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ABSTRACT Enhanced metering infrastructure is a key component of the electrical system, offering many
advantages, including load management and demand response. However, several additional energy theft
channels are introduced by the automation of the metering system. With data analysis techniques, adapting
the smart grid significantly reduces energy theft loss. In this article, we proposed deep learning methods
for the identification of power theft. A three-stage technique has been devised, which includes selection,
extraction, and classification of features. In the selection phase, the average hybrid feature importance
determines the most important features and high priority. The feature extraction technique employs the
ZFNET method to remove the unwanted features. For the detection of electric fraud, we have applied
Long Short Term Memory method embedded in Convolutional Neural Network technique (CNN-LSTM).
Meta-heuristic techniques, including Black Widow Optimization (BWO) and Blue Monkey Optimization
(BMO), are used to calculate optimized values for the hyperparameters of CNN-LSTM. The tuning of
hyperparameters of the classifier helps in better training on data. After extensive simulation, our proposed
methods CNN-LSTM-BMO and CNN-LSTM-BWO achieved an accuracy of 91% and 93%. Our proposed
methods outperform all the existing compared schemes. The performance of our models has attained high
accuracy and low error rate. Furthermore, the statistical analysis also shows the superiority of the proposed
methods.

INDEX TERMS Optimization techniques, smart grid, deep learning methods, ensembler, black widow
optimizer, CNN.
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I. INTRODUCTION

Nowadays, electricity has become a necessary component of
our everyday lives. Electricity is produced and then transmit-
ted over vast networks from big power plants to customers,
with the loss occurring during both the production and trans-
mission stages [1]. Due to the shortage of energy resources
and the high cost of acquiring them, every country’s social
and economic development must include safe and effective
use provisions for its energy resources.

Smart Grid (SG) technology has shown itself as a credi-
ble alternative for monitoring energy in the future. The SG
system is a type of energy system that comprises of a power
distribution system and computers that are used to manage
and regulate electricity use using an automated control system
that keeps track of all system users [2]. When new digital
technology is integrated with the electrical grid, utilities and
customers can monitor, track, and predict energy usage. The
collector (device) transmits an internet-based energy usage
reading to the operational hub and the power transmission
company, then bills the client. Simultaneously, the utility
gathers user readings through a wireless network via sporadic
warnings from nearby consumers. Their main objective is
to reduce energy losses and deliver consistent, dependable,
and cost-effective power [3]. A smart meter is an electronic
version of a conventional meter that monitors and reports on
usage. Smart meters are vulnerable to a variety of security
flaws. These are low-cost consumer devices that are widely
utilized. They are designed to last longer to save cost on
replacement. Due to its microchip, nonvolatile storage, net-
working capabilities, and ability to sustain overall consumer
energy production are critical components of smart grid archi-
tecture [4]. Power loss is the difference in the amount of
energy generated as well as the amount of electricity pro-
vided to customers. Smart meters are critical for measur-
ing energy loss in smart grids. Advanced energy meters get
data from customers’ load meters and then compute hourly
power usage. This meter provides additional information to
the retailing business to facilitate appropriate administration,
accounting, and two-way communication between the retailer
and its consumers [5]. Energy consumption may be reduced
by disconnecting and reconnecting the power source from any
remote location.

Smart meter security flaws that lead to Non-Technical
Loss (NTL) fraud were classified into three categories:
network penetration, meter modification, and measurement
interruption. Meter tampering tactics include altering meter
firmware, password cracking, and key spoofing. Network
intrusion attacks include data injection attacks and communi-
cation interception. Finally, measurement disruption involves
partial or full meter bypassing or the placement of powerful
magnets near meters. Electricity thieves result in a substantial
loss of revenue for the electric company. The two kinds
of electrical loss are NTL and Technical Loss (TL). TL is
the abbreviation for the power loss produced by resistance
in transmission networks [6]. Calculating TL is a time-
consuming procedure, and determining the moment of failure
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and calculating the amount of energy lost is challenging.
While it cannot be eliminated, we may significantly decrease
it by changing current systems. To correctly identify and rec-
tify NTL, the TL must be estimated in the first place. A utility
company doesnot may have access to the network topology
or cable impedance measurements needed to estimate TL.

NTL refers to the difference between complete loss and
TL. NTL is mainly caused by billing delays, irregularities,
theft, malfunctioning energy meters, fraud, and outstanding
bills. NTL often entails bypassing electric meters, altering
them, or hacking them [7]. Energy theft will result in higher
energy rates, a heavy load on the grids, a loss of income for
the energy supplier, and a decrease in profit, as well as higher
costs for all users and other issues including offloading,
disruption of business schedules, and inflation. Controlling
energy theft is a significant issue for the nations listed above
in economic development [8]. Only real-time fraud detection
can reduce electricity theft. Power theft is a form of NTL
that deprives the power industry of profits, thus damaging the
country’s economy.

A. PROBLEM STATEMENT

Several methods for detecting and minimizing theft have been
used. More analysis is necessary to address the issues of Elec-
tricity Theft Detection (ETD) adequately and overcome the
constraints of inadequate theft detection owing to unbalanced
data and the limited capacity of Machine Learning (ML)
algorithms. We discovered that just a few publications in the
current literature had addressed the impact of unbalanced data
in their system models [9]. The authors in the literature solved
the class imbalance issue by using Adaysn; however, this pro-
duces overfitting and repeats the samples of the closest neigh-
bor, which will not represent theft cases of real-world [10].
Several past surveys suggest that smart grid data gathering
will help identify energy theft. This strategy has the follow-
ing drawbacks: Linear Regression (LR) and Support Vector
Machine (SVM) have low performance in identifying energy
theft [11]. The CNN-LSTM hybrid structure is also utilized to
forecast energy theft detection [12]. The CNN-LSTM model
performed well in each theft detection scenario.

In contrast, raw data with no preprocessing was used to
predict an electrical theft [13]. Many parameters of the sen-
sors, such as level of noise, the scale of sensor power, and
so on, might affect data quality. However, using an adequate
preprocessing technique is essential. On energy consump-
tion data, these researchers [14] constructed a regression
model employing hybrid structures such as a Classification
algorithm i.e, CNN-LSTM. The power consumption pattern
dataset was used to address the classification problem, and the
CNN-LSTM hybrid model was combined with a preprocess-
ing approach. This led us to develop a hybrid structure that
analyses customers’ irregular consumption patterns to detect
power theft. These existing methods offer good outcomes, but
as indicated in Table 2, they have limitations.

We proposed the following solutions for the problems
identified in the above articles:
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TABLE 1. Limitations of existing system.

Ref Methods Limitations
It includes manual methods
like humanly checking, for
which we need to hire an
inspection team with many
members. There is a massive
inconsistency in the manual
checking.

This method has a low

identification rate but a high
rate of False Positives (FPR).

Erroneous data are used in
some situations, which reduce
classification precision.
This solution is costly since it
involves the installation of new
machinery.

The critical issue with
previous ML approaches was
dealing with unbalanced data.

This unbalance issue is left
unaddressed in conventional
models. Synthetic Minority
Over-sampling TEchnique
(SMOTE) and Random Under
Sampling (RUS) approaches
result in information loss and
overfitting.
On large datasets, traditional
approaches such as Logistic
Regression (LR) and SVM
performed poorly.

[11-[3] Conventional ETD

[4] Game-Based Theory

[9] Missing Values Data

[10]-[13] State-Based Solution

[13],[14] ML Techniques

Traditional ML

(5] Techniques

o The accuracy problem is resolved by using the
Deep Neural Network (DNN) method, including
the tuning of parameters by the novel optimization
techniques.

o The un-balancing of the data is handled using the
SMOTE algorithm.

o Tuning the parameters performed in our solution has
reduced the issue of data overfitting.

o As the missing values reduce the classifier training and
classification precision, we have applied to preprocess
step to adjust the missing values.

+ We have used Al techniques to eliminate the hardware
issues and efficiently detect electricity fraud in light of
the hardware-based issues.

Il. RELATED WORK

The literature review related to electricity theft detection
can be split into two approaches: hardware-based and data-
driven-based. These approaches are discussed below:

A. HARDWARE-BASED APPROACH

In this approach, researchers focus on developing spe-
cial metering devices and facilities for quickly detecting
power. Smart meters with RF tags and anti-tamping sensors
are examples of these systems [16]. These hardware-based
implementations have several drawbacks, including hardware
component vulnerability, malfunction due to environmental
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factors, and difficulty sustaining these machines (replacing
batteries, etc.).

B. DATA-DRIVEN BASED APPROACH

Due to difficulties and limitations of hardware base solutions,
data-driven solutions have drawn attention recently. Previ-
ously, researchers suggested various methods for identifying
electricity fraud from the electricity theft data. Weixian et al.
proposed a three-layer architecture [17]. Souza et al. devel-
oped a framework for defense against cyber-assaults based on
Phasor Measurement Units (PMU). Furthermore, the author
developed a dynamic matrix pencil method to detect elec-
tricity theft [18]. Also, rule base and rough set models were
applied in [19] to identify the electricity thieves. In [19],
using statistical techniques, conventional theft detection was
addressed. Further, Fuzzy networks and rough collections
were used to compare irregular activity in standard meter
readings [20]. In [21], the author used Light GBM, XGBoost,
and Cat Boost Learning (CBL) to detect NTL. The concept
of smart grids heralds a new age of detecting energy theft.
In certain instances, smart meter data were used for further
implementation.

Using smart meter data, ML-based classification has
received much coverage recently. Daily electricity usage is
used to detect theft trends to protect consumers’ privacy [22].
Inconsistencies and abnormalities in the obtained data were
regularly detected using the SVM [23]. Clustering was used
as a primary and secondary stage in some algorithms, making
it more suitable for modeling and identifying energy con-
sumption profiles. For anomaly detection, some researchers
used research areas like intrusion detection [24]. Further-
more, the author introduced a new Intrusion Detection Sys-
tem (IDS) and Distributed Intelligent Energy Theft (DIET)
attack and to defend the AMI system. The suggested IDS can
monitor the system in the background and detect potential
threats. This IDS is strengthened and dependable as a result
of these features.

The author aims to study and transform fine-grained smart-
meter data into usable information that may be utilized in
consumer behavior modeling and distribution system opera-
tions to model complex customer behavior in [25]. Individual
load forecasting and customer aggregate are two of the most
prominent work. Other works covered include pattern detec-
tion, load profiling, personalized pricing design, household
behavior coding, and identification of socio-demographic
information [26].

Anomaly detection has received a lot of attention from
smart grids because it may assist enhance security and pro-
tection in smart metering networks by enhancing control reli-
ability and identifying frauds [27]. In smart grids, techniques
such as SVM, clustering, and classification were utilised to
detect anomalies. To identify power theft, a Rough set and
Decision Tree (DT) were employed in [28]. A rule-based
approach was employed to detect NTLs in [29]. Other tech-
niques, such as C4.5, DT, Optimum Path Forest (OPF), and
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one-class SVM [30], were integrated to identify normal users
and power thieves.

Many approaches, including DT with SVM [31], Genetic
Algorithm (GA) with SVM [32], fuzzy logic with SVM [33],
Online Sequential ELM (OS-ELM) [34], and Extreme Learn-
ing Machine (ELM) [35], were used to enhance the accuracy
of categorising normal and theft users.

Internet access increases the possibility of hacking on
smart grid networks. Wei et al. suggested a defense archi-
tecture for reducing cyber-attacks. According to [36], smart
grid remote monitoring services may be connected to the
safety thread to make data safer and more private. The
Euclidean distance to the cluster core was often used as
an unsupervised tool for fuzzy classification [37]. In [38],
a wavelet-based approach based on an Artificial Neural Net-
work (ANN) was used to analyze and classify dishonest
consumers. An ANN-SVM hybrid platform improves ETD
performance in smart grid networks [39]. Load profiles have
emerged as a viable and cost-effective method of detect-
ing fraudulent users. Researchers also used various pattern
recognition approaches to create load profiling tools based
on locally recorded patterns.

Furthermore, deep learning has significant success in
visual processing and computer vision. Deep learning tech-
niques simplify feature extraction and classification of data
derived from the smart grid due to their ability to process and
monitor massive data. CNN is used in [40] to detect energy
theft. Hybrid deep learning approaches have recently been
used for load forecasting. In [41], a CNN-LSTM combination
was utilised for short-term load forecasting. This model has
a better performance than others. This model was also used
to forecast energy prices and household power demand. This
model is more effective and efficient than other methods. The
authors in [42] present an LSTM-based evaluation technique
for precisely and promptly assessing the system’s stability
state. Furthermore, the suggested technique outperformed
more traditional evaluation methods that depended on shal-
low learning. Authors utilized the CNN-LSTM based model
for non-intrusive load decomposition [42] and electricity theft
detection using smart meter data [43]. They addressed the
problem of detecting electricity theft with high accuracy,
however, they didn’t deal with the model’s computational
complexity. The summary of some literature reviews is shown
in Table 2.

lll. PROPOSED SYSTEM

In this article, we utilized a new DNN based CNN integrated
with LSTM and tuned with the novel optimization technique
Black Widow Optimization (BWO) and Blue Monkey opti-
mization (BMO). The CNN algorithm is capable of auto-
matically extracting features from a given data set. However,
the LSTM algorithm works well in our case as it produces
better results when dealing with sequential data. The com-
bination of these algorithms is used in various applications,
including text extraction from images, text extraction from
Natural Language Processing (NLP), videos, and Sentiment
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FIGURE 1. Proposed system model.

Analysis (SA) [41]. In this article, we will solve a binary
classification problem using the CNN-LSTM method.

We use seven hidden layers in this article, four of which
will perform CNN operations. Each CNN layer consists
of 20 feature sets. The remaining layers would execute
the LSTM process. The first, second, and third layers of
the LSTM contain 10, 5, and 100 neurons, respectively. The
input is first loaded into the model, which will perform
data pre-processing and after interpolation and normaliza-
tion on the data; if the processed data under-sampling is
satisfied, it moves on to the next feature extraction phase;
otherwise, preprocessing is repeated. We extracted features
through ZFNet. After the extraction of the feature, the value
is optimized through BWO and BMO, and data is passed
toward the next phase of classification. The classification
of data is performed through CNN-LSTM. After predict-
ing class, we used different performance matrix to improve
performance, i.e., MAPE, RMSE, MSE, F1Score, precision,
and recall. Finally, statistical analysis is performed on the
achieved result through different techniques like Pearson’s
test, Spearman’s test, Kendell’s test, etc. Figures 1 and 2 show
the proposed model’s block diagram and flow chart.

A. INPUT DATA DESCRIPTION

The research is based on the State Grid [40] collection
of real consumption data from customers conducted by
the Chinese government. The description of the dataset is
shown in Table 3. The dataset used in this article comprises
9655 energy consumption data of consumers gathered for one
year. Our main discovery here is that normal and abnormal
users generate distinct patterns of energy usage. The energy
consumption of two customers is shown in Figure 3; one is
an electrical theft user, while the other is a legitimate energy
consumer. According to the consumption pattern, an abnor-
mal or electricity theft consumer has an even more fluctuating
pattern than a genuine user.

Data on electricity consumption is typically collected using
smart meters or different sensors equipped at the client-side.
After that, the data is combined and routed to a prime hub via
a communications network. this situation, smart meters may
malfunction, detectors might fail, network delays may occur,
and database servers could fail.

Consumption datasets are unavoidable. In this dataset,
we also observed some outliers. If the missing values are
simply omitted, the dataset gets smaller significantly, creating
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TABLE 2. Existing ETD literature methods.

Aims and . .
Methodology (s) objectives Sources (s) of Information/Achievement(s) Drawback(s)
Hardware - N - . . .
Devices [15], Electrlclty. Theft Radio frequency-based identification of theft. Vulnerability, failure due. toa fault. sometimes in
[16] Detection hardware. Replacing batteries etc.
Cyber Attack
3-layer detecnqn aqd Cre?m': an X2 detector capal?le (.)f detecting random This detector can be breached if false data is injected.
framework [17] prevention in data injection, wrong data injection, and Dos attacks.
smart grid
PMU based Protecting State data problems, Asynchronous meter reading,
security system system from Detection of unobserved attacks and taking harmful action of grid operators can
[18] security attacks compromise data.
Complex Matrix Smart Load Load monitoring, Noise reduction, less data for Correct correlation is a must for classification,
Approach [19] Monitoring identifying signals, easy method for extracting poles. Accuracy issues.

Fraud Detection
and Electricity
Price Forecasting

Rough set
models [19], [20]

Fraud detection through high and low voltage
consumption, Price forecasting through RNN.

Some fraudulent users were identified as
non-fraudulent, Also show some user who is neither
fraudulent nor genuine users, and also in case of
price forecasting, it creates conflicts.

Statistical . . . ..
X Conventional Credit card detection, telecommunication fraud . . L
Techm[%l;e]s (21], Theft Detection detection, intrusion, and account defaulting. Costly, Difficult to implement and maintain.
NTL Analysis Detection of . . - . . .
[23]-[27] abnormalities Accuracy and time performance was excellent. The result was not optimum.

Start )
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<
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/
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FIGURE 2. Flow chart of proposed system.

reliable analysis difficult. We proposed a data preprocessing
algorithm to avoid downsizing in the dataset.
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FIGURE 3. Power consumption trend.

IV. PREPROCESSING OF DATA

The interpolation method is used to preprocess the data,
which helps in achieving accuracy. Equation 1 explains the
interpolation method [41].

My + Mi—1)
2
0 if my € NaN, my_1 and my1 € NaN

my my € NaN

if my € NaN, my_1 and my41 ¢ NaN

ey

The 3-sigmarule is then applied to the raw data to eliminate
outliers [8], [41]. These outliers are aware that non-working
days have the highest energy consumption. We use Equa-
tion 2 to restore these values by the 3-Sigma rule of thumb.

avg(m) + 2std(m)  if my > avg(m) + 2std(m)

fm) =

else

@)

The average of m is represented by avg(m), and the stan-
dard deviation of m is defined by STD (m) in equation 2. This
method is effective in dealing with outliers.

To normalize the data between the 1 and O scales,
we used the Min-Max scaling approach, interpolation, and
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Algorithm 1 Electricity Theft Detection Model
Require: Electricity Theft Data (DTA);
/* Separating the Data into target and features */
1: X: Features DTA;
2: Y: Target DTA;
/* Preproccesing using interpolation and normalization
methods */
3: Preprocessing(DTA);
/* Data Balancing of data */
4: SMOTEAIlgorithm (DTA);
/* Data Splitting into Training and Testing */
5. X_test, X_train, y_test, y_train = split(X,Y);
/* Feature Extraction using ZFNET */
6: Selected_Feature = ZFNet(x_train, y_train);
7: if (SelectedFeaturesImportance > Threashold) then
8
9

Reserve Feature;
. else
10 Drop Feature
11: end if
/* (Optimization using BWO and BMO) */
12: CNN Parameters Setting;

13: BMO_Optimized_Value = BMO
(CNN_LSTM_Parameters);
14: BWO_Optimized_Value = BWO

(CNN_LSTM_Parameters);

15: if (BMO_Optimized_Value and BWO_Optimized_Value
== Satisfied) then

16: CNNModel(BMO_BWO_Optimized_Value);

17: else

18: Repeat Parameter Setting;

19: end if

20: Prediction using CNN—LSTM;

21: Compare predictions with y_test;

22: Applying Performance evaluation metric;

23: Statistical Analysis of proposed algorithm and state of
the art methods;

TABLE 3. Dataset description and details.

Description of Data Value
Data collection time frame 1 Jan-31 Dec
Total Consumer 9956
Normal User 8562
Abnormal or Thief Consumer 1394

the 3-sigma law. It is required because neural networks per-
form poorly when the results are inconsistent. By giving the
data a consistent scale, data normalization helps the training
phase of DL models. Equation 3 is used to normalize the
data [41].

N —Min(N)
"~ Max(N) — Min(N)

/

3

N’ represents the normalized value. The consistency of the
data used to train ML algorithms affects the efficiency of the
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algorithms. Data pre-processing improves the precision and
reliability of the data used in these models.

A. DATA BALANCING

In the dataset, the number of average energy users outnum-
bers the number of theft users. The ratio of data mismatch
is a significant problem in ETD that must be addressed
immediately; else, because the classifier would be skewed
towards the categories that contain more data, the classifier’s
performance will be low [42].

SMOTEBoost and SMOTE, assisting in navigating the
imbalanced collection of results. In this article, we also used a
sampling-based method. Strategies based on sub-sampling or
oversampling the unbalanced data set are used to reduce the
quantity difference between the two data categories. To avoid
overfitting, the entries of the majority class are rejected auto-
matically to minimize the occurrence ratio of the majority
class. Although random removal may eliminate crucial data,
which may or may not be a fair sample representation, this
method reduces the dataset, which is statistically beneficial.
Because the model was built using test data, the information
it provides may be less accurate. It seeks to balance class
representation by removing instances of the majority class
arbitrarily. In the case of two distinct classes that are similar,
we eliminate all instances of the majority class to maximize
the spacing between the two classes. This facilitates the clas-
sification process.

Most under-sampling techniques use methods based on
near-neighbors to reduce the problem of data loss. The
following is a basic overview of the process of some
near-neighbor ways [41], [42]:

o Step 1: The process first determines the dissimilari-
ties between the majority and minority class instances.
In this case, an under-sampling of the majority class is
required.

o Step 2: The majority class N instances with the smallest
distances from the minority class are then chosen.

o Step 3: If the minority class has k instances, the next
process is k*n instances within the majority class.

B. ZFNET FEATURE EXTRACTION

ZFNet is the updated 5-layer version of CNN. A 7 x 7
filer and a reduced stride value are used in layer-1. Softmax
is the final layer of ZFNet. It’s used in learning how to
isolate and disseminate features. The representation spaces
created by all layer filters are presented in detail in this article
using ZFNET for feature extraction. Using a deconvolution
network, all of a layer’s activations are utilized to remove
the associated features [44]. Convolutional and pooling lay-
ers are used. In the last dense layer, the Softmax is used
as the activation mechanism. The ZFNET modules’ multi-
pooling layers outperform the competition when it comes
to significant data advancements. We’ll examine the input
image that maximizes the filter’s activation and see what
features each filter captures. In the convolutional approach,
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TABLE 4. Hyper-parameters of ZFNET.

Parameters Values Description
Epoches 5 No of iterations
Batch Size 80 Training samples for each iteration
Optimizer Adam Learning rate
Dropout 0.001 Over fitting Resolving rate
Learning Rate 0.01 Tuning of parameters

spreading the kernel over the full inputs gives a function chart.
After multiple feature mapping processes, the kernel function
combines the final output of the convolution layer [37].
+00
k=mxT—klsl= Y  x[s—dIT[d] )
d=—00
In Equation 4, the input is m, and the filter is 7, also
known as the kernel. It is possible to compute the failure by
multiplying the number of times a particular filter is activated
by the number of times the input image is initialized to be
a random image. The activation function Relu is used in
the model to create nonlinearity by acting as an activation
function [39]:

Relu(m) = max(0, m) (@)

After the dropout layer operations, the essential features
are visualized using a dense layer. To avoid over-fitting,
the learning rate is set at 0.001, and the dropout rate is set

at 0.01. This method can be used as a Softmax activation
mechanism for the final dense layer [45].
= @ (6)

Plk=s1¢?) =
2520 "¢,

If H and G are the functions and weight matrices, then s in
the above equation is calculated as follows [39], [43]:

k
¢=Y HiGa=H"G )
d=1

—1<p(d)

Table 4 shows the values of the ZFNET’s hyper-parameters
as well as their meanings. These hyper-parameters are the
learning rate, the optimizer, the batch size, the number of eras,
and the dropout rate. These criteria are critical for achieving
the best possible results from the ZFNET module.

C. CLASSIFICATION USING CNN-LSTM OPTIMIZED BY
BWO AND BMO
1) MODEL OF CNN
CNN is introduced as a kind of DNN class that was imple-
mented first [38]. This approach is influenced by the Human
Visual Cortex, which is used for object detection. In an image,
CNN recognizes objects and their class. In terms of feature
extraction, it differs from Conventional Machine Learning
(CML). It extracts functions globally across a variety of
layers.

Several pooling layers, a Fully Connected layer, and a
convolution layer are included in this architecture. CNN is
built on the foundation of a main convolutional layer.
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2) CONVOLUTIONAL LAYER

The convolutional layer collects input data and transfers its
outcome to the next phase. Its function is synchronized with
the response of neurons in the visual cortex to a specific
stimulus. Convolutional neurons only process information
that falls inside their receptive field. It is a mathematical
approach that involves the use of two sets of data.

The inputs and the kernel, which is a convolution filter,
are the two sets of information that make up the framework
of CNN. Convolutional operations are applied to the input
data by slide the kernel over the complete input, resulting in
a function map. Different filters were used to conduct several
convolutions on the data to generate distinct feature maps.
After extracting distinct maps from the data, these maps
are finally combined to create output from the convolutional
layer.

3) ACTIVATION LAYER

After convolutional layer processes, activation functions were
used to add nonlinearity to the model. There are several
activation mechanisms, such as linear functions, sigmoid
functions, and tanh functions. However, we can use the Rec-
tified Linear Unit (RELU) since it allows us to train the
model faster and ensures close weight global optimization.
Equation 8 shows the RELU function [40].

F(xi) = max(0, x i) (8)

4) POOLING LAYERS

Pooling layers reduce data dimensionality by merging the
outputs of neuron clusters in one layer into a single neuron
in the next layer. It appears next to the convolutional layer.
It reduces over-fitting and training time by reducing dimen-
sions. Max pool function is commonly used in CNN'’s to pick
the highest value in the pooling window.

5) FULLY CONNECTED LAYER

This layer connects a neuron from one layer to a neuron from
every other layer. CNN extracts pooling layers and low-level
convolutional characteristics such as points, and the FC layer
then does classification based on the retrieved features. The
Softmax function is employed as the activation function in
this last layer, and it assigns a probability to each class ranging
from O to 1.

a: WEIGHTS

Each CNN/ANN neuron generates an output value by using
activation functions to input from the receptive region of the
preceding layer. A vector of weights determines the attribute
that is added to the input values. W represents the weight, and
X represents the function matrix in the Equation 9 [33], [38],
[40].

k
p=>Y Wx;i=w'x 9)
=0
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FIGURE 4. LSTM architecture.

D. LSTM ALGORITHM

The LSTM technique is a Recurrent Neural Network (RNN)
subclass that was built to overcome the RNN’s short-term
memory issue. This algorithm is capable of propagating and
recalling specific details from the beginning to the end. This
method will employ the LSTM’s basic form, as depicted
in Figure 4 [39], [40]. An LSTM has the same setup as
an RNN, but its module has distinct internal components,
as shown in Figure 4. This method relies heavily on the cell
state, which provides information and the chain. Several units
known as gates modify or drop cell state detail. The LSTM is
made up of three gates (forgotten, input, and output).

The forgot gate is composed of a sigmoid layer that gener-
ates an output set by combining the initial hidden state (ht-1)
and the current input (Xz) (0 to 1). The decision of keeping
and discarding the data is made in this layer. 0 indicates that
the previous value should be forgotten, while one suggests
that the previous detail should be retained. Equation 5 shows
the output gate from this gate [40].

fi =0 (Wr[h—11+bf (10)

The forgot gate then uses fan h and sigmoid features to
determine what details should be applied to the cell state.
Both functions accept (ht-1) and (X?) as inputs. The sigmoid
function’s performance indicated whether or not the present
information is significant, and the Zanh function reacted
quickly to the network by squashing values ranging from
+1 to —1. As seen in equation 11, results were then multi-
plied [21].

ir =0 (Wilhi—1, %]+ b;

C = tanh (We - [h—1, %] + bc (11)

Cell state information is changed after receiving output
from the input and forget gates. This is the product of a
pointwise multiplication of the contribution of the forgotten
state and the present state. If F;—¢, the multiplication outcome
C; would be 0, indicating that the prior amount has been fully
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dropped, while if F; = 1, it will be kept. The cell’s state is
then updated via pointwise addition [22].

Ci=fi xC_1+i; x Ct (12)

Finally, the output gate finds the final output. This perfor-
mance is the next hidden state (4,). The sigmoid function
takes (h;—1) and (X;) as inputs in this gate, and the current
state C; is passed via fan h. Finally, all outputs are mul-
tiplied to determine which information is borne by hidden
layers [38]-[40].

St =0 (Wo - [hi—1, x¢] + bo)
]’lt = S; X tanh(Ct) (13)

That is why CNN-LSTM is being used. Figure 5 shows
CNN layers preceding LSTM layers, which are highly effec-
tive and resilient for detecting energy theft by classification
in smart grids.

1) BWO
BWO is an optimization algorithm introduced in [45] that
focuses on the black spider’s mating behavior. It has a good
output in the discovery and exploitation phases and has a
quick convergence pace, and also it avoids the local optima
problem.

The steps of BWO are given below:

a: INITIAL POPULATION

BWO chromosomes include widow, similar to the chromo-
somes of Particle Swarm Optimization (PSO). Each black
widow spider represents a value of the problem variable. The
steps of BWO are shown in Figure 6. The formula shown in
equation 11 can be used to calculate widow fitness [38]:

Fitness = f (widow) (14)

b: PROCREATE

To replicate an array named alpha, the widow array should be
generated with random numbers. The offspring is generated
with «, where x/ and x2 are parents and y/ and y2 are
descendants in the following equations [38], [44].

yi=axx1+ (1 —a)xx
v =0a xXx+ (1l —a) xx (15)

This technique will be performed Nvariable twice,
although random numbers must not be repeated. Next,
the children and mothers will be sorted into an array accord-
ing to their health value.

c: CANNIBALISM

Cannibalism is classified into three groups. Sexual Cannibal-
ism occurs when a female black widow spider eats her spouse,
and sibling cannibalism occurs when a powerful black widow
spider eats their weak siblings. Child cannibalism occurs
when a child spider eats her mother. In this algorithm, we will
set a cannibalism value that will be used to evaluate survivor
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FIGURE 5. Steps of BWO.

spiders. We also use fitness values to determine whether a
spider is strong or weak.

d: MUTATION

Mute pop is chosen randomly in this step. The mutation rate
can be used to calculate mute pop.

e: CONVERGENCE

Like many other algorithms, this algorithm will take into
account three-stop conditions: a) A predetermined no of iter-
ations, b) several changes in the fitness value, and c¢) meeting
the defined limit of accuracy.

f: PARAMETER SETTINGS

Specific parameters help in producing better performance.
These parameters include the rate of procreation, the rate of
Cannibalism, and the rate of mutation.

E. BMO

BMO is a novel algorithm inspired by natural blue monkey
swarms [45]. This technique determines the number of males
in a group. There is only one male present in the group of blue
monkeys other than the season of breeding. The monkeys are
divided into groups, searching for good places for living and
food over long distances. The younger male monkeys should
leave the female group as soon as possible to become more
successful. They will enter into a challenge with the dominant
male monkey of another family. If the young monkey is
successfully defeating the dominant male monkey, he will
become the family leader. These challenges select a good
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leader who can live with females and young monkeys and
provide better food and accommodation. There are generally
many children, women, and only one male in the group of
blue monkeys.

1) UPDATING POSITIONS

The updating of positions in the group for every monkey
depends on the best monkey’s position. This can be done with
the help of equations 14 and 15 [46].

Rate ;1 = (0.7 x Rate ;) + (Wieader — Wi)
x rand X (Xpest — X;)
Xi+1 = X; + Rate ;41 x rand (16)

In the above equations, rate represents the power of the
monkey, Wieqqger is the leader’s weight, and W; is the mon-
key’s weight where all weights of the monkeys are a random
number from 4-6. X is monkey position, Xp.s 1S monkey’s
leader position, and rand is a random number (0, 1).

For updating children, equation 16 can be utilized [47].

Rateitn

= (0.7 X Ratedl("))

»h .
+ (W chieader) _ WCh(i)) « rand XXCh(bem—XL (’)>

(7
X Chitn

— X0 1 RateMi+h x rand (18)

Rate,y, represent children weight, Wep(ieader) is the weight of
younger leader in children, W) is the random weight of the
children from (4, 6). X, represents the kid position, Weppesr)
represents the leader’s position in children, and rand repre-
sents a random integer (0, 1). The position will be updated in
each iteration of the algorithm. In our work, we will use this
algorithm for tuning CNN-LSTM.

F. CLASSIFICATION WITH ENSEMBLER

The CNN-LSTM is tuned with the BWO and BMO to per-
form ETD classification. BWO and BMO calculate the best
values for CNN LSTM parameters, as shown in Figure 7.
The optimization techniques determine the best suitable value
for the classifier’s parameters, based on which classifier per-
forms better.

V. EXPERIMENTAL RESULTS

The results of the proposed model implementation, as mea-
sured by performance metrics, are presented in this section.
The following system requirements were used to implement
our proposed model: Core (i7), RAM (16GB), Processor
(4.8 GHz), as well as Anaconda (Spyder) as an IDE and
Python as a programming language. The explanation of the
simulation’s outcomes is given below:

A. PERFORMANCE EVALUATION
The efficiency of our suggested model was assessed using
evaluation and error metrics. F-score, accuracy, recall, and
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FIGURE 7. Accuracy VS iteration of CNN-LSTM-BMO.
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FIGURE 8. Accuracy VS iteration of CNN-LSTM-BWO.

precision are among the evaluation criteria, whereas RMSE,
MSE, and MAPE are performance error metrics. Our sug-
gested methods beat benchmark methods, including the most
significant value and lowest error rate in MAPE, MSE, and
RMSE performance measures. Figure 8 illustrates the accu-
racy of CNN-LSTM-BMO, which is 91% on training data and
90.6% on testing data with a 0.4% variance. Figure 9 shows
the accuracy of CNN-LSTM-BWO is 93% on training data
and 91.3% on testing data with a 1.7% variation.

Figure 10 illustrates the loss of CNN-LSTM-BMO, which
is 9% on training data and 10.4% on testing data with a 1.4%
variance, and Figure 11 represents the loss of CNN-LSTM-
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FIGURE 10. Loss VS iteration of CNN-LSTM-BWO.

Coorelation Tests
Testand Techniques

Parametric Hypothesis Tests Non- Parametric Hypothesis Test

Paired

SVM F-statistic Fstat | 1420 |201.65 19.88 050 050 | 050 30241 | 2896.00 | 56482000 [186.55
SVM P-Value p-value| 0.00 | 0.00 000 0.00 000 | 000 000 0.00 0.00 0.00
CNN-LSTM-BMO Fstatistic| F-stat | 14.60 | 099 16.00 086 087 | o079 107.54 [18221.00( 39227.00 | 025

CNN-LSTM-BMO P-Value |p-value| 032 | 032 031 0.00 000 | 000 004 096 079 0.62

Rushoost F-statistic | F-stat | 12.30 | 15131 1421 025 025 | o025 7783 [23522.50| 58900000 |142.66

RusboostP-Value  |P-value| 000 | 0.00 000 0.00 000 | 000 000 0.00 0.00 0.00

CNN-LSTM-BWO Fstatistic| F-stat | 2022 | 408.70 2032 087 090 | 080 10944 [19542.00( 4123200 | 025

CNN-LSTM-BWO P-Value |P-Value| 0.00 | 0.00 000 0.00 000 | 000 005 0.00 081 062

LG Fstatistic Fstat | 1460 |213.25 16.00 017 017 | o017 3464 [26532.00 559860.00 |196.43

LG P-Value P-value| 0.00 | 0.00 000 0.00 000 | 000 000 0.00 0.00 0.00

FIGURE 11. Performance metrics evaluation of proposed model vs.
benchmark algorithm.

BWO is 7% on training data and 9.7% on testing data with a
1.4% variation.

The formulas for performance error metrics and perfor-
mance evaluation metrics are given below [48]:

. Pos_True
Precision =
(Pos_False + Pos_True)
Fl— 2 % Precision * Recall
" Precision + Recall
Pos_True
Recall =
Pos_True + Neg_False
Pos_True+Neg_True
Accuracy =

Pos_True+Neg_True+ Pos_False+Neg_False
(19)
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FIGURE 13. Accuracy of proposed techniques VS benchmark algorithm.

TABLE 5. Tabular view of performance evaluation metrics values.

Evaluation Metrics (%) Performance Error Metrics (%)

F1-Score Accuracy Precision Recall MAPE RMSE MSE

CNN-LSTM-BWO 92 93 9232 94.02 7 10 28.55

CNN-LSTM-BMO 87 90 89 92.87 10 14.23 31.879
RusBoost 86.2 85.1 87.43 88 15 23 35
SVM 71 68 65 72 30.23 32 38
LinReg 61 63 67 65 34.73 37 40

N

1
MSE = — ;(Actual—Predicted)z
1 N

MAPE = — Z
i=1

— \/ 3 Predictle\‘,]d—Actual )2

Actual-Predicted
Actual

* 100

(20)

Figures 12 and 13 illustrate the values of the evalua-
tion and performance error matrices, demonstrating that the
error values of our suggested approaches are minimal when
compared to the other techniques. Figure 12 clearly shows
that the CNN-LSTM-BWO and CNN-LSTM-BMO have
the maximum accuracy of 93 and 90 percent, respectively.
Furthermore, the CNN-LSTM-BWO and CNN-LSTM-BMO
had the lowest MAPE error of 7% and 10%, respec-
tively. These values demonstrate the superiority of our
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FIGURE 14. Computational complexity of proposed techniques
VS benchmark algorithm.

proposed approaches. Table 5 shows the statistical analy-
sis of the proposed approaches and benchmark techniques.
Table 6 displays the performance values in tabular format.
The CNN-LSTM-BWO and CNN-LSTM-BMO have the
lowest MAPE error and highest accuracy. Figure 14 depicts
the accuracy of our techniques.

Figure 14 shows the computational cost of the proposed
model and the state-of-the-art methods. The reason behind the
low complexity and better classification are that our proposed
method is better tuned with BWO and BMO algorithms,
which results in better classification. We can see that the com-
putational complexity of our proposed model is less than the
other methods. As the number of training samples increases,
our proposed model complexity is increasing gradually but
less than other methods.

VI. CONCLUSION AND FUTUREWORK

In this work, we have applied novel optimization tech-
niques BMO and BWO to the deep learning model CNN
embedded LSTM (CNN-LSTM) for electricity theft detec-
tion. We have mainly focused on the extraction of elec-
tricity usage patterns in the dataset. For better accuracy
in detecting electricity thieves, we have proposed a model
consisting of data preprocessing, feature engineering/pattern
extraction, optimization of classification technique, train-
ing/testing, classification/detection, performance evaluation,
and statistical analysis of classifiers. In a pre-processing
step, we have applied interpolation and normalization to the
dataset. Furthermore, we have also used SMOTE method for
downsampling the data, i.e., equal the number of electricity
thieves’ data and normal data. Afterward, we have applied
ZFNet for feature extraction/pattern extraction. After clean-
ing the data and extracting the features, the data is sent to
the classifier for training purposes. The hyper-parameters
of the proposed classifier CNN-LSTM are tuned by two
optimization techniques, i.e., BMO and BWO. The tuned
classifier is then trained and tested on the cleaned data. Our
proposed model CNN-LSTM-BWO and CNN-LSTM-BMO
accuracy and recall are 93%, 90%. and 94.02% and 92.87%
Furthermore, the performance error MAPE, RMSE and MSE
of CNN-LSTM-BWO and CNN-LSTM-BMO is 7%, 10%,
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28.55% and 10%, 14.23%, 31.87%. Our proposed model
accuracy is 5 to 8% better than state-of-the-art algorithms.
Furthermore, the error rate is also 4% less than the other
algorithms.

We have also performed statistical analysis to verify the
superiority of our proposed techniques and to clarify the per-
formance of the proposed classifier and state-of-the-art. The
performance evaluation and statistical analysis results show
that our proposed model has high accuracy and precision and
the lowest error rate. The significant findings of our model
are to classify the theft user and normal user accurately and
within less time. Our model is more scaleable to a large
amount of data. As its computational complexity is less than
the state-of-the-art algorithms.

In the future, we will apply more novel optimization meth-
ods, hybrid ML, and deep learning techniques to handle a
huge amount of data for classification/detection.
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