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ABSTRACT The widespread use of electronic health records (EHR) systems in health care provides a large
amount of real-world data, leading to new areas for clinical research. Natural language processing (NLP)
techniques have been used as an artificial intelligence strategy to extract information from clinical narratives
in electronic health records since they include a great amount of valuable clinical information. However,
in a free-form text such as electronic health records, many clinical data are still hidden in a clinical
narrative format. Therefore, the performance of biomedical NLP techniques is required to unlock the full
potential of EHR data to convert a clinical narrative text automatically into structured clinical data. In this
way, biomedical NLP applications can be used to direct clinical decisions, identify medical problems, and
effectively postpone or avoid the occurrence of a disease. This review discusses the current literature on the
secondary use of electronic health record data for clinical research on chronic diseases and addresses the
potential, challenges, and applications of biomedical NLP techniques. We review some of the biomedical
NLP methods and systems used over EHRs and give an overview of machine learning and deep learning
methodologies used to process EHRs and improve the understanding of the patient’s clinical records and
the prediction of chronic diseases risk, providing a great chance to extract previously unknown clinical
information. Moreover, this review summarizes the utilizing of Deep Learning and Machine Learning
techniques in biomedical NLP tasks based on chronic diseases related EHR data. Finally, this review presents
the future trends and challenges in the biomedical NLP.

INDEX TERMS Artificial intelligence (AI), clinical information, deep learning, electronic health records
(EHR), machine learning, natural language processing (NLP).

I. INTRODUCTION
There is a significant impact of Natural Language Process-
ing (NLP) and Machine Learning techniques on processing
digital data. The reliance on digital data is increasing, so it is
essential to use the value of data in different research fields.
Extracting information from the clinical text can be applied
to various applications such as automatic terminology man-
agement, de-identification of the clinical text, data mining,
identification of research subject, prediction of the onset and
progress of different chronic diseases, analysis of the dis-
ease medication and its side effect, etc. Although NLP-based
machine learning techniques have a better performance in
the field of biomedicine and healthcare, more experience
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is required in the analysis of the narrative clinical text [1].
Therefore, it is necessary to intensively review the problems
and challenges of extracting information from the clinical text
to develop new opportunities in this field of research [2].

Biomedical NLP is a field of research that includes natu-
ral language processing, bioinformatics, medical informatics,
and computer linguistics [1]. Extracting valuable information
from a free clinical text embedded in unstructured data is a
significant task of NLP that can support decision making,
reporting on administration, and research. Applying biomed-
ical NLP applications in EHRs has a considerable effect on
several domains of healthcare and biomedical research.

Healthcare-related NLP paved the way to medical lan-
guage processing. Usually, most of the biomedical data
exist in an unstructured form, which is the result of dic-
tated transcriptions, direct entry, or using speech recognition
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applications. Consequently, data pre-processing is required
for information extraction because the summarization and
decision-support tasks cannot be performed using the input
data in its narrative form. Preprocessing includes document
structure analysis, tokenization, part-of-speech tagging, spell
checking, sentence splitting, Word Sense Disambiguation
(WSD), and some form of parsing. Situation dependent fea-
tures like event subject identification, temporality, and nega-
tion play a crucial role in the inappropriate interpretation of
the extracted information [3].

There are various information extraction techniques,
such as rule-based techniques, pattern matching techniques,
and machine learning and statistical techniques. Then,
the extracted information can be used to analyze the clinical
text as well as improve the EHR and the decision support sys-
tems and to be related to concepts in the standard terminolo-
gies. The biomedical natural languages processing involves
the methods and studies of how NLP can be applied to the
biomedical and electronic medical record texts and literature.

Recently, deep learning techniques have achieved better
performance by applying their techniques to different gen-
eral NLP tasks such as language modeling, (Part of Speech)
POS tagging, named entity recognition, paraphrase detec-
tion, and sentiment analysis compared to traditional machine
learning (ML) techniques. Because of the frequent use of
acronyms and non-standard clinical terminology by health-
care professionals, unorganized structure of the document,
and the need for complete de-identification and anonymiza-
tion to protect the privacy of patient data, clinical reports typ-
ically face specific challenges compared to general-domain
text. Eventually, addressing and solving these challenges
could promote further research and improvement for various
biomedical applications such as clinical decision support,
identification of patient cohorts, patient engagement support,
public health management, pharmacovigilance, medications,
and summarization of clinical texts.

A. MOTIVATION
Historically, extracting clinical information from narrative
clinical texts is done manually by clinical experts, which
caused several issues such as lack of scalability and high cost.
These issues have particularly affected chronic diseases since
clinical notes are more than structured data; for example,
the number of clinical notes compared to structured data for
chronic diseases such as rheumatoid arthritis, Parkinson’s
disease, and Alzheimer’s disease is graphically quantified by
Wei et al. [4].

NLP approaches have a significant roles in addressing and
solving several challenges of various clinical tasks such as
automatic extraction of relevant clinical information that may
postpone or avoid the onset of disease for instance. The main
objective of this study is to provide a detailed overview of
NLP in the clinical domain, including methodologies, system
architecture, applications, and the challenges that clinical
NLP methodologies meet in understanding clinical narra-
tives, as outlined below:

• We have identified the NLP in general and biomedical
NLP with its methods and technologies.

• Thenwe have presented the application areas ofmachine
learning/deep learning in the biomedical NLP.

• We have provided an overview of the most popular
biomedical NLP systems and their general architecture.

• We have identified the usage of NLP applications in
clinical notes to identify chronic diseases and understand
the challenges currently facing them.

• Next, we have discussed a literature review of the appli-
cation of various NLP techniques to narrative clinical
notes on chronic diseases, including the analysis of diffi-
culties faced by NLP methodologies in clinical narrative
comprehension.

• Finally, we conclude this review paper by describing
existing challenges currently faced and open issues
associated with the processing of the biomedical and
clinical text and providing the NLP domain with
sufficient resources and opportunities to extract new
methodologies.

B. CRITERIA FOR SEARCH AND SELECTION
We searched for previous studies released from 2009 to
2021 usingGoogle Scholar, PubMed, and theWeb of Science.
All searches used the keywords ‘‘electronic health records’’
or ‘‘electronic medical records’’ or ‘‘EHR’’ or ‘‘EMR,’’ in
combination with either ‘‘machine learning’’ or the name of a
particular technique of machine learning in conjunction with
’chronic diseases’. Figure 1a shows the number of publica-
tions related to applying machine learning to EHR per year.
Figure 1b shows the number of publications related to the use
of EHR in chronic diseases per year.

In the rest of this review paper, we propose an overview
of the most significant and noticeable articles and researches
that focus on EHR using the machine learning and deep
learning techniques.

We start with a general review of NLP in general, NLP
in biomedicine and healthcare with its methods, technologies
and potential tasks/usecases in the biomedical and healthcare
domains in Section II and Section III, followed by appli-
cation areas of machine learning in the biomedical NLP in
Section IV. Then we provide an overview of NLP systems
and system architecture in Section V. Next, we discuss a
literature review of recent related works about applying NLP
on chronic diseases in Section VI. Then we look at current
open issues and challenges in the domain of the biomedical
NLP in Section VII. Finally, Section VIII demonstrates the
conclusion of the review paper by identifying current chal-
lenges and open issues.

II. BASICS AND BACKGROUND
A. NATURAL LANGUAGE PROCESSING OVERVIEW
NLP is a sub-field that combines computer science, Artificial
Intelligence (AI), and linguistics, where the aim is to pro-
cess and interpret human language to carry out several tasks
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FIGURE 1. The number of publications per year related to EHR.

(e.g., automatic answering questions and, translation of lan-
guages). NLP is widely considered an AI-complete problem
because of the various complexities involved in describ-
ing, understanding, and utilizing linguistic, social, global,
or visual information. NLP usually requires processing at
different levels of an input text such as tokenization, mor-
phological analysis, syntactic analysis, semantic analysis, and
discourse processing [5]. NLP is a specialized branch of AI
that focuses primarily on perception and human-generated
data-text or speech-based. The technology has several sub-
disciplines, including Natural Language Query (NLQ), Nat-
ural Language Generation (NLG), and Natural Language
Understanding (NLU) [5].

B. NATURAL LANGUAGE PROCESSING IN BIOMEDICINE
AND HEALTHCARE
Many challenges are facing natural language processing
when it is applied to general language, but some critical
issues are especially relevant to the biomedical and healthcare
domains. There is a wealth of electronic information concern-
ing the healthcare domain, including publications, e-health
records, and the Internet. Subsequently, there are many criti-
cal aspects relating to biomedical information, most of which
are in textual form, in terms of controlling and using such
information which is necessary to health research promotion,

quality improvement and cost reduction. NLP is important
because it is required to convert narrative clinical texts into
structured data that can be used in computer applications [6].

The adoption of electronic health records systems in hos-
pitals has increased significantly in the last ten years, by pro-
viding incentives of $30 billion to hospitals and physicians
practices for the adoption of EHR systems, partly because of
the 2009 Health Information Technology for Economic and
Clinical Health (HITECH) Act [3]. The basic EHR system is
used by 84% of hospitals, which has increased 9-fold since
2008, according to the most recent study from the Office of
the National Coordinator for Health Information Technology
(ONC) [7]. Furthermore, the use and adoption of basic and
certified EHRs by office-based physicians has increased from
42% to 87%. Data of each encountered patient are stored by
EHR systems such as demographic information, diagnosis,
laboratory examinations, drugs, radiological images, clinical
notes, etc.

Generally, the use of Electronic Health Records (EHR)
Systems in both the hospital and outpatient care settings has
increased significantly [7]. The use of EHR in hospitals and
clinics has the potential to enhance patient care by reducing
errors, and improving efficiency, the quality of treatment,
while providing researchers with a rich data source [8]. The
functionality of EHR systems can vary and are usually classi-
fied into basic EHRs without clinical notes, basic EHR with
clinical notes, and comprehensive systems [7]. Even basic
EHR systems can provide a wide range of patient information
such as medical history, diseases, and medication use while
lacking more advanced features. As the EHR was mainly
developed for administrative activities at the hospital, there
are many classification schemes and controlled vocabulary
for recording patient medical data and events. Table 1 shows
some codes from International Statistical Classification of
Diseases and Related Health Problems (ICD) containing
diagnosis codes, codes from Current Procedural Terminol-
ogy (CPT) containing procedure codes, codes from Logical
Observation Identifiers Names and Codes (LOINC) contain-
ing laboratory notes, and codes from RxNorm containing
drug codes.

Such codes may differ between organizations, with partial
mappings managed by tools such as the United Medical
Language System (UMLS) and the Systemized Nomencla-
ture of Medicine - Clinical Terms (SNOMED CT). With the
availability of various classification schemas, coordinating
and analyzing data through terminologies and across orga-
nizations is a field of ongoing research.

Diverse types of patient information are stored in EHR sys-
tems, including demographics, diagnostics, physical exami-
nations, sensor measurement, lab results, prescribed or man-
aged medicines, and clinical notes. One difficulty is to deal
with the complexity of EHR data with its different types of
data, including the following:

(i) Numerical Quantities like the index of body mass.
(ii) Date/Time Items like the date of birth or admission

time.
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TABLE 1. Example of classification schema for diagnoses, procedures, laboratory examinations, and drugs.

(iii) Categorical Values like ethnicity or controlled vocab-
ularies codes like ICD-10 (formerly ICD-9) diagnoses
or CPT procedures.

(iv) Free-Text Natural Language like progress reports
or discharge summaries. Those types of data can also
be ordered chronologically.

(v) Time-Series Derived like signals of vital periopera-
tive sign or multimodal patient history.

While other biomedical data such as medical images or
genomic information are present and treated in important
recent researches [9]–[11], we concentrate in this review
paper on the five types of data that exist in most modern EHR
systems. In the field of chronic diseases, new methods are
needed to support and advance evidentiary medicine, given
the increasing incidence of such conditions all over the world.
There is a powerful and successful impact of the secondary
use of EHRs in processing clinical data for biomedical and
translational applications.

Several research studies have discovered a secondary
use of EHRs in bioinformatics and healthcare applications
[12], [13], although it is designed primarily to enhance
operational healthcare performance. In particular, patient-
relevant data stored in EHR systemswere used for biomedical
tasks such as extracting medical concepts [2], [14], modeling
patient trajectories [15], diagnosing diseases [16], [17], sup-
porting clinical decisions [18], etc.

Processing EHRs using machine learning and deep learn-
ing methods contributes to a better and more deep under-
standing of clinical patient trajectories which track the patient
status from one health state to another being diagnosed with
a specific clinical condition and risk prediction of chronic
diseases, giving a unique opportunity to get unknown clini-
cal information. However, A wide range of clinical history,
remains locked in free-form texts behind clinical narratives.
As a result, the unlocking of the full potential of EHR data
depends on the development of NLP techniques to auto-
matically convert the clinical text from its narrative nature
to a structured form that can direct clinical decisions and
potentially postpone or prevent the onset of diseases [19].

EHR processing and modeling are significant chal-
lenges due to its high dimensionality, noise, heterogeneity,
sparse design, incompleteness, random errors, and system-
atic biases. In addition, a vast amount of information about
patient clinical history is usually stored in free-text clini-
cal narratives [20] since the most widely and descriptive
method for recording clinical events remains written text.
The development of NLP techniques integrated into machine
learning algorithms is essential for the automatic conversion
of clinical free-text into a structured data format. NLP has
been used for a broader variety of applications in the clinical
domain, including the detection of medical concepts from
nursing documentation [21], discharge summaries [22] and
radiology reports [23] as much potentially useful clinical
information for pharmacoepidemiological research is con-
tained in unstructured free-text documents. Routine health
data such as Scottish Morbidity Records (SMR01) frequently
use generic ’stroke’ codes. Free-text Computerised Radiol-
ogy Information System (CRIS) reports have potential to
provide this missing detail. In order to increase the number of
stroke-type-specific diagnoses by augmenting SMR01 with
data derived from CRIS reports and to assess the accuracy
of this methodology. However, applying NLP-based frame-
works to a narrative clinical text has not been widely used in
clinical activities and tasks to direct decision-support systems
or administrative processes.

C. TASKS OF NLP IN THE HEALTHCARE DOMAIN
There are several Tasks of the clinical NLP:
• Word Sense Disambiguation (WSD): is the process of
automatically assign an accurate meaning (sense) to an
ambiguous word in a specific context. The biomedical
NLP tasks require the ability to accurately understanding
ambiguous words within a specific context which is
a critical issue. According to the medical word sense
disambiguation, there is a list of all possible mean-
ings (senses) for each ambiguous word. There are many
ambiguous terms in clinical notes. There are a variety
of interpretations for the abbreviation ‘‘PCA,’’ including
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principal component analysis, patient-controlled analge-
sia, and prostate cancer. WSD is a critical issue in the
medical domain [24], [25] [26], [27] because it is an
essential step for the analysis of clinical notes [28].

• Name Entity Recognition (NER): is a subtask of IE
(Information Extraction). One of the most important
tasks in biomedical NLP is to turn unstructured text into
computer-readable structured data [29]. NER is the task
of identifying expressions that denote named entities
(such as diseases, medications, and lab tests) in clinical
notes. Many techniques can be used in NER such as
[30] dictionary-based approach, rule-based approach,
statistical approach, deep learning approach, hybrid
approach [31].

• Adverse Drug Events (ADEs) Detection: Both med-
ical research and hospital medical treatment bene-
fit from detecting adverse drug events (ADEs) and
medication-related information in clinical notes. ADEs
are known as diseases occurring from medical inter-
ventions of medicines such as prescription errors, over-
does, adverse drug reactions, and allergic reactions [32].
EHRs have a wealth of information on ADEs which
is hidden in unstructured data such as discharge sum-
maries, procedural notes, medical history, laboratory
results [33]–[35]. The process of identifying and detect-
ing the information related to ADEs from narrative clin-
ical notes is very difficult and time-consuming. So there
is a need for the NLP system for automatically process-
ing narrative EHRs and detecting drugs, ADEs, and their
interactions [36].

• Information Extraction (IE): is an important biomed-
ical NLP task that facilitates the use of EHRs for clin-
ical decision support, quality improvement, or clinical
and translation research by automatically extracting and
encoding clinical concepts from narratives notes. In the
general domain, IE is commonly recognized as a special-
ized area in empirical NLP and refers to the automatic
extraction of concepts, entities, and events, as well as
their relations and associated attributes from free text
[34], [37]

• Relation Extraction (RE): is an important subtask of
information extraction (IE) that focuses on identifying
and detecting semantic relationships between clinical
concepts in clinical notes [38], [39]. For example, in this
clinical note ‘‘an MRI revealed a C5-6 disc herniation
with cord compression’’, the lab test ‘‘MRI’’ indicates
two diseases ‘‘a C5-6 disc herniation’’ and ‘‘cord com-
pression’’. Many types of relations are mentioned by
previous researches such as disease-attribute pair extrac-
tion [40], [41], temporal relation identification [42],
adverse drug event detection [43], [44], etc. clinical
NLP domain has recently launched several shared tasks
related to relation extraction from clinical notes such
as Integrating Biology and the Bedside (i2b2) chal-
lenges [45], the Semantic Evaluation (SemEval) chal-
lenges [46] and the most recent 2018 National NLP

Clinical Challenge (n2c2) [47]. These open shared tasks
and challenges provide many resources and methods for
medical RE tasks [40].

III. BIOMEDICAL NLP METHODS
This review paper gives an overview of the most recent
articles based on most of the main biomedical NLP meth-
ods employing dictionary-based, rule-based, and machine
learning techniques. Figure 2 shows the number of publi-
cations in the EHR domain applying deep/machine learn-
ing methods and rule-based techniques per year. Although
the use of machine-learning methods is growing compared
to rule-based methods, the performance and efficiency of
machine learning algorithms can be highlighted by using
rule-based methods as a benchmark because we are still
seeing a shift from rule-based methods to machine learning
algorithms [48].

FIGURE 2. The number of publications per year in the EHR domain
applying deep/machine learning methods and rule-based techniques.

Recently, biomedical NLP researches have shown
the significant performance of the methods based on
deep learning. The effective performance of Recurrent
Neural Network (RNN) in biomedical texts for the
NER (Name Entity Recognition) task was proposed by
Sahu and Anand [49]. They developed a model which
is a combination of a bidirectional Long Short-Term
Memory Network (BiLSTM) and Conditional Random
Field (CRF) applying character-level word embedding.
Habibi et al. [50] combined the BiLSTM-CRF model devel-
oped by Lample et al. [51] and the word embedding model
developed by Pyysalo et al. [52]. To generate important fea-
tures such as orthographic features of biomedical organisms,
Habibi et al. [50] used character-level word embedding to
show that the characteristic word embedding is successful in
biomedical NLP tasks.

A. RULE-BASED TECHNIQUES
Rule-based techniques are based on a set of specific textual
relationship rules that called patterns that encode similar
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structures in the expression of relationships. These rules are
represented over words or POS tags as regular expressions.
In such systems, the rules extend as patterns by adding
more constraints to resolve a few issues, including check-
ing negation of relations and determining the direction of
relationships. The rules are generated in two ways: manually
and automatically generated from the training dataset. The
efficiency of the rule-based system can be enhanced to a
certain extent using an extension with additional rules, but
it tend to produce much FP information. Therefore, rules-
based systems usually provide high precision but low recall
because the rules for a particular dataset cannot be created
for other data sets. However, the recall of such systems can
be improved by relaxing the constraints or by learning rules
automatically from training data [53].

Although the architecture of dictionary-based systems is
simple, they cannot be applied to manage unknown entities
or ambiguous words, resulting in low recall [54], [55]. It also
requires a considerable amount of manual labor to develop
and maintain a comprehensive and up-to-date dictionary.
Although the rule-based method is more flexible, the features
are handcrafted to fit a model into a dataset [56], [57]. Both
rules and dictionary-based methods can achieve high preci-
sion [58], but they can generate wrong predictions when the
out-of-vocabulary problem occurs if a newword, which is not
found in the training data, appears in a sentence. The issue of
out-of-vocabulary arises in the biomedical field in particular
because it is common to register a new biomedical term such
as the name of a new drug.

There are several methods based on rule-based techniques
such as:
• Dictionary Lookup [59]–[61].
• Domain ontology-based terminology recognition
[62]–[65].

• Set of manual rules [66], [67].
• Regular expressions patterns [68], [69].

B. MACHINE LEARNING TECHNIQUES
There are two main categories of learning techniques of
machine learning algorithms: supervised learning and unsu-
pervised learning. Supervised learning techniques provide a
function that maps from inputs x to outputs y:

y = f (x) (1)

There are two main types of supervised learning tech-
niques: classification and regression, and the most widely
learning algorithms are logistic regression algorithm and sup-
port vectormachine algorithm.On the other hand, the purpose
of unsupervised learning techniques is to learn about the input
x distribution features. There are two main methods of unsu-
pervised learning:- cluster analysis and principal component.
The input representation is an essential task for all machine
learning frameworks. Machine-learning techniques input is a
set of attributes known as features that are extracted for each
data point. Such features are handcrafted based on domain
knowledge in traditional machine learning where automatic

data-oriented feature extraction is an essential aspect of deep
learning techniques.

Up to the last few years, machine learning methods such
as logistic regressions, support vector machines (SVM), and
random forests were employed as key methods for analyzing
and processing rich EHR data [70]. Most modern NLP plat-
forms are built on models refined through machine learning
techniques [71], [72]. Machine learning techniques are based
on four components: a model; data; a loss function, which is a
measure of how well the model fits the data; and an algorithm
for training (improving) the model [73].

1) DEEP LEARNING TECHNIQUES
Deep learning is a subfield of machine learning meth-
ods based on multi-layered neural network architec-
tures with hierarchical data representations learning,
as shown in Figure 3. Machine learning techniques require
time-consuming and hardwork for data representation feature
extraction [74], While learning multiple levels of representa-
tions can be automatically done by deep learning techniques
with increasing order of abstractions [75].

There are several factors contributed in the development
of deep learning such as the availability of extensive unla-
beled data along with rapid computing resources based on
powerful graphics processing units (GPUs), new algorithms
and frameworks and adaptations/transformations of learned
data features/representations to similar or a new domain of
interest.

FIGURE 3. A deep neural network architecture.

Several non-linear classification problems with hierarchi-
cal inputs that naturally occur, such as language and images,
can be solved by deep learningmethods. Recently, deep learn-
ing techniques can be applied to NLP applications providing
better results than techniques based on linear models such as
support vector machines (SVMs) or logistic regression [76].

The most popular deep learning architectures are illus-
trated in this section by highlighting their key equation that
demonstrates their operation method. Data representation is
the primary task of deep learning. Using a machine learn-
ing algorithm, input features must be hand-crafted from the
dataset based on the researcher’s experience and the domain
of knowledge to identify specific patterns of prior interest.

The development method of designing, reviewing, choos-
ing and testing suitable features can be complicated and
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FIGURE 4. Multilayer perceptron architecture.

time-consuming. It can also be regarded as a ‘‘black art’’ [77]
requiring creativity, trial-and-error, and sometimes luck.
On the other hand, learning the optimal feature directly from
the given dataset is performed by deep learning techniques
without any handcrafting. Through deep learning, complex
data representation is sometimes represented as compositions
of other, simpler representations.

Recurrent deep learning architecture is a complex unsu-
pervised hierarchical representation. Many of the major deep
learning algorithms and architectures are based on the arti-
ficial neural network (ANN) architecture. ANNs consist of
multiple interconnected nodes (neurons) organized in layers,
as shown in Figure 3. Hidden units are neurons that do
not appeared in the input or output layers and store several
weights W, which are updated with the training of the model.

The optimization of ANN weights is performed by min-
imizing loss function as shown in Equation 2, such as a
negative log-likelihood.

E (θ,D) = −
D∑

(t=0)

[
logP (Y = yt |xt , θ)

]
+ λ ‖ θ ‖p (2)

The summation of the log loss over the given training
dataset D is minimized by the first term. While the minimiza-
tion of the learned model parameters θ t p-norm controlled by
a tunable parameter λ is performed by the second term, which
is known as the regularization technique used to prevent the
model overfitting and to improve its ability to be applied
to new problems. Usually, the backpropagation technique is
used for loss function optimization by minimizing the final
layer loss over the network [75].

Many open-source sources are supported by different pro-
gramming languages such as TensorFlow, Theano, Keras,
Torch, PyTorch, Caffe6, CNTK, and Deeplearning4j to deal
with deep learning algorithms. In the following subsections,
we give an overview of the most common deep learning tech-
niques which can be applied to biomedical NLP applications,
such as supervised and unsupervised techniques.
A) Multilayer perceptron (MLP)

A multi-layer perceptron is a multiple-hidden layered
type of ANN that completely connects each neuron in
the layer i to each neuron in the layer i + 1. These
networks are usually limited to specific hidden layers,

and unlike recurrent or undirected architectures, the data
flows only in one direction. From the definition of the
single-layer ANN, as shown in Equation 3, the outputs
weighted sum from the previous layer is calculated by
each hidden unit, followed by a non-linear activation σ
of the calculated sum. Where d is the number of the
previous layer units, xj is the output of jth node of the
prior layer, and ωij and bij are the weight and bias terms
of each xj. The most common nonlinear activation func-
tions are usually sigmoid or tanh, but recently rectified
linear units (ReLU) are used by modern networks [75].

hi = σ

 d∑
(j=1)

xjωij + bij

 (3)

The network can learn the relationship between the
input X and the output Y after optimizing the weights
of the hidden layer during training. With the addition
of more hidden layers, the input data is supposed to
be more abstractly represented due to the non-linear
activations of each hidden layer. Although MLP is one
of the simplest architecture, other architectures combine
fully connected neurons in their final layers.

B) Convolutional neural networks (CNN)
Recently, the most popular method is Convolutional
Neural Networks (CNN) especially when applied in the
image processing domain. CNNs require local raw data
connectivity. A one-dimensional time series is also a
set of local signal segments. Equation 4 demonstrates
one-dimensional convolution where the input is x and
the weighting function or convolution filter is w.

C1d =

∞∑
(a=−∞)

x (a) ω (t − a) (4)

In Equation 5, where X is a 2-D grid (e.g., image) and
K is a kernel, is demonstrated in a two-dimensional
convolution in which a kernel or filter can pass a matrix
of weights through the entire input to the feature maps.

C2d =
∑
m

∑
n

X (m, n)K (i− m, j− n) (5)

The generated number of parameters is small since
the filters are usually smaller than the input; there-
fore, CNNs have limited interactions. CNNs facilitates
parameter sharing since all filters are applied across the
entire input. The convolution layer in CNN contains
several convolutional filters which receive the same
input from the previous layer to extract different lower-
level features. For features aggregation, these convolu-
tion layers are usually pooled or subsampled. Figure 5
provides an example of two convolutionary layers of the
CNN architecture, followed by a pooling layer.

C) Recurrent neural networks (RNN)
In the case of a simple-spatial structure of input data
(like image pixels), CNNs are the appropriate approach,
but in the case of sequential organized data (such as
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FIGURE 5. Example of data classification using CNN.

FIGURE 6. Recurrent neural networks architecture.

FIGURE 7. Recurrent neural networks architecture.

time-series data or the natural language), recurrent neu-
ral networks (RNN) is the best method. The gener-
ated features are shallow when the CNN is fed with
single-dimensional sequences, which means that the
feature representations include only very close localized
relationships between some neighbors [75]. RNNs are
designed to manage this time dependencies for a long
time. The RNNs are used to update the hidden ht state
sequentially, based not only on the activation of the
current input xt at time t, but also on the previously
hidden state ht−1, which in turn was updated from xt−1,
ht−2, and so on as shown in Figure 7. Thus, after pro-
cessing awhole sequence, the final hidden state includes
information from all its previous sequences.
Long-term memory (LTM) and Gated Recurrent
Unit (GRU) models, both known as Gated RNNs,
belong to the popular RNN architectures. While stan-
dard RNNs consist of interconnected hidden cells, a par-
ticular cell containing an internal recurrence circuit and
a gate system that controls the information flow is sub-
stituted for each unit in the gated RNN. The gated RNNs
have demonstrated better performance when modeling
LSTM [75].

D) Autoencoders (AE)
The autoencoder (AE) is one of the deep learning mod-
els that demonstrate the concept of unsupervised repre-
sentation learning. First they were considered as a tool
for pre-training supervised deep learning models, but
they are still useful for completely unsupervised tasks
like phenotype discovery. Autoencoders are used to
convert input data into a lower-dimensional space called

z. After that, the encoded representation is decoded
by reconstructing an estimated representation of the
input x, called x̀.
The process of encoding and reconstruction for an
autoencoder with one hidden layer are illustrated in
equations 6 and 7, respectively. Theweights of encoding
and decoding processes are W and Ẁ and the encoded
representation z is considered more accurate when min-
imizing the reconstruction error ‖ x − x̀ ‖.

z = σ (Wx + b) (6)

x̂ = σ
(
Ẁ z+ b̀

)
(7)

A single input is fed through the network as the encoded
representation of the input after the AE has been trained
with the innermost hidden layer activations. The main
task of AEs is to convert and encode the input data to
only represent the most significant derived dimensions.
Therefore, AEs are similar to traditional dimensionality
reduction techniques such as principal component anal-
ysis (PCA) and singular value decomposition (SVD),
but they provide a major impact for solving complex
problems due to nonlinear transformations through the
activation functions of each hidden layer.
Many models of AEs have been developed, such as
variation autoencoders (VAE), de-noising autoencoders
(DAE) [78], and sparse autoencoders (SAE) [75].

E) Restricted Boltzmann machine (RBM)
The restricted Boltzmann machine (RBM) is another
deep learning model that demonstrates the concept of
unsupervised representation learning. RBMs are sim-
ilar to autoencoders in that they estimate the proba-
bility distribution of the input data, but they do so in
a stochastic manner. Therefore RBMs are considered
to be generative models as they attempt to model the
underlying process by which the data was generated.
The energy-based model with visible binary units Ev and
hidden units Eh, with energy functions defined in the
Equation 8 is called the canonical RBM [75].

E (v, h) = −bT − cT h−WvT h (8)

However an RBM has no connected visible or hid-
den units, all the units in a standard Boltzmann
machine (BM) are fully connected. It generates the
learned representation of the input data in a form of h.
RBMs can be stacked hierarchically for the develop-
ment of a deep belief network (DBN) for supervised
learning tasks.

IV. APPLICATION OF MACHINE LEARNING AND DEEP
LEARNING TECHNIQUES IN THE BIOMEDICAL
NLP DOMAIN
Early EHR analyses were based on simpler and more conven-
tional statistical techniques [79]. Recently, machine learning
techniques, such as: Logistic Regression [80], Support Vector
Machines (SVM) [81], Cox Proportional Hazard Model [82]
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TABLE 2. A recent review of the applications of EHR research using machine learning techniques.

and Random Forest [83] have been applied to EHR data for
mining reliable predictive patterns.

There are critical issues based on the statistical model when
being applied to EHR data analyses [84]–[86]. Such issues
can be overcome by applying modeling techniques that can
be used to analyze and extract complex nonlinear variables
interactions [75], [87] which come from each entire patient’s
medical history such as mixed and multimodal data obtained
in random times [86].

The support vector machine algorithm is the most
popular machine learning method that has been applied
to medical reports for the prediction of heart disease
[88], [89], the identification of diabetes EHR progress notes
and the classification of breast radiology reports according to
BI-RADS [90].

The second most popular machine learning method is
Naïve Bayes which has been applied to medical records for
the prediction of heart disease [91], [92], the classification of
smoking status [93], for the identification of multiple sclero-
sis [94], and the EHR records classification for obesity [95]
and cancer [20], [96], [97].

Conditional random fields (CRFs) are the third most com-
mon machine learning method, which has been applied to
medical records for the prediction of heart diseases [88], [98],
for the identification of diabetes EHR progress notes [99], for
breast radiology reports classification [90], and identifying
tumor characteristics in radiology reports [100].

Finally, random forests have been used for heart disease
prediction, cancer classification [101], and identification of
hypertension [102].

Table 2 outlines the most recent biomedical models using
machine learning techniques with their major application.

The drawback of machine learning is in handling high-
scale data, their adoption of several statistical and structural
assumptions, and their use of hand-crafted features/markers
make the use of such statistical models in analyzing the EHR
data is impractical, despite its simplicity and interpretabil-
ity required for biomedical applications [84]–[86]. Recent

breakthroughs in these areas have led to vastly improved
NLP models that are powered by deep learning, a subfield
of machine learning [103].

Through the deep hierarchical construction of features
and the efficient capture of long-range data dependencies,
deep learning techniques have recently achieved significant
progress in many fields [75]. There is an increased number of
researches which apply deep learning techniques to EHR data
for biomedical tasks [62], [104], due to the growing develop-
ment of deep learning methods and the increasing number
of patient data providing enhanced results and requiring less
time-consumption preprocessing and feature extraction com-
pared with traditional methods.

Modern biomedical NLP systems can identify and model
more complex relationships and concepts [105] by using the
main deep learning architectures such as feed-forward neural
networks (FFNN), convolutional neural networks (CNN),
and recurrent neural networks (RNN) that can be applied
for the analysis and modeling of HER. Vector-embedding
approaches are used for data preprocessing by encoding
words before feeding them into a model. These approaches
understand that words may have different meanings depend-
ing on context (for example, the meanings of ‘‘patient,’’
‘‘shot,’’ and ‘‘virus’’ differ depending on context) and treat
them as points in a conceptual space rather than separated
entities. The emergence of transfer learning has improved the
performance of the models, which involves taking a model
trained to perform one task and using it as the starting model
for training on a similar task [106].

Convolution neural networks (CNNs) have an effective
performance in a wide range of NLP biomedical tasks, for
example:
1) CNNs have an effective success in the development of a

model for classifying biomedical articles to identify can-
cer hallmarks associated with an abstract article [107].

2) CNNs are used to learn the representation of
time expressions for clinical temporal relationship
extraction [108].
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TABLE 3. A recent review of the applications of EHR research using deep learning techniques.

3) CNNs can be applied to model the appropriate article for
the biomedical article retrieval task [109].

4) CNNs can be applied to biomedical reports to identify
protein-protein interaction relations [110].

5) CNNs can be used with an attention mechanism to
extract drug-drug interactions [111].

6) CNNs can be used for classifying free-text radiology
reports using the pulmonary embolism results [112].

7) CNNs can effectively support the classification of
patient portal messages [113].

8) CNNs can be applied to biomedical text for named
entities recognition [114].

In the case of automated coding in radiology reports by
using an International Classification of Disease (ICD-10)
system, CNNmodels have contributed to achieving improved
efficiency compared with machine learning classifiers [115].
There is also a semi-supervised CNN architecture that can
be used in social media to automatically detect adverse
drug events (ADE), inspired by the previously mentioned
accomplishments of CNNs for different clinical NLP applica-
tions, unlike conventional systems [116] that usually employ
lexicon-and machine learning-based techniques that depend
on expert annotations for ADE detection by producing large
quantities of labeled data to train supervisedmachine learning
algorithms.

Many clinical events can be detected from free text
EHR notes by applying Recurrent Neural Network (RNN)
architectures such as disorders, medications, tests, adverse
drug effects [117], and patient data de-identification from
EHRs [118]. Bidirectional RNNs/LSTMs have been suc-
cessfully applied to several biomedical NLP tasks such as
building models for the prediction of the missing punctuation
in medical reports [119], the identification of biomedical
events [120], the modeling of relational and contextual sim-
ilarities between the named entities in biomedical articles
to understand important information to provide appropri-
ate treatment suggestions [121], the extraction of clinical
concepts from EHR reports [122], and the recognition of
named entities in clinical texts [123]. Many recent researches
develop models using the embedded graph information for
adverse drug reaction detection in social media data [124]
by applying bidirectional LSTM transducer. RNNs are used
to develop recognition models for disease name learning

with term- and character-level embedding features [49] when
they are used in conjunction with CNNs. We provide,
in this section, an overview of the recent state of the art
of biomedical applications as a consequence of the rapid
and recent development of deep learning techniques being
applied to electronic health records (EHR). Table 3 outlines
the most recent biomedical models using deep learning tech-
niques with their major application, subtask definitions, and
type of input data according to current research’s logical
classification.

V. BIOMEDICAL NLP SYSTEMS
We give an overview of NLP systems and their architecture
in this section.

General architecture of the Biomedical NLP System
Friedman and Elhadad’s discussion [6] illustrates NLP and

its different aspects and parts, as shown in Figure 8a.
As shown in Figure 8a, the left part consists of the trained

corpora, domain model, domain knowledge, and linguistic
knowledge; the right part includes techniques, tools, systems,
and applications. Thus aspects of NLP can be divided into two
parts.

Figure 8b provides an overview of the general architec-
ture of the NLP system, in which there are two primary
components of the NLP system: background knowledge cor-
responding to the left part of the figure, and a framework
that incorporates NLP tools and modules corresponding to
the right part of the figure. The two primary components
of biomedical NLP systems and their tasks are illustrated
below, which are how NLP tools incorporated into a pipeline
designed on top of a particular framework. Regarding the
framework, which is a software platform for controlling and
managing pipeline components like loading, unloading, and
handling, the framework’s components may be integrated,
combined, or used in the system as plug-ins. There are two
levels of the framework of biomedical NLP systems:- low-
level and high-level processors. Basic NLP tasks are carried
out by low-level processors such as part-of-speech tagging,
segment tagging, sentence boundary detection, and chunking
of noun phrases. Semantic level processing, such as named
entities recognition (e.g., disease/disorder, sign/symptoms,
medicines), relationship identification, and timeline extrac-
tion, is performed by high-level processors.
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FIGURE 8. Biomedical NLP system.

A. BIOMEDICAL NLP BACKGROUND KNOWLEDGE
The Unified Medical Language System (UMLS) Biomedi-
cal and linguistic knowledge are essential components in the
development of biomedical NLP systems. The UnifiedMed-
ical Language System (UMLS) was developed in 1986 and
applied to the biomedical NLP systems. There are three key
components of the UMLS: the Metathesarus, the Semantic
Network, and the SPECIALIST lexicon. The UMLS can be
known as the ontology of biomedical concepts and their
relationships for practical applications.

Furthermore, background knowledge includes domain
models and trained corpora that are used to be applied to par-
ticular fields like radiology/pathology reports and discharge
summaries. Annotated corpora will be labeled by human
annotators manually and will be used to train machine/deep
linguistic classifiers and to evaluate rule-based systems.

The Metathesarus of UMLS currently comprises over
one million biomedical terms and five million concept names
have been derived from more than several biomedical con-
trolled vocabularies, such as RxNorm, MeSH, ICD-10, and
SNOMED CT.

The UMLS Semantic Network categorizes all UMLS
Metathesaurus concepts consistently depending on their
semantic types to minimizeMetathesaurus complexity. It cur-
rently contains 135 main categories and 54 relationships
between categories. For example, the ‘‘Disease’’ category

has a relationship ‘‘associated with’’ with the ‘‘Finding’’
category, and the ‘‘Hormone’’ category has a relationship
‘‘Affects’’ with the ‘‘Disease’’ category.

The UMLS SPECIALIST lexicon contains informa-
tion for biomedical terms on their syntax, morphology, and
spelling [143]. Currently, it contains over 200,000 biomedical
terms and is used for biomedical NLP tasks by the UMLS
lexical tools.

B. TOOLS AND FRAMEWORKS OF THE BIOMEDICAL NLP
1) NLP TOOLS/METHODS
For the construction of NLP tools, there are two main meth-
ods/techniques. The first technique is rule-based, mainly
focused on rules and dictionary look-up. The second tech-
nique is the machine learning method based on annotated cor-
pora to train learning algorithms. The Rule-based approach
was often adopted by early systems because their design and
implementationwas very simple. Currently, many biomedical
NLP systems have shifted away from using rule-based meth-
ods and depend on machine learning approaches due to their
progress and the growing number of annotated corpora, while
new annotated training data may have a high cost to generate.
Machine learning approaches often deliver better results than
rule-based methods, as demonstrated in many challenges of
biomedical NLP. At the same time, most recent NLP systems
have been designed from integrating rule-based and machine
learning methods, which have been called hybrid systems [6].

2) NLP FRAMEWORKS
It is possible to incorporate the framework into the NLP sys-
tem itself or to use the available common architectures. GATE
(General Architecture for Text Engineering) and UIMA
(Unstructured InformationManagement Architecture) are the
twomost common generalized architectures, which consist of
open-source software.

GATE, which was initially developed in 1995 at Sheffield
University, is commonly applied in the NLP domain. It con-
tains basic NLP tools for low-level processing (e.g., tokeniz-
ers, penetration splitters, and part-speak taggers) packed into
a CREOLE wrapper and a high-level processor for named
entity recognition packaged into an ANNIEwhich is an infor-
mation extraction system. It can incorporate current tech-
niques of NLP and machine learning such as Weka, RASP,
SVM Light, and LIBSVM. GATE was used as a basis by
many clinical NLP systems, such as HITEx and caTIES, for
the extraction of cancer information.

UIMA belongs to the Apache Software Foundation soft-
ware and it was initially designed since 2006 by IBM. Its
objective is to promote the reuse of analytical components
and to reduce the duplication of analytical development. The
pluggable architecture of UIMA allows you to easily plug-in
your analysis components and combines them with others.’’
IBM’s 2011 Jeopardy challenge Watson system has devel-
oped UIMA’s framework, which is recognized as the best-
known foundation. The functionality of UIMA is broader
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TABLE 4. Major biomedical NLP systems.

than that of GATE, since UIMA can be used to analyze
audio/video data in addition to textual data. Several biomedi-
cal NLP systems, such as cTAKES, MedKAT/P, and MedEx,
use the UIMA framework for cancer-specific characteristics
extraction [144], [145] and medication extraction.

This section provides a general overview of the biomedical
NLP system architecture by explaining the most significant
and influenual NLP systems in the biomedical NLP field.
Two of the common systems for extracting UMLS concepts
from clinical texts are the Linguistic String Project-Medical
Language Processor (LSP-MLP) [146] and the Language
Extraction and Encoding System (MedLEE) [147]. The
Mayo clinical Analysis and Knowledge Extraction System
(cTAKES) [148], Special Purpose Understanding System
(SPUS) [149], SymText (Symbolic Text Processor) [150]
and SPECIALIST language-processing system [151] are the
major systems developed by few dedicated research groups
for maintaining the extracted information in the clinical
domain. Another important systemwidely used in the clinical
domain is MetaMap [152]. Among all, MetaMap is found
to be useful with patients’ HER for automatically providing

relevant health information. Table 4 presents the characteris-
tics of the major biomedical NLP systems discussed in this
section.

C. THE ENSEMBLE METHODS FOR THE
BIOMEDICAL NLP TOOLS
The ensemble approach improves the portability of biomed-
ical NLP systems by combining the strengths of individual
tools. An ensemble is a meta-algorithm that incorporates
various basic models into a predictive model, and in several
machine learning tasks, this combination has demonstrated
superior results [153]–[155].

The ensemble approach has been widely applied to var-
ious clinical and biomedical issues such as identification
of biomarker [156], protein-protein interaction [157], causal
molecular networks inference [158] and gene expression
based disease diagnosis [159].

Many studies have explored the ensemble of NLP tools for
medical concept recognition.

For example, Torii et al., developed BioTagger-GM by
combining recognition results from individual systems and
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TABLE 5. The classification and the related number of articles reviewed for chronic diseases.

using a voting schema and achieved the best performance
in the BioCreAtIvE II challenge to recognize gene/protein
names from literature [160], [161].

Doan et al. demonstrated that the ensemble classification
results which incorporate single classification models into a
voting system could perform better than a single classification
model in identifying medical information from clinical text
using the 2009 i2b2 (Informatics for Integrating Biology and
the Bedside) challenge datasets [162].

Kang et al., merged two dictionaries-based systems
with five statistical systems into a simple voting scheme
and achieved a third-place finish in the 2010 i2b2/VA
challenge to extract medical problems, examinations and
medications [163].

Kuo et al. combined cTAKES and MetaMap to develop
an ensemble pipeline that improved the efficiency of NLP
tools in extracting clinical data terms, but with high variation
depending on the cohort [164].

VI. LITERATURE REVIEW AND RELATED WORKS
Throughout this section, we discuss some articles and surveys
that constitute our literature review, including a list of all
related works for applying machine learning to biomedical
NLP, especially on chronic diseases.

Diseases Classification:About 106 studies have been ana-
lyzed and were mainly linked to 43 specific chronic diseases.
One objective was to clarify the application of NLP and its
related clinical notes for particular types of conditions. There-
fore, using the International Classification of Diseases, 10th
Revision (ICD-10) [19], the 43 specific chronic diseases were
then classified into ten types of diseases, as shown in Table 5.
Figure 9 shows the number of EHR-related publications on
chronic diseases per year.

A. DISEASES OF THE CIRCULATORY SYSTEM
A) Cardiovascular Diseases Heart disease is one of the

major death causes, while prediction and prevention
have recently developed. The identification of risk fac-
tors is a necessary first step in predicting and preventing
heart disease. Many studies have been proposed to

FIGURE 9. The number of EHR-related publications per year on chronic
diseases.

determine heart disease-related risk factors, but no one
has tried to identify all risk factors. A challenge for
biomedical NLP, in 2014, was released by the National
Center for Computer Science for Integrating Biology
and Beside (i2b2) that involved a track (track 2) for
determining risk factors of heart disease in the clini-
cal texts over time. The purpose of this track was to
classify information on cardiovascular risks, as well
as to monitor the quality of the historical medical
records. It was important to classify tags and charac-
teristics associated with the existence and development
of the disease, risk factors, and medications in inpa-
tient medical history. Table 6 summarizes the num-
ber of papers related to diseases of the circulatory
system.

B) Peripheral and coronary arterial disease Millions of
people worldwide were affected by Peripheral arterial
disease (PAD), which is a type of chronic disease. For
automated determination of PAD status using predeter-
mined criteria in clinical reports, the NLP algorithm
should be used as a determining PAD status from
clinical notes, which is labor-intensive and time-
consuming by manual chart review. Many researchers
have used NLP to identify peripheral arterial dis-
ease (PAD) cases and critical limb ischemia in clin-
ical records. It is also used by recent genome-wide
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TABLE 6. Summary of the studies that use NLP methods for cardiovascular diseases.

PAD research to identify medications, diseases,
signs/symptoms, anatomical locations, and procedures.
Table 7 summarizes the number of papers related to
peripheral and coronary arterial disease.

C) Hypertension One of the main health problems is
hypertension (HTN) and high blood pressure (HBP)
diseases. It is estimated that by 2025, adults with hyper-
tension will increase by 60 One of the major risks
for cardiovascular and kidney diseases is HTN. Any

HTN-relevant patient knowledge has significant appli-
cation in cohort discovery and the development of pre-
dictive prevention and monitoring models. Most of this
important medical knowledge typically takes the form
of non-structured clinical records distributed over mul-
tiple EHR systems. Extracting patient-relevant infor-
mation from unstructured clinical notes usually takes
a lot of resources and consumes time. In particular,
manual extracting of HTN information is a significant

VOLUME 9, 2021 140641



E. H. Houssein et al.: Machine Learning Techniques for Biomedical NLP: Comprehensive Review

TABLE 7. Summary of the studies that use NLP methods for peripheral and coronary arterial disease.

TABLE 8. Summary of the studies that use NLP methods for hypertension.

issue, which is time-consuming as HTN information
is usually reported in multiple records for one patient.
Another important issue besides the manual extraction
is coding HTN information to standard ontologies like
SNOMED-CT. There are simple mining techniques of
clinical texts that can be applied to extracting HTN
information from unstructured clinical reports. Table 8
summarizes the number of papers related to hyperten-
sion disease.

D) Heart failure identification Heart failure is a chronic
disease usually caused by some deficiency in struc-
ture or function. The quick and accurate prediction of
heart failuremortality is important for improving patient
health care and preventing death. But, due to the weak

feature representation of heart failure data, prediction of
death caused by heart failure is a significant challenge
using simple models. Table 9 summarizes the number
of papers related to heart failure disease.

B. NEOPLASMS
EHR provides important cancer-related knowledgewhich can
be valuable for biomedical research because extracting and
structuring this knowledge is provided by NLP methods.
This section discusses many studies related to cancer, such
as the identification of multiple cancer types, the extrac-
tion of tumor characteristics and tumor-related information,
cancer patient trajectories, cancer recurrence, and cancer
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TABLE 9. Summary of the studies that use NLP methods for heart failure identification.

stage identification. Table 10 summarizes the number of
papers related to neoplasms disease.

Regarding breast neoplasm, a significant data source for
epidemiologic research is the EHR system. In studies related
to population, structured EHR data such as diagnosis and
procedure codes are usually used. They do not accurately
capture some conditions such as breast cancer recurrence that
is only recorded in unstructured clinical reports. A typical
method for extracting information from EHR data is manual
processing, which consumes time, costly and causes inherent
privacy risks, restricting the amount of available information
for the study. NLP methods can be used to solve this issue
by processing unstructured texts and they were used as an
alternative or a supplement to manual chart abstraction. NLP
has been successfully applied to several biomedical applica-
tions such as analyzing results from imaging and pathology
reports, recognizing persons based on cancer examinations,

selecting clinical trials, detecting postoperative surgical com-
plications, and performing pharmacogenomics and transla-
tional research. NLP has also demonstrated recent progress
in identifying breast and prostate malignancies recorded in
pathology reports. NLP-based algorithms, in some cases,
do as the same as manual processing, or even better. Table 11
summarizes the number of papers related to breast cancer
disease.

VII. OPEN ISSUES AND CHALLENGES
One of the primary healthcare issues is broadly acknowledged
as the risk of chronic diseases such as cancers, diabetes,
and hypertension. Although considerable development has
been achieved in discovering new therapies and prevention
methods, it remains a challenge, and the magnitude of this
challenge is growing, having a significant effect on the qual-
ity of life and the cost of healthcare. Therefore, effective
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TABLE 10. Summary of the studies that use NLP methods for neoplasms disease.

strategies and methodologies are required to supplement and
expand beyond existing evidence-based therapies, which can
mitigate the severity of chronic conditions. The secondary
use of EHRs for processing patient data, promoting medical
research, and enhancing the clinical decision making is a
promising path. Methods based on EHR processing and mod-
eling contribute to a better understanding of patient clinical
trajectories and improving stratification of the patient and risk
prediction. Effective extraction of unknown clinical knowl-
edge is provided by using machine learning and especially
deep learning for processing EHRs. The longitudinal struc-
ture of chronic diseases provides a broad continuous stream of
data that can identify useful clinical trends and direct clinical
decisions in a way that delays or avoids the onset of the
disease.

Because of the various difficulties involved in the pro-
duction of clinical reports, progress in NLP research in

the biomedical domain is sluggish and lagging relative to
progress in general NLP. The main reasons for the challenges
to the development of biomedical NLP are that the access
to shared data is very difficult, the annotated datasets that
can be used for training and benchmarking are insufficient,
the annotation agreements and standards are inadequate,
reproducibility is formidable, partnerships are restricted, and
user-centered development and scalability are missing. The
i2b2/VA Challenge shared tasks, tackle these obstacles by
providing participants with annotated datasets for potential
solutions.

The development of biomedical NLP has several issues and
challenges that faced the process of clinical notes for chronic
disease detection. It is worth noting that these challenges
remain until now as presented in [53], [106]:
1) Domain knowledge: Adequate knowledge of the

domain is the most important requirement for an NLP
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TABLE 11. Summary of the studies that use NLP methods for breast cancer disease.

researcher involved in the development of systems and
methodologies for processing biomedical records. The
primary importance of domain knowledge stems from
the fact that the output of the system is made avail-
able for application in healthcare. Thus, the system
is always required to have sufficient recall, accuracy,
and F-measurement for the intended biomedical appli-
cation, with the necessary performance modification.
Interestingly, it is possible to apply the NLP techniques
capturing the domain knowledge available in the free
text. The NLP approach for the automated capture of
ontology-related domain knowledge, for example, uses
a two-phase methodology to extract terms from the

linguistic representations of concepts in the initial phase
followed by the extraction of semantic relations.

2) Confidentiality of the biomedical text: A sample of
training data is required to develop and evaluate an
NLP system. The training dataset is a vast array of
electronic patient records in textual formats in a clin-
ical context. The privacy of patient data is protected
by The Health Insurance Portability and Accountability
Act (HIPAA) in the United States. It is necessary to
de-identify personal information to make the records
accessible for research purposes. However, automated
recognition of details such as names, addresses, tele-
phone numbers, etc., is a highly challenging task, which
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often needs manual review. Eighteen personal informa-
tion identifiers, i.e., the identification of protected health
information (PHI) in the clinical report, which should
be excluded as required by HIPAA, is very compli-
cated and time-consuming. In 2006, the challenge of
i2b2 de-identification took the most significant effort to
develop and evaluate automated de-identification tasks.
The available approaches to de-identification include
(1) rule-based methods that use dictionaries and man-
ually crafted rules to match PHI patterns, (2) machine
learning methods that learn to identify PHI patterns
based on training datasets automatically, and (3) hybrid
methods, which combine both techniques.

3) Abbreviations: The clinical text will include several
medical abbreviations. The abbreviations are often read-
ily interpreted by healthcare experts due to their domain
knowledge. Nevertheless, when a clinical NLP system
tries to derive clinical information from the free text,
abbreviations are found to be extremely ambiguous. For
example, the clinical text abbreviation PT could mean a
patient, prothrombin, physical therapy, and so on. The
correct interpretation of clinical abbreviations is often
challenging and involves two major tasks: detecting
abbreviations and choosing the proper expanded forms.
Dictionary lookup and morphology-based matching are
the most widely used methods for detecting abbre-
viations in the clinical domain, and machine-learning
approaches are used to select the right extended type.
Researchers have contributed several methods to iden-
tify abbreviations present in clinical texts, construct a
knowledge base for clinical abbreviations, and disam-
biguate ambiguous abbreviations, in addition to devel-
oping clinical NLP systems such asMedLEE,MetaMap,
etc. to extract medical concepts and associated abbrevi-
ations from clinical texts.

4) Diverse formats: There is no standardized format for
the biomedical text, especially with patients’ medical
reports: (1) the clinical text often contains the informa-
tion in a free-text format like a pseudo table, i.e., text
intentionally made to appear as a table. Although the
contents of the pseudo table are easy to interpret by a
human, for a general NLP system, the identification of
the formatting features is complicated. (2) Although the
importance of report sections and subsections relevant to
many applications, the section headers are either ignored
or combined with similar headers on many occasions.
(3) Another issue often found in the clinical text is the
missing or incorrect punctuation, e.g., to indicate the
end of a sentence, a new line can be used instead of
a point. The Clinical Text Architecture (CTA), which
tries to define the criteria for the clinical report structure,
effectively addresses the issue of different formats of the
clinical text.

5) Expressiveness: The biomedical domain language is
hugely expressive. There are many ways to describe the
same medical concept, e.g., cancer can be expressed as

a tumor, lesion, mass, carcinoma, metastasis, neoplasm,
etc. Likewise, the modifiers of the concept can also be
described with many different terms, e.g., the modi-
fiers for certainty information would match more than
800MedLEE lexicons, thus making the retrieval process
more complicated.

6) Intra- and interoperability: A biomedical NLP sys-
tem is expected to work well in various healthcare
and biomedical applications and to be easily integrated
into a biomedical information system. In other words,
the system needs to handle a biomedical text in dif-
ferent formats. For example, the formats of discharge
summaries, diagnostic reports, and radiology reports are
different. The output of the NLP system can also be
stored in the clinical database. However, it is almost
unlikely to map the same to the clinical database scheme
because of the complexity and nested relationships of
the output. Additionally, the output from the NLP sys-
tem must be available for comparison for a variety of
automated applications through widespread deployment
across the institutions. To achieve this, the output must
be mapped onto a standardized vocabulary system such
as UMLS, ICD-10, and SNOMED-CT, and onto a stan-
dard domain representation. Finally, it is considered
essential to interpret the biomedical information and
the relationships between concepts to construct a rep-
resentational model. For example, ‘‘treats’’ is one of the
relationships between a drug and a disease.

7) Interpreting information: Interpretation of clinical
information available in a report requires the knowledge
of the report structure and additional medical knowledge
to associate the findings with possible diagnoses. The
complexity of interpreting information depends on the
type of report and section, e.g., it is easier to obtain
information on the vaccination being administered than
to get information from a radiological report containing
patterns of lights (patchy opacity). An NLP system that
interprets light patterns to specific diseases should con-
tain medical knowledge related to the findings.

Despite the recent advances and developments, these
recent limitations have affected the use of NLP
technology [106]:

1) The availability, consistency and characteristics of
the training data The availability, consistency and
characteristics of the training data are very essential
for building NLP models [184]. For the training and
implementation of an effective NLP models, the access
and availability of appropriately annotated datasets are
very important. For example, the designing of NLP
algorithms that can perform a systematic synthesis of
published research on a specific topic or an analysis and
data extraction from EHR needs unrestricted access to
databases of publisher or primary care/hospital. While
the number of biomedical datasets and pre-trained mod-
els that are publicly available has increased over recent
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years, the availability of public health concepts is still
restricted [185].

2) The ability to de-bias data The ability to de-bias
data which means the ability to inspect, explain and
ethically modify data is an important issue for train-
ing and using NLP models in healthcare domain.
If data biases are not taken into consideration in
the development (e.g. data annotation), deployment
(e.g. use of pre-trained platforms) and evaluation of
NLP models, the results of NLP models can be compro-
mised [186]. However, it should be noted that this does
not guarantee the same effect across morally appropriate
levels, even if datasets and assessments are modified
for biases. For example, it must take into account par-
ticular age group and socioeconomic groups that use
social media sites when using the health data available.
A Facebook-trained monitoring system could be biased
towards health data and linguistic issues unique to peo-
ple older than that in Snapchat’s data [187]. Recently,
several agnostic model tools have been developed to
assess and correct injustices in machine learning models
in accordance with the efforts of the government and
academic communities to identify unacceptable devel-
opment of AI [188]–[192].

3) The limited access to dataset Recently, the lim-
ited access to data is a major issue that barriers the
progress of NLP system in healthcare domain [6],
[19]. Health data are generally regulated regionally in
Canada, and there is reluctance to provide access to these
systems and incorporation with other datasets without
restrictions due to security and confidentiality issues
(e.g. data linkage). Public understanding of the privacy
and data access has also caused critical issues. A new
study of social media users revealed that most peo-
ple found analyzing their social media data in order
to find ‘‘intrusive and exposing’’ problems of mental
health is not accepted [193]. Before key public health
NLP activities such as the real-time analysis of national
disease patterns can be carried out, jurisdictions must
collectively identify a reasonable scope and access to
data sources of public health (e.g. EHR and adminis-
trative data). Future NLP applications which analyzing
personal EHR rely on their ability to incorporate vary-
ing privacy in models, both during and after training
to avoid breaches of privacy and data misuse [194].
The current methods for accessing full text publications
often restrict access to essential data. Total automa-
tion and synthesis of PICO-specific information requires
unlimited access to journal databases or new data stor-
age modelling [195]. The available clinical datasets are
MIMIC-II, the Informatics for Integrating Biology and
the Bedside (i2b2) datasets, PhenoCHF, Temporal His-
tories of Your Medical Event (THYME), and Cancer
Deep Phenotype Extraction (DeepPhe).

4) The assessment and evaluation of NLP models
Finally, as with any emerging technology, validation

and evaluation of NLP models should be taken into
account to ensure that they operate as expected and keep
up with the changing ethical views of society. These
NLP technology must be tested to ensure it performs as
intended and to take bias into account [196]. Although
manymethods today publish equal or better-than-human
scores on tasks of textual analysis, it is important not
to equate high scores with a real understanding of lan-
guage. But it is also important not to consider the lack
of true understanding of the language as an inefficiency.
Models with a ‘‘relatively poor’’ depth of understanding
can still be highly effective at information extraction,
classification and prediction tasks, particularly with the
increasing availability of labelled data.

VIII. CONCLUSION AND FUTURE RESEARCH ISSUES
We have discussed in this review paper, an overview of
NLP in general and NLP in biomedicine and healthcare
with its methods and technologies and its potential tasks and
use-cases in the biomedical and healthcare domains. Then
we have presented the application areas of machine learn-
ing/deep learning in the biomedical NLP. We have provided
an overview of themost popular biomedical NLP systems and
their general architecture. Next, we have discussed a literature
review of the application of various NLP techniques to narra-
tive clinical notes on chronic diseases, including the analysis
of difficulties faced by NLP methodologies in clinical narra-
tive comprehension. Finally, we conclude this review paper
by describing existing challenges currently faced and open
issues associated with the processing of the biomedical and
clinical text and providing the NLP domain with sufficient
resources and opportunities to extract new methodologies.

In this review paper, we have discussed essential chal-
lenges such as domain knowledge, the confidentiality of
clinical texts, abbreviations, diverse formats, expressive-
ness, intra-operability and interoperability, and information
interpreting. These discussions provide an opportunity to
understand the complexity of the clinical text processing and
various approaches available. An important area of research
related to the understanding of the challenges involved in
processing the clinical text is the development of methodolo-
gies for processing the diverse format of clinical texts. Each
format, on its own, is a challenge for NLP researchers and can
be explored using traditional and hybrid methodologies. Our
review has shown that biomedical NLP methods need to be
modified and updated beyond the extraction of clinical terms
to concentrate more on the interpretation of concepts (i.e.,
not only understanding of relationships between concepts
but also combining the clinical data, domain knowledge, and
general knowledge in the reasoning process).

In conclusion, NLP provides a powerful methods for
unlocking information about chronic diseases from unstruc-
tured clinical narratives. Despite of developing new standards
and better encoding EHRwith clinical terminology standards,
there is still a narrative aspect, which makes the biomedi-
cal NLP methods essential for clinical research informatics.
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There have also been widespread application of different
techniques and models to biomedical literature and all of
these NLP techniques are important and can be applied to
effectively mining EHRs to support essential clinical research
activities. New deep learning techniques have contributed
with a significant progress across various tasks and will be
increasingly adopted to analysis big data of EHRs effectively
and efficiently, further advancing disease management, qual-
ity improvement, and all aspects of clinical research.
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