
Received September 10, 2021, accepted October 3, 2021, date of publication October 11, 2021, date of current version October 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119434

Semi-Supervised Auto-Encoder Graph Network
for Diabetic Retinopathy Grading
YUJIE LI 1,2, ZHANG SONG 3, SUNKYOUNG KANG 2, SUNGTAE JUNG2,
AND WENPEI KANG 4
1Weifang Key Laboratory of Blockchain on Agricultural Vegetables, Weifang University of Science and Technology, Weifang, Shandong 262700, China
2Department of Computer Software Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
3The Affiliated Hospital of Qingdao University, Qingdao 266000, China
4Business College of Southwest University, Chongqing 402460, China

Corresponding authors: Sunkyoung Kang (doctor10@wku.ac.kr) and Sungtae Jung (stjung@wku.ac.kr)

This work was supported by Wonkwang University in 2021.

ABSTRACT Diabetic Retinopathy (DR) causes quite a few blindness worldwide, which can be refrained
by the timely diagnosis on retinal images. Recently, researches on deep learning-based retinal image
classification have accelerated outstanding improvements in DR grading task. However, existing DR grading
works are mostly limited to a supervised manner. They require accurately annotated data labeled by
professional experts, and the annotating work is very laborious and time-consuming. We propose a Semi-
supervised Auto-encoder Graph Network (SAGN) for the challenging DR diagnosis to relax this constraint.
Precisely, SAGN consists of three major modules: auto-encoder feature learning, neighbor correlation
mining, and graph representation. Firstly, our model learns to extract representations from retinal images
and reconstruct them as close to original inputs as possible. Then neighbor correlations among labeled
and unlabeled samples are established by their similarities, calculated by the radial basis function. Finally,
we operate Graph Convolutional Neural Network (GCN) to grade retinal samples from extracted features and
their correlations. To evaluate the performance of SAGN, we conduct sufficient comparative experiments
on APTOS 2019 dataset, trained from EyePACS. Results demonstrate that our SAGN model can achieve
comparable performance with limited labeled retinal images with the help of large amounts of unlabeled
data.

INDEX TERMS Diabetic retinopathy grading, semi-supervised learning, auto-encoder, graph convolutional
network.

I. INTRODUCTION
The retinal blood vascular network is the only vascular net-
work of a human body visible to a non-invasive imaging
approach. In consequence, automated analysis of retinal vas-
cular structure is the most common way to support exam-
ination, diagnosis, and treatment of many diseases [1]–[4],
especially for diabetic retinopathy (DR). In practice, oph-
thalmologists use color and morphological information to
diagnose retinal images into DR grades by discriminating
between arteries and veins since arteries contain more oxygen
and appear brighter than veins and thinner than neighboring
veins [5]. These features of retinal vasculature are usually
captured by fundus photography due to its lower cost and ease
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of use, but manual classification of retinal blood vessels is
time-consuming and subject to human errors.

In recent years, kinds of researches involved machine
learning into automatic DR grading based on retinal images.
As an advanced technology in machine learning, deep
learning-based automatic retinal image classification meth-
ods exhibit outstanding DR grading performance, surpassing
traditional machine learning models [6]–[8]. They utilize
large amounts of retinal images to train Convolutional Neural
Networks (CNNs), supervised by full annotations, which
professional DR experts capture. However, the annotation
work results in a complicated burden in an actual application
that wastes so much professional human resources and brings
inevitable noise labels [9], [10].

In order to alleviate the annotating workload for experts,
this work introduces a semi-supervised framework to utilize
partially labeled retinal data with large-scale unannotated
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FIGURE 1. The illustration of semi-supervised diabetic retinopathy
grading.

images to train a DR grading model, as illustrated in Figure 1.
It can be seen in this Figure, as an efficient unsupervised pre-
training method [11], [12], the auto-encoder is not limited
by label information and can eliminate the noise [13] in the
data. We recommend using the autoencoder for network self-
training to analyze high-dimensional features further. At the
same time, compared with the conventional neural network,
the graph neural network utilizes graphs as input and learns
to ratiocinate and predict how objects and their relationships
evolve. In addition, the graph network can make the network
less vulnerable to adversarial attacks because it is a system
that represents things as objects instead of pixel patterns
and will not be easily disturbed by a bit of noise. Thus,
we propose a novel Semi-supervised Auto-encoder Graph
Network (SAGN) for training the DR grade predictor using
the limited labeled data. SAGN feeds a small quantity of
labeled retinal images and plentiful unlabeled data into an
auto-encoder to mine the CNN representations by encoder-
decoder architecture. Then, it exploits the neighbor correla-
tions among both labeled and unlabeled images according
to their similarities. Finally, a convolutional graph network
operates graph feature learning with the help of the learned
neighbor correlations to output the grades of each input
image. To sufficiently train the network, SAGN optimizes the
whole network in an end-to-end manner within each batch.

In general, SIGN offers the following contributions:
(1)We propose the Unsupervised Auto-encoder module

(UA), which is not restricted by annotation information,
to make the network self-training, and it is also considered
a powerful feature extractor.

(2)We explore the intrinsic correlation from limited labeled
data and massive unlabeled samples at the feature level via
Graph Network (GN) module to spread the annotation infor-
mation to the entire data set.

(3)We conduct comparative experiments on two popular
public available DR grading datasets (APTOS 2019 and Kag-
gle DR), which reveal the superiority of our model on the
retinal image classification task.

II. RELATED WORK
This section discusses recently proposed retinal image clas-
sification methods based on supervised learning and then

introduces many applications of the semi-supervised frame-
work on medical image classification.

A. RETINAL IMAGE CLASSIFICATION
There have been many outstanding works in the application
of deep learning in the field of medical imaging [14]–[16].
In recent years, many supervised CNNmethods have progres-
sively developed retinal image classification [17]–[20] with
the evolution of deep learning. For example, Marin et al. [18]
detected retinal exudates by applying digital image process-
ing algorithms to the retinal image to obtain a set of candidate
regions, which are validated utilizing feature extraction and
supervised classification techniques. Xu et al. [19] proposed
an improved supervised artery and vein classification method
in retinal images, which uses intra-image regularization and
inter-subject normalization to reduce the differences in fea-
ture space. Playout et al. [17] employed a novel approach for
training a convolutional multitask architecture of retinal with
supervised learning and reinforcing it with weakly super-
vised learning. Similarly, Sreeja and Kumar [20] presented
a supervised machine learning algorithm based on retinal
hemorrhage detection and classification with the help of splat
level and GLCM features extracted from the splats.

However, all of these approaches require a large number
of tagged retinal datasets to supervise the training procedure,
which requires a lot of time and effort for manual annotation.
By contrast, this paper proposes a novel semi-supervised
retinal image classification model to conduct automatic DR
grading only requiring a small number of annotated retinal
images, which can largely save professional manpower and
time.

B. SEMI-SUPERVISED LEARNING IN MEDICAL IMAGE
ANALYSIS
Because the annotating work in medical image analysis is
more expensive and scarce than traditional computer vision
tasks (e.g., face, person, dog recognition), Semi-Supervised
Learning (SSL) approaches play an important role in auto-
matic medical image recognition alleviate the professional
labeling work. At the same time, unlabeled data is much
more in practice. Some unsupervised and semi-supervised
methods have made breakthroughs in medical graphics anal-
ysis [21], [22]. Inspired by these medical image methods, the
researchers applied their ideas to retinal analysis. To lever-
age unlabeled data, Bakalo et al. [23] proposed a deep learn-
ing architecture based on SSL for multi-class classification
and localization of abnormalities in medical imaging illus-
trated through experiments on mammograms, which enables
detection of abnormalities at full mammogram resolution
for both weakly and semi-supervised settings; Han et al. [24]
exploited a weak and semi-supervised deep learning frame-
work to segment prostate cancer in TRUS images, alleviating
the time-consuming work of radiologists to draw the bound-
ary of the lesions and training the neural network on the data
that do not have complete annotation. Menon et al. [25] pre-
sented a semi-supervised algorithm for lung cancer screening
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in which a 3D Convolutional Neural Network (CNN) is using
the expectation-maximization meta-algorithm.

Inspired by the successful application of semi-supervised
learning in medical image analysis, this paper introduces a
novel SSL framework to solve the cumbersome labeling work
in the retinal image classification task.

III. METHOD
This paper proposes a semi-supervised retinal image classi-
fication method with auto-encoder feature learning, neighbor
correlation mining, and graph representation modules. In this
task, we define input retinal images as I = I l ∪ Iu with
N = Nl + Nu images, where I l =

{
il1, i

l
2, · · ·, i

l
Nl ,
}
are

labeled images with the correlated ground-truth class labels
yl =

{
yl1, y

l
2, · · · , y

l
Nl

}
, and Iu =

{
iu1, i

u
2, · · · , i

u
Nu

}
represent

the large scale of unannotated retinal images without any
annotations.

A. AUTO-ENCODER FEATURE LEARNING
In our SAGNmodel, we firstly design a CNN-based encoder-
decoder to exploit the feature learning capability for each
retinal image in I . Aiming to discover robust representations
of retinal images, we utilize an encoder F to extract appro-
priate CNN feature embeddings for labeled and unlabeled
images. Besides, we also integrate a decoderD to re-construct
the images from CNN feature embeddings, which makes the
feature vectors contain meaningful representations for retinal
images, further developing the feature learning efficiency of
the auto-encoder.

Mathematically, the encoder F can transform each reti-
nal image into a low-dimensional feature space, such as a
labeled retinal image ilj and an unlabeled sample iuk , which can
be compacted into feature vectors F(ilj;Wf ), and F(iuk ;Wf ).
To optimize the auto-encoder architecture, we introduce the
decoding loss attached to the decoder D, following,

Ldec =
1
Nl

Nl∑
j=1

∥∥∥D (F (ilj;Wf

)
;Wd

)
− ilj

∥∥∥2
2

+
1
Nu

Nu∑
k=1

∥∥D (F (iuk ;Wf
)
;Wd

)
− iuk

∥∥2
2 (1)

where Wf , Wd are trainable parameters in encoder and
decoder, respectively.

Through the optimization of decoding loss, the auto-
encoder can make the feature embeddings expressing mean-
ingful information for themselves, and the remaining task is
to distill class information from raw data. Here, we intro-
duce a classifier C to predict the category for each retinal
image ij ∈ I , by mapping the feature embedding F(ij;Wf )
into a class space C(F(ij;Wf );Wc), where Wc is the learn-
able parameters in the classifier. In our semi-supervised reti-
nal image classification framework, the CNN Cross-Entropy
(CCE) loss is minimized to train the classifier C and encoder

F jointly,

Lcce = −
N l∑
j=1

ylj logC(F(ij;Wf );Wc)) (2)

where the CE loss is only calculated on the labeled retinal
images I l , because their existing corresponding ground-truth
labels yl can supervise the network.

Due to the limited number of labeled retinal images, the
classifier C cannot reach a desirable performance only with
the encoder. In our auto-encoder feature learning module, the
utilization of the decoder D and its decoding loss Ldec can
reinforce the representation capability of the auto-encoder.

B. NEIGHBOR CORRELATION MINING
As we all know, the labeled and unlabeled samples in I
follows a uniform distribution rather than individual objects.
We believe that intrinsic correlations must remain among
each sample in I after CNN feature embedding. A simple rule
is that the feature embeddings from the same category are
more similar than ones from different DR classes. According
to the similarity between different retinal images, we can
establish similarity-based correlations among both the neigh-
boring massive unannotated samples and labeled images,
which is very useful for training the classifier C . Though
fully annotating sufficient retinal images is unbearable in real
applications, exploiting the massive unannotated images and
constructing similarity-based correlations underlying various
categories of fundus images can further mine meaningful
information from limited labeled and large amounts of unla-
beled retinal images.

Given the CNN feature embedding F(ij) from retinal
images I , the Radial Basis Function (RBF) [26] is introduced
to calculate the similarity s(ij, ik ) between retinal images ij
and ik ,

s
(
ij, ik

)
= exp

(
−
d
(
F
(
ij
)
,F (ik)

)
2σ 2

)
(3)

where d(·, ·) represent Euclidean distance and σ is a scale
factor. This term keeps the similarity ranging from 0 to 1 and
s(ij, ij) = 1, which will be smaller when the distance of F(ij)
and F(ik ) is increasing.

According to this similarity calculation, we can build the
correlation graph G by calculating similarities between each
pair of retinal image features. Particularly, each node in graph
G denotes a retinal image, and the edge between two nodes
represents the similarity between these two image features,
which are from both labeled and unlabeled images. Assume
an adjacent matrix A ∈ RN×N to represent G, and A(j, k) =
s(ij, ik ) if s(ij, ik ) > τ else A(j, k) = 0. Furthermore,
s(ij, ij) = 1 ensures the graph A is self-connected, and two
similar images are connected, and the edge between them
is large. As we all know, the connected similar images can
provide much more information to update each other, while
the disconnected image features should be optimized individ-
ually to avoidmisleading. Through the similarity-based graph
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FIGURE 2. The scheme of our proposed semi-supervised auto-encoder graph network on diabetic retinopathy grading task.

establishment, the correlations among labeled and unlabeled
retinal images can be mined by G, which provides essential
cues for further feature learning.

C. GRAPH REPRESENTATION MODULE
This paper utilizes Graph Convolutional Network(GCN) to
explore the feature-level correlations among retinal image
features, labeled or unlabeled ones. It composes of M graph
convolutional layers, attached with two fully connected lay-
ers. Besides, ReLU is integrated after the graph convolutional
layer, and a PReLU is on the first fully connected layer.

Specifically, the graph convolution calculation for them-th
layer (1 ≤ m ≤ M ) is mathematically formulated by,

Xm = ReLU(ÂXm−1Wm) (4)

where Xm−1 and Xm represents the input and output of this
layer, respectively; X0

= {F(i1),F(i2), · · · ,F(iNl+Nu ))} is
the collection of learned CNN features by encoder F ; Â =
3−

1
2A3−

1
2 , where 3 is the diagonal matrix of A; and Wm is

the weight of m-th graph convolution layer.
Through the M stacked graph convolutions, the correla-

tions among retinal images can be explored by graph repre-
sentation, and we integrate softmax on the final perceptron
layer as,

Z = XM = softmax(ÂXM−1WM ) (5)

where WM
∈ RdM×Nc (Nc is the number of DR grades).

The final output Z ∈ R(Nl+Nu)×Nc represents the predictions
for each retinal images in which each row Zj represents the
predicted DR grades for j-th image in I . Finally, the optimiza-
tion of weight parameters {W 1,W 2, · · · ,WM

} in GCN is
conducted by minimizing the semi-supervised cross-entropy
(SCE) loss according to,

Lsce = −
∑
ilj∈I

l

ylj logZj (6)

where I l represents the labeled retinal images, and this loss
function replaces the CNN cross-entropy loss in Eq. 2.

Depend on the neighbored samples’ correlation in G.
The convolutional graph network can distill the discrimina-
tive information from the limited labeled images to further
mine knowledge from massive unlabeled retinal samples.
Thus the supervision knowledge from the small number
of labeled retinal images can guide the graph representa-
tions for unlabeled samples. Intrinsically, the annotations can
propagate along with the connections in G, involving the
weights among different nodes. As a result, the optimization
of our network facilitates the classifier to grade the retinal
images with the help of neighbor correlations G, which pro-
vide essential cues to make predictions more accurate and
robust.

D. OPTIMIZATION
The auto-encoder and graph convolutional network ensure
the end-to-end training manner in our semi-supervised reti-
nal image classification task, simultaneously learning the
graph representations of retinal images and output the pre-
dicted category for each feature. As illustrated in Figure 2,
we firstly feed the limited labeled and massive unlabeled
retinal images into the CNN encoder F to generate features
F([I l, Iu]), then build the neighbor correlations by RBF sim-
ilarity (Eq. 3). Finally, conduct graph convolutions on the
CNN features F([I l, Iu]) with neighbor correlation graph G
to output predicted class annotations. In our training stage, the
learned CNN features F([I l, Iu]) are re-constructed into orig-
inal images for labeled and unlabeled samples. In particular,
a more detailed figure of the network architecture is shown in
Figure 3.
To train the whole network, we jointly optimize the

decoder loss Ldec (Eq.1), and semi-supervised cross-entropy
loss Lsce (Eq 6) jointly into a final loss function,

L = (1− α)Ldec + αLsce (7)

where α ∈ [0, 1] is the hyper-parameter to balance the
weights of Ldec and Lsce. Besides, the mini-batch training
algorithm is presented in Algorithm 1.
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FIGURE 3. The network structure of our proposed model.

IV. EXPERIMENTAL RESULTS
To evaluate our SAGN network, this paper executes ade-
quate implementation on popular diabetic retinopathy grad-
ing datasets, including APTOS 2019 [27] and EyePACS [28].
This section firstly introduces datasets and experimental
details, and then reports the performance compared with
state-of-the-art methods. Besides, the discussion of the main
modules is also analyzed in this part.

A. EXPERIMENTAL DATASETS
EyePACS [28] collects 88,702 annotated colorful fundus
images from different patients. These images are captured
by different fundus cameras in multiple primary care sites
throughout California and elsewhere, and the resolutions
are resized to 512 × 512 pixels, categorized into five DR
grades, including No, Mild, Moderate, Severe, and Prolifer-
ative DRs. The distribution is also summarized in Table 1.
This dataset is employed as the training set, which provides
partial annotations for SAGN, and this paper utilizes the
APTOS 2019 as the testing set to report the classification per-
formance on the semi-supervised DR grading task. In detail,
APTOS 2019 [27] is proposed in the APTOS 2019 diabetic
retinopathy classification contest, which is organized by the
Asia Pacific Tele-Ophthalmology Society. It comprises of
3,662 retinal images with available annotations, which are
captured from multi-clinics with different imaging condi-
tions under fundus photography at Aravind Eye Hospital in

TABLE 1. The class distributions of EyePACS and APTOS 2019 datasets.

India. The distribution of this dataset is highly imbalanced,
as summarized in Table 1. In our experiments, we deploy the
EyePACS to train our SAGN model and test the model on
APTOS 2019.

B. IMPLEMENTATION DETAILS
The whole network is implemented by the PyTorch frame-
work on Ubuntu 18.04 with 2 Nvidia 3070 8G GPUs. The
average time for each image to pass through the network is
0.03 seconds, and training stops when the loss function is
smooth. After many verifications, we found that the model
converged in about 40 epochs. The entire training process
took 11.7 hours. To alleviate the influence of useless regions
of the fundus images, we first remove the black regions for
each image by cropping operation. Then, each retinal image is
resized into 512×512 pixels before feeding into the network,
and each image is augmented by randomly horizontal and
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Algorithm 1 Training of the Semi-Supervised Auto-Encoder
Graph Network

Input: Retinal image dataset I = I l ∪ Iu, and corresponding
grade annotations yl of annotated samples.

1: repeat
2: Choose random labeled and unlabeled samples from
I l and Iu separately to constitute the training batch B;

3: Feed the chosen images B into the CNN encoder F
and obtain the features F (B);

4: Establish the neighbor correlations among images by
the similarity based graph G following Eq 3;

5: Feed the correlation graph G and CNN features F(B)
into the GCN, and output the predicted category Zj;

6: Compute the semi-supervised cross-entropy loss Lsce
by Eq 6;

7: Feed the learned CNN featuresF (B) into the decoder
D and compute the reconstruction loss Ldec via Eq.(2);

8: Compute the final loss function L = (1 − α)Ldec +
αLsce;

9: Optimize the network parameters of CNN encoder,
decoder, and GCN according to back-propagation algo-
rithm;

10: until Convergence;
Output: The optimized CNN encoder and GCN.

vertical rotation. As for the model training, SAGN is updated
by Adam optimizer, and we set the learning rate and max-
imum epochs as 1e-5, and 190, separately. The batch size
is set to 32, where the ratio of labeled and unlabeled data
in a batch is 1:1, and the ratio of the total quantity is 1:4.
In detail, we utilize ResNet-50 [29] as encoder F , which
removes the last fully connected layer, and the decoder D
follows the architecture [30]. Besides, we adopt three con-
volutional graph layers to conduct GCN on the learned CNN
features and output predictions. For parameter settings, the
scale factor σ and threshold τ in graph building are 0.01 and
1e-5, while α is set by 0.6. In this work, we consider the DR
grading task as a binary classification (DR/No Dr) to validate
the performance of SAGN.

C. EVALUATION METRICS
To quantitatively reveal the performance, this paper measures
the model performance by three metrics, including Accuracy,
Sensitivity, and Specificity, which are calculated by following
equations,

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(8)

Sensitivity =
TP

TP+ FN
(9)

Specificity =
TN

TN+ FP
(10)

where TP, TN, FP, and FN denote the true positive, true
negative, false positive, and false negative.

TABLE 2. Performance of semi-supervised DR grading with different
numbers of annotated training images (%).

Moreover, we also visualize the DR grading performance
by t-Stochastic Neighbor Embedding (t-SNE), Receiver
Operating Characteristic (ROC) curve. In detail, t-SNE is an
effective tool for visualizing high-dimensional data by trans-
forming each feature vector into a two-dimensional space,
where nearby points model similar objects and dissimilar
objects are modeled by distant points with high probability;
The ROC is a graph illustrating the property of classification
network at different probability thresholds on True Positive
Rate (TPR) and False Positive Rate (FPR), calculated by

TPR =
TP

TP+ FN
(11)

FPR =
FN

FP+ TN
(12)

where the Area Under ROC Curves (AUC) are also employed
to evaluate the performance, indicating the classification
capability of a classifier on DR grading.

D. PERFORMANCE OF SEMI-SUPERVISED DR GRADING
1) CLASSIFICATION WITH DIFFERENT NUMBER OF
ANNOTATED IMAGES
In this paper, the proposed Semi-supervised Graph Network
utilizes limited annotated retinal images and large amounts
of unlabeled samples to train a discriminative DR grading
model. To evaluate the effectiveness of SAGN, we select dif-
ferent numbers of annotated images to conduct experiments,
including 1K, 10K, and 30K. As summarized in Table 2,
Our SAGN can obtain 74.6% accuracy, 68.2% sensitivity,
and 71.5% specificity when utilizes 1K annotated images,
and it reaches an accuracy of more than 80% with 10K
annotations. Besides, we also implement SAGN with 30K
annotated retinal images, which realizes comparable results
of 94.4% accuracy, 84.0% sensitivity, and 82.2% specificity.
The results indicate that the performance is gradually increas-
ing along with more annotated images.

2) RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE
ROC analysis can reveal the diagnostic performance for a
classification model, displaying its graphical capability in the
DR grading task. From Figure 4, the ROC curve of SAGN
with 30K annotations has a potential increase of TPR with
larger FPR, and it achieves the area under the ROC curve
(AUC) of 0.90. The visualization of the ROC curve can fully
demonstrate the effectiveness of the SAGN classifier on semi-
supervised DR grading tasks with limited annotated retinal
images and massive unlabeled data.
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FIGURE 4. ROC curve of the proposed model on APTOS dataset with 30K
annotations for DR grading.

3) T-STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)
VISUALIZATION
The t-SNE visualization can transform the learned high-
dimensional feature representations into a low-dimensional
space to reveal the feature learning ability of the classi-
fier, which tries to minimize the Kullback-Leibler diver-
gence between the joint probabilities of the low-dimensional
embedding the high-dimensional data. We visualize the fea-
ture representations from the GCN layer before the classifier.
From Figure 5, the data points can be clearly divided into two
groups (DR/no DR) with limited confused samples. These
two groups represent the predicted classes belonging to DR
andNoDR,which states that the GCN feature representations
contain enough discriminative information learned from raw
images, benefit from the feature mining from the labeled data,
and the graph learning from the unlabeled retinal samples.

E. COMPARISON WITH SUPERVISED MODELS
To further demonstrate the advanced DR grading perfor-
mance, we compare our method with three completely
supervised methods, including SE-ResNeXt50 [31], Effi-
cientNet [32], and EnsembleNet [33], which are proposed
recently with same training and testing data. In detail,
SE-ResNeXt50 [31] designed a squeeze-and-excitation (SE)
block adaptively recalibrating channel-wise feature responses
by explicitly modeling interdependencies between channels,
which boost the representational power of a network. Effi-
cientNet [32] is an advanced neural architecture uniformly
scaling all dimensions of depth/width/resolution using a
highly effective compound coefficient. Different from the
formers, EnsembleNet [32] is an ensemble network specially
designed for the DR grading, composing amulti-task learning
strategy with classification, regression, and ordinal regres-
sion for DR diagnostic classification. We also compared
with three recent baseline models Resnet-50, Vgg-16, and
Inception-V3.

We summarize the compared results in Table 3, and it can
be observed that SAGN surpasses four supervised models

FIGURE 5. Feature embeddings with T-SNE for some retinal images under
binary classification.

TABLE 3. Comparison with supervised models (%).

(SE-ResNeXt50, EfficientNet, Vgg-16, and Inception-V3)
and achieves 94.4% accuracy, 84.0% sensitivity, and 82.2%
specificity with 30K annotated retinal images. Compared to
EnsembleNet, SAGN only keeps a small distance, such as
drop 4.2% accuracy. It is worth mentioning that, benefiting
from the strong correlation between the samples mined by
the graph neural network, SAGNcan better identify suspected
cases and submit them to experts for further screening, thus
avoiding the possibility of missed diagnosis. In contrast, tra-
ditional supervision methods are limited to the sufficiency of
annotation, but they often require large amounts of labeled
data with cost-expensive and time-consuming human power.
As for our SAGN, it perform weaker sensitivity and speci-
ficity, with limited distance to supervised models. However,
SAGN only requires a small number of annotated sam-
ples under semi-supervised framework to save considerable
annotating manpower. To sum up, our method has potential
effectiveness on semi-supervised DR grading, and it is even
superior to some supervised models.

F. PARAMETER ANALYSIS
In this section, we also evaluate the influence of hyper-
parameters in SAGN.
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FIGURE 6. DR grading performance with different value of parameter α.

FIGURE 7. DR grading performance with different numbers of block.

1) INFLUENCE OF BALANCE PARAMETER α
We first analyze the influence of the balance parameter α
(Eq.7). Specifically, the DR grading performance is discussed
when the balance parameter α changes in [0 : 0.1 : 1].
AS illustrated in Figure 6, our SAGN obtains accuracy 28.5%
when α = 0, which denotes removing the semi-supervised
cross-entropy loss Lsce, and only optimizing the network
by decoding loss Ldec. This proves that the semi-supervised
cross-entropy loss contributes a considerable improvement
(65.9%) on DR grading accuracy. When we set α = 1, that
means removing the decoding loss Ldec, and it drops accuracy
of 7.2%. That elaborates the decoding loss contributes 7.2%
improvement in accuracy.

2) INFLUENCE OF THE NUMBER OF RESIDUAL BLOCK
We then discuss the influence of the number of residual
blocks on the model performance. As shown in Figure 7, the
model’s performance improvements as the number of blocks
gradually increase, which means that with the increase of
effective parameters, the robustness of the model has been
improved. However, when the number of blocks is greater
than 10, the model’s performance begins to decrease, which
means that as the depth of the network increases, the redun-
dant parameters increase, and the complexity of the model
increases, resulting in a decrease in model performance.

V. CONCLUSION
In order to solve complicated annotating work in diabetic
retinopathy grading tasks, this paper proposes a semi-
supervised auto-encoder graph network to extract robust fea-
ture representations from limited labeled retinal images and
sufficient unlabeled data. In detail, it firstly learns CNN
features by an encoder-decoder CNN architecture, trained
from both labeled and unlabeled retinal images, and then
exploits the neighbor correlations based on CNN features
across labeled and unlabeled images. Finally, the graph rep-
resentation module utilizes the CNN features and their corre-
lations to predict the DR grades. With the help of sufficient
unlabeled images, SAGN can achieve performable grading
accuracy with fewer labeled retinal images. The extensive
experiments also demonstrate excellent performance on the
semi-supervised DR grading task.

REFERENCES
[1] H. Tsujinaka, J. Fu, J. Shen, Y. Yu, Z. Hafiz, J. Kays,

D. McKenzie, D. Cardona, D. Culp, W. Peterson, B. C. Gilger, C. S. Crean,
J.-Z. Zhang, Y. Kanan, W. Yu, J. L. Cleland, M. Yang, J. Hanes, and
P. A. Campochiaro, ‘‘Sustained treatment of retinal vascular diseases
with self-aggregating sunitinib microparticles,’’ Nature Commun., vol. 11,
no. 1, pp. 1–13, Dec. 2020.

[2] M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. Van Ginneken,
J. C. Folk, and M. D. Abramoff, ‘‘Automated measurement of the
arteriolar-to-venular width ratio in digital color fundus photographs,’’
IEEE Trans. Med. Imag., vol. 30, no. 11, pp. 1941–1950, Nov. 2011.

[3] S. G. Vázquez, B. Cancela, N. Barreira, M. G. Penedo,
M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló,
and M. Saez, ‘‘Improving retinal artery and vein classification by means
of a minimal path approach,’’Mach. Vis. Appl., vol. 24, no. 5, pp. 919–930,
Jul. 2013.

[4] T. Na, J. Xie, Y. Zhao, Y. Zhao, Y. Liu, Y.Wang, and J. Liu, ‘‘Retinal vascu-
lar segmentation using superpixel-based line operator and its application to
vascular topology estimation,’’Med. Phys., vol. 45, no. 7, pp. 3132–3146,
Jul. 2018.

[5] V. S. Joshi, J. M. Reinhardt, M. K. Garvin, and M. D. Abramoff, ‘‘Auto-
mated method for identification and artery-venous classification of vessel
trees in retinal vessel networks,’’ PLoS ONE, vol. 9, no. 2, Feb. 2014,
Art. no. e88061.

[6] X. Li, Y. Jiang, M. Li, and S. Yin, ‘‘Lightweight attention convolutional
neural network for retinal vessel image segmentation,’’ IEEE Trans. Ind.
Informat., vol. 17, no. 3, pp. 1958–1967, Mar. 2021.

[7] Q. Yan, B. Chen, Y. Hu, J. Cheng, Y. Gong, J. Yang, J. Liu, and Y. Zhao,
‘‘Speckle reduction of OCT via super resolution reconstruction and its
application on retinal layer segmentation,’’ Artif. Intell. Med., vol. 106,
Jun. 2020, Art. no. 101871.

[8] Y. Chai, H. Liu, and J. Xu, ‘‘A new convolutional neural network model
for peripapillary atrophy area segmentation from retinal fundus images,’’
Appl. Soft Comput., vol. 86, Jan. 2020, Art. no. 105890.

[9] V. Gulshan, L. Peng,M. Coram,M. C. Stumpe, D.Wu, A. Narayanaswamy,
S. Venugopalan, K. Widner, T. Madams, J. Cuadros, and R. Kim, ‘‘Devel-
opment and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs,’’ J. Amer. Med. Assoc., vol. 316,
no. 22, pp. 2402–2410, 2016.

[10] J. Krause, V. Gulshan, E. Rahimy, P. Karth, K. Widner, G. S. Corrado,
L. Peng, and D. R. Webster, ‘‘Grader variability and the importance
of reference standards for evaluating machine learning models for dia-
betic retinopathy,’’ Ophthalmology, vol. 125, no. 8, pp. 1264–1272,
Aug. 2018.

[11] L. Pasa and A. Sperduti, ‘‘Pre-training of recurrent neural networks via
linear autoencoders,’’ inProc. Adv. Neural Inf. Process. Syst., vol. 27, 2014,
pp. 3572–3580.

[12] X. Lu, S. Matsuda, C. Hori, and H. Kashioka, ‘‘Speech restoration based
on deep learning autoencoder with layer-wised pretraining,’’ in Proc. 13th
Annu. Conf. Int. Speech Commun. Assoc., 2012, pp. 1504–1507.

140766 VOLUME 9, 2021



Y. Li et al.: Semi-Supervised Auto-Encoder Graph Network for Diabetic Retinopathy Grading

[13] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and
L. Bottou, ‘‘Stacked denoising autoencoders: Learning useful representa-
tions in a deep network with a local denoising criterion,’’ J. Mach. Learn.
Res., vol. 11, no. 12, pp. 1–38, 2010.

[14] C. You, Q. Yang, H. Shan, L. Gjesteby, G. Li, S. Ju, Z. Zhang, Z. Zhao,
Y. Zhang, W. Cong, and G. Wang, ‘‘Structurally-sensitive multi-scale
deep neural network for low-dose CT denoising,’’ IEEE Access, vol. 6,
pp. 41839–41855, 2018.

[15] C. You, G. Li, Y. Zhang, X. Zhang, H. Shan, M. Li, and S. Ju, ‘‘CT
super-resolution GAN constrained by the identical, residual, and cycle
learning ensemble (GAN-CIRCLE),’’ IEEE Trans. Med. Imag., vol. 39,
no. 1, pp. 188–203, Jan. 2019.

[16] C. You, L. Yang, Y. Zhang, and G. Wang, ‘‘Low-dose CT via deep CNN
with skip connection and network-in-network,’’ Proc. SPIE, vol. 11113,
Sep. 2019, Art. no. 111131W.

[17] C. Playout, R. Duval, and F. Cheriet, ‘‘A novel weakly supervisedmultitask
architecture for retinal lesions segmentation on fundus images,’’ IEEE
Trans. Med. Imag., vol. 38, no. 10, pp. 2434–2444, Oct. 2019.

[18] D. Marin, M. E. Gegundez-Arias, B. Ponte, F. Alvarez, J. Garrido,
C. Ortega, M. J. Vasallo, and J. M. Bravo, ‘‘An exudate detection method
for diagnosis risk of diabetic macular edema in retinal images using
feature-based and supervised classification,’’ Med. Biol. Eng. Comput.,
vol. 56, no. 8, pp. 1379–1390, Aug. 2018.

[19] X. Xu, W. Ding, M. D. Abrámoff, and R. Cao, ‘‘An improved arteriove-
nous classification method for the early diagnostics of various diseases in
retinal image,’’ Comput. Methods Programs Biomed., vol. 141, pp. 3–9,
Apr. 2017.

[20] K. A. Sreeja and S. S. Kumar, ‘‘Automated detection of retinal hemorrhage
based on supervised classifiers,’’ Indonesian J. Electr. Eng. Informat.,
vol. 8, no. 1, pp. 140–148, Mar. 2020.

[21] C. You, J. Yang, J. Chapiro, and J. S. Duncan, ‘‘Unsupervised wasserstein
distance guided domain adaptation for 3D multi-domain liver segmen-
tation,’’ in Interpretable and Annotation-Efficient Learning for Medical
Image Computing. Cham, Switzerland: Springer, 2020, pp. 155–163.

[22] C. You, R. Zhao, L. Staib, and J. S. Duncan, ‘‘Momentum contrastive
voxel-wise representation learning for semi-supervised volumetric med-
ical image segmentation,’’ 2021, arXiv:2105.07059. [Online]. Available:
https://arxiv.org/abs/2105.07059

[23] R. Bakalo, J. Goldberger, and R. Ben-Ari, ‘‘Weakly and semi supervised
detection in medical imaging via deep dual branch net,’’ Neurocomputing,
vol. 421, pp. 15–25, Jan. 2021.

[24] S. Han, S. I. Hwang, and H. J. Lee, ‘‘A weak and semi-supervised segmen-
tation method for prostate cancer in trus images,’’ J. Digit. Imag., vol. 33,
pp. 1–8, Feb. 2020.

[25] S. Menon, D. Chapman, P. Nguyen, Y. Yesha, M. Morris, and
B. Saboury, ‘‘Deep expectation-maximization for semi-supervised
lung cancer screening,’’ 2020, arXiv:2010.01173. [Online]. Available:
https://arxiv.org/abs/2010.01173

[26] A. C. Good and W. G. Richards, ‘‘Rapid evaluation of shape similarity
using Gaussian functions,’’ J. Chem. Inf. Comput. Sci., vol. 33, no. 1,
pp. 112–116, Jan. 1993.

[27] Aptos. (2019). Blindness Detection. [Online]. Available:
https://www.kaggle.com/c/aptos2019-blindness-detection/

[28] M. Voets, K. Møllersen, and L. A. Bongo, ‘‘Reproduction study using
public data of: Development and validation of a deep learning algorithm
for detection of diabetic retinopathy in retinal fundus photographs,’’ PLoS
ONE, vol. 14, no. 6, Jun. 2019, Art. no. e0217541.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[30] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Image super-resolution using
deep convolutional networks,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2015.

[31] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze- and-excitation networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[32] M. Tan and Q. Le, ‘‘Efficientnet: Rethinking model scaling for con-
volutional neural networks,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[33] B. Tymchenko, P. Marchenko, and D. Spodarets, ‘‘Deep learning approach
to diabetic retinopathy detection,’’ in Proc. 9th Int. Conf. Pattern Recognit.
Appl. Methods (ICPRAM), M. D.Marsico, G. S. di Baja, and A. L. N. Fred,
Eds. Valletta, Malta: SCITEPRESS, Feb. 2020, pp. 501–509.

YUJIE LI received the B.S. degree from the School
of Computer, Ludong University, Yantai, China,
in 2008, and the B.S. and M.S. degrees from the
Department of Computer Engineering,Wonkwang
University, Iksan, South Korea, in 2008 and 2010,
respectively. She is currently pursuing the Ph.D.
degree with the Department of Computer Software
Engineering, Wonkwang University. She is also a
Lecturer with the College of Computer Science
and Engineering, Weifang University of Science

and Technology, Weifang, China. Her current research interests include
image processing, deep learning, and pattern recognition.

ZHANG SONG received the bachelor’s degree in
clinical medicine and the master’s degree in pedi-
atrics from Qingdao University, in 2014 and 2017,
respectively. She is currently a Pediatric Physician
with The Affiliated Hospital of Qingdao Univer-
sity, Qingdao, China. Her main research interests
include blood system diseases and tumors.

SUNKYOUNG KANG received the bachelor’s
and Ph.D. degrees from the Department of Com-
puter Engineering, Wonkwang University, Iksan,
South Korea, in 2000 and 2010, respectively.
From 2010 to 2017, she was a Research Director
of Good Information Technologies Company Ltd.
Since 2017, she has been a Professor with the
Department of Computer Software Engineering,
Wonkwang University. Her current research inter-
ests include image processing and big data.

SUNGTAE JUNG received the M.S. and Ph.D.
degrees from the Department of Computer Engi-
neering, Seoul National University, South Korea,
in 1989 and 1994, respectively. Since 1995, he has
been a Professor with the Department of Computer
Software Engineering, Wonkwang University. His
current research interests include image process-
ing, machine learning, and computer graphics.

WENPEI KANG is currently pursuing the bache-
lor’s degree with Southwest University. His main
research interests include artificial intelligence and
image recognition.

VOLUME 9, 2021 140767


