.14E—13(0.00E-+00)~
2.04E+402(9.07E+00) T
1.67E+402(9.70E+00)
0.00E-+00(0.00E-+00)~
6.41E403(2.88E+02) T
6.90E+01(2.52E4+-01)1
1.34E+4-04(6.89E+03)
1.16E+4-04(7.28E+03)
7.66E401(7.10E+00)*
6.56E+01(6.10E+01)*
5.47TE4+02(2.45E+02) T
7.97E+01(5.14E4+-01)t
3.17E+02(2.61E+02)
3.64E401(2.86E+01)T
9.07E+4-01(7.39E+01)*
3.63E402(8.65E+00) T
1.00E+02(0.00E+00)~
5.10E+02(5.40E4+01)*
5.96E+02(9.45E+00) T
3.87E+02(4.62E—02)~
2.26E403(7.63E+02)"
4.98E+02(2.21E401)T
3.10E402(3.19E+01)*
6.90E+02(1.42E402)*
4.33E403(1.29E403)

478E—14(2.71E—14)T
2.89E—13(2.34E—13)T
8.41E+01(4.03E4-00)*
1.46E402(2.72E+01)T
4.19E—04(6.91E—04)*
1.84E402(2.17E+01)T
1.31E4-02(4.75E+01) T
3.18E—13(1.37E—13)T
6.33E4-03(4.20E+02) T
1.50E+01(1.59E4+01)*
1.89E+04(5.16E4+04)*
6.41E4-03(6.84E+03)T
3.50E+01(1.06E4+01)*
2.28E+401(2.49E+01)T
6.21E402(2.24E+02) T
6.13E+01(4.92E4+01)*
3.45E4-03(1.60E+04) T
1.48E4-01(5.77E+00) T
1.07E+02(8.66E4+01)*
3.23E4-02(5.04E+01)T
1.00E+02(8.18E—01)~
4.27E+02(5.83E+01) T
5.02E+02(6.34E+01)~
3.87E+02(6.71E—02)~
1.17E+03(4.12E402)*
5.02E4-02(8.14E+00) T
3.24E402(4.37E+01)T
4.86E+02(6.03E4-01)F
2.70E+403(9.93E+02) T

0.00E+00(0.00E+00)
0.00E+00(0.00E—+00)
3.30E—01(1.22E—01)
1.18E+01(6.51E-+00)
2.88E—13(2.46E—13)
4.23E-+01(6.81E+01)
1.65E+01(1.06E+00)
0.00E-+00(0.00E+00)
1.43E+03(2.69E+02)
8.80E+00(7.28E—02)
2.90E+03(9.12E+02)
5.80E-+01(1.02E+01)
2.19E+01(6.17E-+00)
5.23E+00(3.22E—01)
1.68E+02(1.78E+02)
3.23E+01(7.50E-+00)
3.72E-+02(1.39E-+02)
4.12E-+00(1.00E+00)
5.01E+00(2.41E-+00)
2.17E+02(2.58E+00)
1.00E—+02(0.00E+00)
3.55E+02(3.35E-+00)
5.73E-+02(9.77E-+00)
3.87E-+02(7.31E—02)
1.01E-+03(3.78E+02)
4.86E+02(7.19E+00)
3.00E-+02(5.22E—05)
4.20E+02(1.86E+02)
2.56E+03(1.97E+02)

T~

24/3/2

26/2/1

population rapidly locates several promising states from mul-
tiple states. Subsequently, the value of information entropy
is zero because the population is concentrated on a certain
state. This result is consistent with the convergence of the
function with good results in Table S-III (supplementary file).
The function with the worse results, such as fo function, has
an information entropy curve that is always greater than zero
although it declines at the beginning. The curve of fi¢ function
indicates that the population continues to vacillate between at
least two states. Thus, no optimal solution can be found.

C. PARAMETER STUDY
In the proposed DEIE, the parameters, i.e., Gen, K, NP, F
and CR need to be discussed. The experiments of this part

are conducted on 21 classic functions (see supplementary
file Table S-I).

1) LEARNING PERIOD Gen AND K

Considering that the K Markov state is formed at the end
of the learning process, the learning period Gen must be
optimized to consider the learning effect of the Markov states
and the overall optimization of the DEIE. Large Gen can
ensure accurate learning of the number of Markov states but
will consume computational resources when the algorithm
explores the optimal solution. Conversely, small Gen will
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TABLE 5. Ranking of Friedman’s test for different values of K.

K=2 K=3 K=5 K=7 K=9
Ranking  5.64 4.98 5.93 5.88 4.57
K=11 K=13 K=15 K=17 K=19

Ranking 5.48 5.6 5.33 5.71 5.88
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FIGURE 4. Curves of parameter K.

result in coarse division. First, it is investigated that the
relationship between the maximum learning period Gen and
the number of Markov states K . Fig.4 shows the phenomenon
that the number of Markov states K decreases as the iteration
progresses, whereas K for most functions becomes stable
after 100 iterations. To avoid the possibility of diminishing
the optimization effect caused by large number of iterations,
the maximum learning period Gen is set to a fixed number
of 100.

To further reveal the impact of Gen, the effect of the
number of Markov states K on the optimization results is
investigated, where K varies from 0 to 20 under Gen = 100
according to Fig.4. And the other parameters are identical to
those used in Section V-A. Table S-IX (see supplementary
file) presents the mean and Std values under different K.
For clarity, Friedman's test is used, and Table 5 reports the
influence of different values of K against the performance
of DEIE. It reveals that no significant differences exist under
different values of K in DEIE. Therefore, Gen = 100 is a
suitable choice.

2) POPULATION SIZE NP

In order to investigate the impact of NP, six frequently used
settings, i.e., 30, 40, 50, 60, 80, and 100, are employed
in DEIE. The rest parameter settings are the same as that
described at the start of Section V. Table S-X (see supplemen-
tary file) presents the mean and Std values under different NP
on 30-D classical benchmark. Clearly, DEIE with NP = 50
obtains better performance compared to DEIE using other NP
settings. Furthermore, the Friedman rankings are summarized
in Table 6. It indicates that NP = 50 achieves the best results
on 12 out of 21 functions, and obtains the best ranking. In this
way, NP = 50 is more suitable for DEIE.
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TABLE 6. Ranking of Friedman’s test for different values of NP.

NP=30 NP=40 NP=50 NP=60 NP=80 NP=100

Ranking 445 3.12 2.00 2.93 4.00 4.05

TABLE 7. Results of the Wilcoxon'’s test obtained by DEIE and DEIE_fixed
on classical benchmark functions at D = 30.

DEIE v.s. +

Q
|

p-value

DEIE_fixed 14 4 3 2.34E—43

3) SCALING FACTOR F AND CROSSOVER RATE CR

The initial values for F and CR are set to 0.5, and 0.5 is
reassigned to F' and CR when the range of them are exceeded.
The rest parameter settings are the same as DEIE. The
results of Wilcoxon’s test obtained by DEIE_fixed (without
adaptive parameters) and DEIE on 30-D classical bench-
mark are shown in Table 7. Clearly, DEIE with adaptive
parameters obtains better performance on 14 functions com-
pared to DEIE. The mean and Std values of DEIE_fixed are
shown in Table S-XI (see supplementary file).From these
data, we can conclude that parameter selection based on
current stage division can improve the performance of DEIE.
Therefore, parameter adaptive mechanism may be another
promising direction for us.

D. REAL-WORLD APPLICATION

In this part, DEIE is utilized to solve a real-life problem,
namely, the protein structure prediction (PSP) problem that
is essential in bioinformatics. Proteins are an important com-
ponent of all cells and tissues in the human body, and their
function is directly determined by their three-dimensional
(3D) native structure. For example, the protein 4UEX is a
structure of human saposin which is an important auxiliary
factor for acid hydrolytic enzyme to degrade complex gly-
cosphingolipids. Serious metabolic diseases may be gener-
ated by deficiencies of saposin or hydrolytic enzyme [56].
High-throughput, high-precision protein structure predicting
technology will strongly promote the development of life
science, greatly accelerate the development of cancer, viral
antibiotics, targeted drugs and new proteases.

« . @
C. &: B C.
Y \‘E/y@\“ Y\

o

Cp

Centroid

FIGURE 5. Coarse-grained representation of the protein structure.

The protein folding thermodynamic hypothesis point out
that its native structure is the conformation with minimal
potential energy. The features of PSP problem are inaccurate
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energy function and expensive function evaluation cost. The
state-of-the-art methods in this field, such as Rosetta [57]
and I-TASSER [58], employ multistage Monte Carlo and its
variant algorithms with fixed computational cost for each
stage. There are some problems need to be considered:
(1) For small proteins, less computational cost possibly could
be sufficient to generate native-like protein conformations.
Meanwhile, a higher computational cost is needed for large
proteins due to vast conformation space. Fixed cost may
lead to waste of small protein exploration, but insufficient
exploration of large protein. (2) Without an effective strat-
egy, Monte Carlo adopted widely in this field is prone to
premature convergence. The proposed DEIE is effective for
tackling PSP problem: (a) the dynamic stage division tech-
nique is effective and adaptive for different length of proteins;
(b) entropy, describing disorder or uncertainty of a system,
may be more applicable for solving imprecise function mod-
els from macroscopic perspectives; (c) DEIE has good scal-
ability, and the mutation strategy can be flexibly adjusted
according to different proteins.

A coarse-grained representation of the protein structure
used in Rosetta [59] is adopted in DEIE as shown in Fig.5.
Therefore, the dihedral Angles of residues are used to encode
the proteins. According to the latest prevalent trends, complex
energy constructed from physicochemical knowledge and
spatial geometry knowledge is used to guide protein folding,
which is expressed as follows:

f = ERosetta + Edistance (18)

where f represent the energy function combined by protein
physicochemical model and knowledge model. ERgsetia 1S
Rosetta score3 physicochemical energy. Egistance 1S geometric
model based on residue distance. Detailed description can be
found in [57].

On the basis of stage division, the implementation of oper-
ators in DEIE can be redesigned flexibly according to current
application scenarios. (1) Initialization. The initial population
is generated through random dihedral angle perturbation.
(2) Mutation operation. PSP-specific versions of DE/rand/1
and DE/best/l mutation strategy are designed to accom-
modate different stages, the details are shown in the Sup-
plementary materials. (3) Crossover operation. The trial
conformation is generated by exchange residue information
between the target and mutate conformation. (4) Selection
operation. Following the Metropolis criterion, the satisfying
offsprings can be survived into next generation.

In this experiment, DEIE is compared with four algorithms
over 50 nonredundant proteins with various lengths of the
amino acid sequence. Two current representative predicting
methods are Rosetta-d (a distance-assisted fragment assem-
bly method) and L-BFGSfold (a distance geometry opti-
mization method). Two DEIE variants are DEIE_v1 (DEIE
with only PSP-specific versions of DE/rand/1 mutation strat-
egy) and DEIE_v2 (DEIE with only PSP-specific versions
of DE/best/1 mutation strategy ). Detailed description of
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TABLE 8. Average results obtained by Rosetta-d, LBFGSfold, DEIE_v1,
DEIE_v2 and DEIE on 50 proteins.

Rosetta-d LBFGSfold DEIE vl DEIE_v2 DEIE

RMSD 5.93 4.95 11.20 5.43 4.47
TMscore  0.564 0.670 0.360 0.662  0.696
p-value 2.23E-07 2.38E-09 8.03E-10 8.73E-10 NA

0.8 |

e
=N
T

TMscore

S
~
T

02 F

Rosetta-d LBFGSfold DEIE_vl DEIE v2 DEIE

FIGURE 6. Boxplot for the TM-scores of the all 50 proteins predicted by
Rosetta-d, LBFGSfold, DEIE_v1, DEIE_v2, and DEIE.

experiment setting and compared methods can be found in
supplementary materials.

Comparison of predicted results generated by Rosetta-d,
LBFGSfold, DEIE_v1, DEIE_v2 and DEIE are listed
in Table 8 on all 50 benchmark proteins, and the detailed
results of each protein are presented in Table S-XII of
Supplementary materials. Two well-known structural quality
measures are used in assessing the similarity of the pre-
dicted conformation and a reference conformation, generally
the native structure. One is the root mean square deviation
(RMSD), where smaller RMSD means the smaller devia-
tion and the better model accuracy. The other one is the
template modeling score (TMscore), which ranges in [0,1]
and higher value reflects better folding accuracy. Meanwhile,
a TMscore > 0.5 represents correctly folded models. Com-
pared with two state-of-the-art methods, the average RMSD
of DEIE (4.47A) is reduced by 24.63% compared to Rosetta-
d (5.93A) and 9.74% compared to LBFGSfold (4.95A). The
average TMscore by DEIE (0.696) is 23.45% higher than that
of Rosetta-d (0.564) and 3.83% higher than that of LBFGS-
fold (0.670). Compared with two DEIE variants, the average
RMSD of DEIE (4.47A) is lower than that of DEIE_vl
(11.20A) and DEIE_v2 (5.43A), the average TM-score of
DEIE (0.696) is higher than that of DEIE_v1(0.360) and
DEIE_v2(0.662). All the results in Table 8 show that the
prediction accuracy of DEIE is significantly better than each
of compared methods (with P-values of <0.05). The adap-
tive switching mechanism and the cooperation of these two
strategies are effective.

Fig.6 intuitively reflects the comparison of DEIE with
other methods on 50 proteins. Compared with Rosetta-d,
LBFGSfold, DEIE_v1, and DEIE_v2, DEIE achieves a lower
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(d) DEIE_v1 (e) DEIE_v2 (f) DEIE

FIGURE 7. Representative example of 1F1E_A 3D structure obtained by
Rosetta-d (blue), LBFGSfold (yellow), DE_v1 (green), DE_v2 (purple), and
DEIE (red) with the native(grey).

RMSD on 31 of 50 proteins, accounting for 62%, and a
higher TM-score on 42 of 50 proteins, accounting for 84%.
Fig.7 shows one case which the superimpositions of two
target model predicted by all algorithms and the experimental
structure. On protein 1F1E_A, the native structure, Rosetta-d,
LBFGSfold, DEIE_v1, DEIE_v2 and DEIE structure are
marked in cyan, pink, blue, orange, and green, respectively.
The accuracy of prediction is represented by the similarity
between the predicted and natural structures. As shown in the
Fig.7, DEIE achieves more accurate results than others.

VI. CONCLUSION

This paper presents a DEIE algorithm that balances the
exploitation and exploration ability of DE by using suitable
mutation strategy in different stages. In DEIE, the infor-
mation entropy metric is proposed to determine the current
stage of evolution after combining the number of Markov
states with the transition matrix of Markov state model. The
information entropy metric uses the historical evolutionary
information across generations, which reveal the trend of the
movement of individuals in the search space. It is reason-
able to estimate the extent that the population explores the
solution space and then divided evolutionary process into two
stages. Consequently, the stage-specific mutation strategy is
allocated to the population individuals by using the infor-
mation entropy. Experimental results described in Section V
verify that DEIE performs better than or at least competitive
with diverse state-of-the-art DE variants on CEC2013, 2014,
and 2017 benchmark sets. Moreover, DEIE also achieves
the promising performance on real-world PSP problem. The
sensitivity of DEIE to parameters is also studied. The main
work of the manuscript focuses on dynamic division of
the evolutionary stages based on entropy and stage-specific
mutation strategy adaptation. To avoid confusion about the
effectiveness of the dynamic stage division, only the sim-
ple basic mutation strategies are adopted to highlight main
ideas of the manuscript. This may be the reason why DEIE
cannot perform so well on some benchmark functions com-
pared to some top-ranked algorithms. The new optimized
mutation strategies based on stage division and performance
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optimization based on benchmark function may be another
promising direction for us, which may enhance the perfor-
mance of the algorithm. In addition, DEIE is more suitable
for large and complex PSP practical application because it
maybe tackles the multistage problems of general concern in
this field.
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