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ABSTRACT This paper considers the short blocklength regime for cognitive radio networks (CRNs) to
deliver ultra-reliable and low-latency communications (URLLCs) promised for beyond 5G networks. The
secondary system consists of a secondary transmitter (ST) and multiple secondary users, which are allowed
to access the same spectrum of licensed users (i.e., the primary system). Adopting linear beamforming at ST,
we formulate the optimization problem of the energy-efficient maximization for the secondary system under
the power constraint at ST and interference power constraints at primary receivers. In the short blocklength
regime, the rate function is more complex and computationally intractable than the traditional Shannon rate
function, which makes the formulated problem more difficult to solve. By leveraging techniques from the
Dinkelbach method and the inner approximation method, we first devise newly approximated functions to
convexify nonconvex constraints, and the iterative algorithm is then developed to obtain at least a locally
optimal solution. To further enhance the energy efficiency of the secondary system, we consider a joint
optimization of beamforming and antenna selection at ST, where binary variables are introduced to establish
the operation modes of transmit antennas. To solve the mixed-integer nonconvex problem, we incorporate
the penalty function into the objective function to dealing with the uncertainty of binary variables. Numerical
results are provided to demonstrate the fast convergence and merits of the proposed algorithms, as well as
to confirm the role of antenna selection in improving energy efficiency.

INDEX TERMS Antenna selection, beamforming, broadcast channel, cognitive radio, Dinkelbach method,
energy efficiency, inner approximation, mixed-integer programming.

I. INTRODUCTION
A prominent solution to tackle the spectrum scarcity is based
on cognitive radio (CR) techniques, where the secondary sys-
tem (i.e., unlicensed users) is allowed to access the frequency
spectrum of the primary system (i.e., licensed users). There
are two well-known CR schemes, such as the opportunis-
tic spectrum access model and spectrum sharing model [1].
In the former, the secondary transmitter (ST) acquirers the full
information of the primary network to coexist with it to avoid
interference [2], [3], and in the latter, the aggregated inter-
ference power at the primary receivers (PRs) caused by ST
must be lower than a predefined threshold [4], [5]. Towards
this end, spectral efficiency (SE) and energy efficiency (EE)
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have been be considered as the key performance metrics in
designing an effective CR network (CRN).

On the other hand, ultra-reliable low-latency communica-
tion (URLLC) is considered as one of the key pillars of 5G
New Radio to support emerging services and mission-critical
applications such as Internet of Things (IoT), smart grids,
remote surgery and intelligent transportation systems [6].
In 4G-LTE, the end-to-end (e2e) latency, including process-
ing delay, wireless transmission delay and queuing delay
etc., is in the 4-millisecond range, and targets even less than
one millisecond in 3GPP Release 15 for 5G networks and
beyond. In addition, URLLC requires 99.999 percent relia-
bility and a very low block error rate, such as in the range of
10−9 − 10−5, depending on the specific use cases [7]. This
makes a considerable challenge for system design and oper-
ations and will require fundamentally different approaches
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due to a conflicting goal of low latency and ultrahigh reli-
ability. In particular, low-latency requirements mandate the
use of short packets to transmit a small amount of data which
leads to a severe degradation in the reliability and channel
coding gain, while ensuring ultrahigh reliability demands for
more resources (e.g., parity, redundancy), resulting in higher
latency [6], [8]. Therefore, more practical approaches with
low computational complexity for efficient deployment of
URLLC-enabled networks are of crucial importance.

A. RELATED WORKS
URLLC is able to unleash a plethora of emerging applica-
tions such as intelligent transportation system, tactile internet,
remote surgery, autonomous driving, and factory automation,
etc [8]. Recently, there has been several studies on resource
allocation of URLLC-enabled networks. Elayoubi et al. [9]
developed different resource allocation strategies for trans-
missions and re-transmission in the Industrial Internet of
Things (IoT), depending on the requirements of different
services and on the traffic characteristics. A joint design of
subchannel assignment and power control to maximize the
total network energy efficiency was studied in [10], where
deep reinforcement learning (DRL) was developed for its
solution. By characterizing the effects of system parame-
ters, the authors in [11] developed an efficient model for
URLLC packet transmissions and derived scaling results for
the URLLC capacity.

In order to guarantee low-latency communication, short
block-length communication must be used [12], which will
pose significant challenges in terms of system design and
performance optimization. Under the short block-length
regime, the performance analysis in terms of throughput
and decoding error probability is more complicated than in
the long block-length regime using the standard Shannon
capacity formula. For a given blocklength and error proba-
bility, Polyanskiy et al. [13] first derived the approximated
achievable rate in short block-length regime as a function
of channel capacity, channel dispersion and complementary
Gaussian cumulative distribution function. This work was
further extended in [14] which investigated the maximal
achievable rate under quasi-static multiple-input multiple-
output fading channels. Naturally, the resource allocation
problems in URLLC are more difficult to solve, compared to
the standard Shannon capacity formula, which requires new
approaches with low computational complexity.

Recently, the literature on resource allocation in URLLC
has recently received considerable attention. Specifically,
the authors in [15] proposed a packet delivery mechanism
to reduce the required bandwidth for URLLC while meet-
ing queueing delay. References [16] developed a proactive
packet dropping mechanism to optimize the packet drop-
ping, power allocation and bandwidth allocation policies,
which helps satisfy both transmission and queueing delays.
The EE maximization problem was considered in [17] by
jointly optimizing bandwidth, power control and antenna
configuration, subject to latency and reliability constraints.

The unsupervised deep learning framework was introduced
in [18] to minimize bandwidth, where the QoS constraints
of URLLC are taken into account. To deploy URLLC in
real-time wireless control systems, a co-design problem of
URLLC and control was introduced in [19] which developed
a low-complexity iteration algorithm. It is noted that all these
aforementioned works adopted lower-bound approximations
of URLLC rate functions, aiming to simplify the optimization
problems.

Despite its potential, there is only a few attempts on study-
ing resource allocation of URLLC-enabled CRNs. By consid-
ering both massive machine-type communication (mMTC)
and URLLC services for a cognitive unmanned aerial vehicle
(UAV)-aided network, the authors in [20] first derived the
analytical expressions of the throughput and then developed
an efficient algorithm for EE maximization problem. Tack-
ling the stringent requirement of latency and reliability in
the URLLC and enhancedmobile broadband (eMBB) coexis-
tence systemwas studied in [21], where the authors developed
a dynamic spectrum allocation scheme to help alleviating the
packet collisions ofmultiplexingURLLC and eMBBpackets.
However, these works only considered a single antenna at the
secondary transmitter while in practice it is often equipped
with multiple antennas to guarantee high throughput, which
requires an efficient beamforming design.

B. MAIN CONTRIBUTIONS
Against the above background, we consider the URLLC in
downlink cognitive radio networks with short block-length
regime, where a multi-antenna ST transmits data to multi-
ple secondary receivers (SRs). We study the optimization
problem of maximizing energy efficiency of the secondary
system subject to power constraint at ST and interference
power constraint at PRs. We also propose a joint design of
beamforming and antenna selection (JDBAS) at ST to select a
subset of active antennas to transmit data in each transmission
block. This design helps reduce the total power consumption
while still maintaining a good SE, resulting in better EE
performance. The optimization problem of interest is either
nonconvex programming or mixed-integer non-convex pro-
gramming, which is often very challenging and even impos-
sible to obtain its globally optimal solution. We develop
low-complexity iterative algorithms to address these prob-
lems efficiently. Our main contributions are summarized as
follows.
• We formulate the EE maximization (EEmax) prob-
lem for an URLLC-aided CRN subject to the power
constraint at ST and interference power constraints at
PRs. Our consideration leads to a highly nonconvex
optimization problem, which is hard to obtain a glob-
ally optimal solution. Towards an appealing applica-
tion, we first apply Dinkelbach method [22] to make
the original problem more computational tractable and
then employ inner approximation (IA) framework [23]
to approximate nonconvex parts. An iterative algorithm
of low-computational complexity is developed for its
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solution, which guarantees to achieve at least a local
optimal solution.

• To further improve EE performance, we consider the
JDBAS-EEmax problem by jointly designing beam-
forming and antenna selection at ST. The key idea is to
find the optimal subset of active antennas by introducing
binary variables to establish on/off operation modes of
transmit antennas at ST, which are capable of reduc-
ing the power consumption of radio frequency (RF)
chains, resulting in higher EE. The problem is formu-
lated as a mixed-integer nonconvex problem, which is
even more difficult to solve compared to the EEmax
problem. To this end, we introduce a parameterized
relaxed problem to tackle uncertainties of binary nature
and develop an efficient iterative algorithm based on the
approximate convex functions developed in solving the
EEmax problem.

• Numerical results are provided to show fast convergence
of the proposed algorithms. They also reveal the effec-
tiveness of optimizing antenna selections in terms of the
achievable EE performance.

C. PAPER STRUCTURE AND NOTATION
The rest of the paper is organized as follows. Section II
presents the system model and problem formulation. We
provide the iterative algorithms for solving EEmax and
JDBAS-EEmax problems in Sections III and IV, respectively.
Numerical results and conclusions are provided in Sections V
and VI, respectively.
Notations:We summarize themainmathematical notations

which are frequently used in the paper as follows. Bold low-
ercase letters and lowercase letters represent for vectors and
scalars, respectively. (·)H , (·)T and (·)∗ denote the Hermitian
transpose, normal transpose, and conjugate, respectively. | · |
and || · ||2 correspond to the cardinality, and l2−norm opera-
tors, respectively. E[·] represents the expectation operation.
CN (µ, σ 2) is circularly symmetric complex Gaussian ran-
dom variable with mean µ and variance σ 2.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SIGNAL MODEL
We consider a downlink CRN consisting of an N -antenna
ST (or the secondary base station (SBS)) serving K single-
antenna SRs,1 which are allowed to share the same frequency
spectrum licensed forM PRs, as shown Fig. 1. Let us denote
byN , {1, · · · ,N },K , {1, · · · ,K } andM , {1, · · · ,M}
the sets of transmit antennas at ST, K SRs and M PRs,
respectively. The channel vectors from ST to SR k ∈ K and
PR m ∈ M are denoted by hk ∈ CN×1 and gm ∈ CN×1,
respectively, which account for the effects of both large-
scale and small-scale fading. All the channels are assumed
to be unchanged during a transmission block and change
independently from one block to another.

1The case with multi-antenna SRs allows ST to transmit multiple indepen-
dent data streams to each SR, leading to higher SE [24]. This is an interesting
future work that is out of the scope of this paper.

FIGURE 1. Illustration of a cognitive network model with K SRs
and M PRs.

For the secondary system, we adopt linear beamforming at
ST to convey independent symbols to SRs. Let xk ∈ C with
E{|xk |2} = 1 and wk ∈ CN×1 denote the information symbol
and corresponding beamforming, respectively, intended to
SR k . The received signal at SR k can be expressed as

yk = hHk wkxk +
∑

j∈K\{k}
hHk wjxj + nk (1)

where nk ∼ CN (0, σ 2) is the additive white Gaussian
noise (AWGN) with zero-mean and variance σ 2.
Channel State Information (CSI) Model:Unlike [24]–[26],

which assumed the perfect CSI of all channels, we consider
the worst-case design where the CSI of both hk ,∀k and
gm,∀m is imperfectly known at transceivers. Let ĥk and ĝm
denote the channel estimates of hk ,∀k and gm,∀m. We note
that the specific channel estimation scheme is out of the scope
of this paper. Following [27], [28], the associated CSI errors
are deterministic and bounded as

f (hkhHk − ĥk ĥHk ) ≤ ξk , ∀k, (2)

f (gmgHm − ĝmĝHm ) ≤ ζm, ∀m (3)

with f (X) = maxi |λi(X)| where λi(X) is the eigenvalues of
X; ξk ∈ [0, 1) and ζm ∈ [0, 1) are the upper bounded
CSI errors. To simplify the worst-case design, we further
re-express ξk and ζm as

ξk = δs‖ĥk‖2, ∀k, (4)

ζm = δp‖ĝm‖2, ∀m (5)

where δs and δp denote the normalized channel uncertainty
levels of hk and gm, respectively. In practice, the primary sys-
tem operates independently of the secondary system, leading
to δs < δp.

B. PROBLEM FORMULATION
Power ConsumptionModel: In this work, we consider the lin-
ear power model in [29] which has been widely adopted in the
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literature, taking into account both the total circuit power and
the power consumption for the transmitted data. In particular,
the total power consumption at ST can be modeled as

Ptot(w) =
1
µ

∑
k∈K
‖wk‖

2
+ NPdyn + Psta (6)

where µ ∈ (0, 1], Pdyn and Psta are the power amplifier
efficiency, dynamic power consumption (e.g., power radia-
tion of RF chain) and the static power (e.g., cooling system),
respectively.

By incorporating channel uncertainties (4) and (5)
into (1) and treating multiuser interference as thermal
noise [28], [30], the worst-case signal-to-interference-plus-
noise ratio (SINR) of SR k can be expressed as

γk (w) ,
|ĥHk wk |

2
− ξk‖wk‖

2∑
j∈K\{k} |ĥ

H
k wj|

2 +
∑

j∈K\{k} ξk‖wj‖
2 + σ 2

(7)

where w , [wH
1 , · · · ,w

H
K ]

H
∈ CKN×1. The worst-case

throughput of SR k in nats/s for URLLC can be approximated
as [13]:

Rk (w) = B
(
ln
(
1+ γk (w)

)
−

√
V (γk (w))
τB

Q−1(εk )
)

(8)

where V (γk (w)) = 1 −
(
1 + γk (w)

)−2 is the channel
dispersion and Q−1(·) is the inverse function with Q(x) =
1
√
2π

∫
∞

x exp(−t2/2)dt;B, τ and εk are the system bandwidth,
transmission time interval (TTI) and decoding error probabil-
ity, respectively.

The EE in nats/Joule can be expressed as

EE(w) ,
∑

k∈K Rk (w)
Ptot(w)

(9)

which is defined as the ratio between the sum throughput
(nats/s) of all SRs and the total power consumption (Watt)
at ST. Here the power consumed for the signal processing at
SRs is ignored as it is dominated by Ptot(w) at ST. The EE
optimization problem of interest is mathematically stated as:

(EEmax) : maximize
w

EE(w) (10a)

subject to 9m(w) ≤ Im, ∀m (10b)

Rk (w) ≥ Rmin
k , ∀k (10c)∑

k∈K
‖wk‖

2
≤ Pmax (10d)

where 9m(w) ,
∑

j∈K |ĝ
H
mwj|

2
+
∑

j∈K ζm‖wj‖
2 given in

constraint (10b) is the total interference power at PRm caused
by the downlink transmission of the secondary system, which
is limited by Im. Constraint (10c) is to ensure the predeter-
mined rate requirement Rmin

k for SR k , and constraint (10d)
is the power constraint at ST with the power budget Pmax.
It is easy to observe that the rate function Rk (w) is either
nonconvex or nonconcave, leading to the nonconvexity of
constraint (10c) and nonconcavity of the objective (10a).
Hence, problem (10) is nonconvex which is challenging to
solve due to the complicated throughput function in (8).

III. PROPOSED ITERATIVE ALGORITHM FOR EEmax
In this section, we focus on designing an efficient algorithm
to solve the EEmax problem (10). To doing so, we first
convert (10) to an equivalent problem by the Dinkelbach’s
approach [22], and then employ IA framework to iteratively
convexify nonconvex functions [23].

A. TRACTABLE FORMULATION
To start with we first equivalently rewrite (10) as

maximize
w,r,ρ

∑
k∈K rk
ρ

(11a)

subject to (10b), (10d) (11b)

Rk (w) ≥ rk , ∀k (11c)

rk ≥ Rmin
k , ∀k (11d)

Ptot(w) ≤ ρ (11e)

where r , {rk}∀k and ρ are newly introduced optimization
variables, which can be considered as soft throughputs of
SRs and soft power consumption, respectively. We note that
the equivalence between (10) and (11) is ensured by the fact
that constraints (11c) and (11e) must hold with equality at
optimum. Constraint (11d) is derived from (10c) and (11c).
Next, by the Dinkelbach transformation, we rewrite (11) as

maximize
w,r,ρ

∑
k∈K

rk − ψρ (12a)

subject to (10b), (10d), (11c), (11d), (11e) (12b)

where ψ is a given parameter, which will be iteratively
updated at iteration i as ψ (i)

=
∑

k∈K r (i)k /ρ
(i). We can

observe that the objective function (12a) is linear while con-
straints (10b), (10d), (11d), and (11e) are convex.

B. PROPOSED ITERATIVE ALGORITHM
To convexify (11c), we will apply IA method to approximate
the nonconvex rate function. Let us rewrite (8) as

Rk (w) = B
(
Fk (w)− Gk (w)

Q−1(εk )
√
τB

)
(13)

where Fk (w) , ln
(
1 + γk (w)

)
and Gk (w) ,

√
V (γk (w)).

We are now in position to find a concave lower bound of
Fk (w) and a convex upper bound of Gk (w).
Concave Lower Bound of Fk (w): We introduce new vari-

ables ϕ , {ϕk}∀k to express Fk (w) as

Fk (w) ≥ Fk (w, ϕk ) , ln
(
1+ γk (w, ϕk )

)
(14)

with the additional constraint

|ĥHk wk |
2
− ξk‖wk‖

2
≥ ϕ2k (15)

where

γk (w, ϕk ) ,
ϕ2k

χk (w)
(16)

and

χk (w) ,
∑

j∈K\{k}
|ĥHk wj|

2
+

∑
j∈K\{k}

ξk‖wj‖
2
+ σ 2. (17)
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By [31, Eq. (20)], a lower bound of Fk (w, ϕk ) at a given
feasible point (w(κ), ϕ

(κ)
k ) found at iteration κ of an iterative

algorithm presented shortly is

Fk (w, ϕk ) ≥ F(w(κ), ϕ
(κ)
k )− γk (w(κ), ϕ

(κ)
k )+ 2

ϕ
(κ)
k ϕk

χk (w(κ))

−
(ϕ(κ)k )2

χk (w(κ))(χk (w(κ))+ (ϕ(κ)k )2)

(
χk (w)+ ϕ2k

)
:= F (κ)(w, ϕk ). (18)

It is observed that the approximate function F (κ)(w, ϕk ) is
concave, satisfying

Fk (w(κ), ϕ
(κ)
k ) = F (κ)(w(κ), ϕ

(κ)
k ). (19)

Next, we re-express (15) as

|ĥHk wk |
2
≥ ϕ2k + ξk‖wk‖

2 (20)

where |ĥHk wk |
2 is the quadratic function, which is convex and

can be approximated by the first-order Taylor approximation.
By [31, Eq. (21)], we innerly approximate (20) as

8
(κ)
k (wk ) ≥ ϕ2k + ξk‖wk‖

2 (21)

where 8(κ)
k (wk ) , 2<{(w(κ)

k )H ĥk ĥHk wk} − |ĥHk w
(κ)
k |

2 is the
linear function and the first-order Taylor approximation of
|ĥHk wk |

2.
Convex Upper Bound of Gk (w):We first rewrite Gk (w) as

Gk (w) ≥ Gk (w, φk ) ,
√
1−

(
1+ γk (w, φk )

)−2 (22)

with the additional constraint

|ĥHk wk |
2
− ξk‖wk‖

2
≤ φk (23)

where

γk (w, φk ) ,
φk

χk (w)
. (24)

We note that
√
x with x > 0 is a concave function, where its

convex approximation around the feasible point x(κ) is given
as [32]:

√
x ≤

√
x(κ)

2
+

x

2
√
x(κ)

. (25)

By (25), we have

Gk (w, φk ) ≤
Gk (w(κ), φ

(κ)
k )

2
+

G2
k (w, φk )

2Gk (w(κ), φ
(κ)
k )

= ak − bk
χ2
k (w)(

χk (w)+ φk
)2 (26)

where

ak ,
Gk (w(κ), φ

(κ)
k )

2
+

1

2Gk (w(κ), φ
(κ)
k )

(27)

bk ,
1

2Gk (w(κ), φ
(κ)
k )

. (28)

By the inequality

1
x
≥

2
x(κ)
−

x
(x(κ))2

(29)

it follows that [32]:

χ2
k (w)(

χk (w)+ φk
)2 = χ2

k (w)
χk (w)+ φk

1
χk (w)+ φk

≥
χ2
k (w)

χk (w)+ φk

( 2

χk (w(κ))+ φ(κ)k

−
χk (w)+ φk

(χk (w(κ))+ φ(κ)k )2

)
=

2

χk (w(κ))+ φ(κ)k

χ2
k (w)

χk (w)+ φk
−

χ2
k (w)

(χk (w(κ))+ φ(κ)k )2

(30)

under the condition:

χk (w)+ φk ≤ 2(χk (w(κ))+ φ(κ)k ). (31)

We now apply the inequality [31, Eq. (21)] to approximate
χ2
k (w)/(χk (w)+ φk ) as

χ2
k (w)

χk (w)+ φk
≥

2χk (w(κ))

χk (w(κ))+ φ(κ)k

χk (w)

−
χ2
k (w

(κ))

(χk (w(κ))+ φ(κ)k )2
(χk (w)+ φk ) (32)

≥
2χk (w(κ))

χk (w(κ))+ φ(κ)k

L(κ)
k (w)

−
χ2
k (w

(κ))

(χk (w(κ))+ φ(κ)k )2
(χk (w)+ φk ) (33)

under the condition:

χk (w)+ φk ≤ 2χk (w)
χk (w(κ))+ φ(κ)k

χk (w(κ))
(34)

where L(κ)
k (w) is the first-order Taylor approximation of

χk (w):

χk (w) ≥ L(κ)
k (w) :=

∑
j∈K\{k}

2<{(w(κ)
j )H ĥk ĥHk wj}

+

∑
j∈K\{k}

2ξk<{(w
(κ)
j )Hwj} −

∑
j∈K\{k}

|ĥHk w
(κ)
j |

2

−

∑
j∈K\{k}

ξk‖w
(κ)
j ‖

2
+ σ 2. (35)

Substituting (30) and (33) into (26), we have

Gk (w, φk ) ≤ ak − bk
( 4χk (w(κ))

(χk (w(κ))+ φ(κ)k )2
L(κ)
k (w)

−
2χ2

k (w
(κ))

(χk (w(κ))+ φ(κ)k )3
(χk (w)+ φk )

−
χ2
k (w)

(χk (w(κ))+ φ(κ)k )2

)
:= G(κ)

k (w, φk ) (36)
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where G(κ)
k (w, φk ) is a convex function which satisfies

Gk (w(κ), φ
(κ)
k ) = G(κ)

k (w(κ), φ
(κ)
k ). (37)

As a result, the approximate concave of Rk (w), denoted by
R(κ)
k (w, ϕk , φk ), is given as

R(κ)
k (w, ϕk , φk ) = B

(
Fk (w)− Gk (w)

Q−1(εk )
√
τB

)
. (38)

We also iteratively replace (39) by the following convex
constraint:

|ĥHk wk |
2
≤ φk + ξk

(
2<{(w(κ)

k )Hwk} − ‖w
(κ)
k ‖

2). (39)

In summary, we solve the following approximate convex
program of (10) at iteration κ + 1:

maximize
w,r,ρ,ϕ,φ

∑
k∈K

rk − ψρ (40a)

subject to (10b), (10d), (11d), (11e) (40b)

8
(κ)
k (wk ) ≥ ϕ2k + ξk‖wk‖

2, ∀k (40c)

χk (w)+ φk ≤ 2(χk (w(κ))+ φ(κ)k ), ∀k (40d)

χk (w)+ φk ≤ 2χk (w)
χk (w(κ))+ φ(κ)k

χk (w(κ))
, ∀k

(40e)

|ĥHk wk |
2
≤ φk + ξk

(
2<{(w(κ)

k )Hwk}

− ‖w(κ)
k ‖

2), ∀k (40f)

R(κ)
k (w, ϕk , φk ) ≥ rk , ∀k. (40g)

The solution obtained by solving (40) is updated as the fea-
sible point for next iteration. This procedure is repeated until
convergence. The IA-based iterative algorithm often requires
an initial feasible point to ensure that the convex optimization
problem (40) is successfully solved at the first iterations.
To doing so, we randomly generate (w(0),ϕ(0),φ(0)) satisfy-
ing (10b) and (10d) and solve the following simple convex
program:

maximize
w,r,ρ,ϕ,φ,%

% (41a)

subject to (10b), (10d), (11e), (40c), (40d),

(40e), (40f), (40g) (41b)

rk − Rmin
k ≥ %, ∀k (41c)

where % is a slack variable. The initial feasible point
(w(0),ϕ(0),φ(0)) is found by successively solving (41) until
reaching % ≥ 0. The proposed iterative algorithm to solve the
EEmax problem (10) is summarized in Algorithm 1.

C. CONVERGENCE AND COMPLEXITY ANALYSIS
The iterative Algorithm 1 is mainly based on the principle
of IA framework, where its convergence to a local optimal
solution was investigated in [33]. Let EE(κ) denote the EE
value obtained at iteration κ . Due to (18), (19), (36) and (37),
we can show that Algorithm 1 produces a non-decreasing
sequence of EE values, i.e., EE(κ+1)

≥ EE(κ), which is
bounded above due to constraints (10b) and (10d). Moreover,

Algorithm 1 Proposed IA-Based Iterative Algorithm to Solve
EEmax Problem (10)
Initialization: Set κ := 0 and generate an initial feasible point

(w(0),ϕ(0),φ(0)) by successively solving (41);
1: repeat
2: Solve (40) to obtain the solution (w?, r?, ρ?,ϕ?,φ?);
3: Update (w(κ+1),ϕ(κ+1),φ(κ+1)) := (w?,ϕ?,φ?);
4: Update ψ (κ+1)

=
∑

k∈K r?k /ρ
?;

5: Set κ := κ + 1;
6: until Convergence
7: Output: the optimal solution w?.

the feasible set of (40) is convex and connected. After a finite
number of iterations, Algorithm 1 is ensured to achieve at
least at a local optimal solution, which is shown to satisfy
the Karush-Kuhn-Tucker conditions of (12) (and hence (10))
[23, Theorem 1].

The convex program (40) includes KN + 3K + 1 scalar
optimization variables and 6K + M + 2 linear and second-
order cone (SOC) constraints. As a result, the worst-case of
per-iteration complexity of Algorithm 1 using the interior-
point method is estimated as O

(√
6K +M (KN + 3K )3

)
[34, Chap. 6].

IV. PROPOSED ITERATIVE ALGORITHM FOR
JDBAS-EEmax
In practice, ST can be equipped with NRF radio frequency
(RF) chains with NRF ≤ N , which aims at reducing hardware
complexity. In other words, the number of active antennas is
less than the number of RF chains. This design can potentially
offer higher spatial diversity gains, minimize the interference
power at PRs and reduce the power consumption at ST,
resulting in better EE performance.

To find the optimal subset of active transmit antennas at
ST, we introduce πn ∈ {0, 1} to indicate the operation mode
(ON/OFF) of the n-th antenna, i.e.,

πn =

{
1, if the n-th antenna is activated, (42a)

0, otherwise. (42b)

We define π , [π1 · · · , πN ] as the state vector of all transmit
antennas. Similar to [35], let us denote the beamforming
weights of all SRs involved with the n-th antenna at ST
by w̄n ,

[
[w1]n, · · · , [wK ]n

]T , where [wk ]n denotes the
n-th element of wk . To facilitate the optimization design,
we consider the following convex constraint:

‖w̄n‖
2
≤ ωn, ∀n (43)

where ω , {ωn}∀n are newly introduced variables. The
n-th antenna is inactive if πn = 0 and w̄n = 0, which implies
that

ωn ≤ πnPmax, ∀n. (44)

The total power consumption Ptot(w) in (6) is rewritten as

Ptot(ω,π ) =
1
µ

∑
n∈N

ωn + Pdyn
∑
n∈N

πn + Psta. (45)
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Based on (10) and the discussions above, the joint beam-
forming and transmit antenna selection for EE maximization
problem (called JDBAS-EEmax for short) is stated as

(JDBAS− EEmax) :

maximize
w,ω,π

EE(w,ω,π ) ,
∑

k∈K Rk (w)
Ptot(ω,π )

(46a)

subject to (10b), (10c) (46b)

‖w̄n‖
2
≤ ωn, ∀n (46c)

ωn ≤ πnPmax, ∀n (46d)∑
n∈N

ωn ≤ Pmax (46e)

1 ≤
∑
n∈N

πn ≤ NRF (46f)

πn ∈ {0, 1}, ∀n (46g)

where constraint (46f) is added to guarantee the minimum
and maximum number of active antennas. It is clear that the
JDBAS-EEmax problem (46) is a mixed-integer nonconvex
problem, which is even more challenging to solve, compared
to the EEmax problem (10).

A. BRUTE-FORCE SEARCH-BASED ITERATIVE ALGORITHM
A simple way to solve (46) is based on the Brute-Force
Search (BFS) method, which is done by generating all possi-
ble subsets of π and strictly satisfying the conditions in (46f),
and then reuse Algorithm 1 to solve each subproblem cor-
responding to each set of π . The final optimal solution is
the solution of subproblem having the highest EE. We note
that this method requires to solve

∑NRF
n=1

N !
n!(N−n)! possible

subproblems, resulting in the extremely high computational
complexity. As a result, the EE performance obtained by the
BFS-based method can be used as a benchmarking purpose
(i.e., an upper bound) for other suboptimal schemes.

The JDBAS-EEmax subproblem of (46) for a given π is
expressed as

maximize
w,ω

EE(w,ω|π ) ,
∑

k∈K Rk (w)
Ptot(ω|π )

(47a)

subject to (10b), (10c), (46c), (46d), (46e), (46f). (47b)

We can see that problem (47) has the similar struc-
ture with (10), while newly constraints (46c), (46d), (46e)
and (46f) are linear and quadratic constraints. Therefore,
we can directly reuse the approximate convex functions pre-
sented in Section III to convexify (47). In particular, we solve
the following approximate convex program of (47) at iteration
κ + 1:

maximize
w,ω,r,ρ,ϕ,φ

∑
k∈K

rk − ψρ (48a)

subject to (10b), (11d), (40c)− (40g), (46c)− (46f)

(48b)

Ptot(ω|π ) ≤ ρ (48c)

which has KN + 3K + N + 1 scalar optimization variables
and 6K +M + 2N + 2 linear and second-order cone (SOC)

Algorithm 2 Proposed BFS-Based Iterative Algorithm to
Solve JDBAS-EEmax Problem (46)
1: Initialization: Set EE? = 0;
2: for each given set of π do {solving subproblem (47)}
3: Initialization: Set κ := 0 and generate an initial feasible

point (w(0),ϕ(0),φ(0)) for each subproblem;
4: repeat
5: Solve (48) to obtain the solution (w?,ω?, r?, ρ?, ϕ?,φ?);

6: Update (w(κ+1),ϕ(κ+1),φ(κ+1)) := (w?,ϕ?,φ?) and
compute EE(w(κ+1),ω(κ+1)|π );

7: Update ψ (κ+1)
=
∑

k∈K r?k /ρ
?;

8: Set κ := κ + 1;
9: until Convergence
10: if EE(w(κ),ω(κ)|π ) > EE? then
11: Set EE? := EE(w(κ),ω(κ)|π ) and (w∗,π∗,ω∗) :=

(w(κ),π (κ),ω(κ)) as the newly updated optimal solution;
12: end if
13: end for
14: Output: The optimal solution (w?,π?,ω?).

constraints. We summarize the BFS-based iterative algorithm
to solve the JDBAS-EEmax problem (46) in Algorithm 2.
The worst-case of per-iteration complexity of Algorithm 2 is
thus

∑NRF
n=1 n!

N !
(N−n)! × O

(√
6K +M + 2N (KN+3K+N )3

)
,

which is seen much higher than that of Algorithm 1.

B. IA-CR BASED ITERATIVE ALGORITHM
We now focus on developing a suboptimal yet computa-
tionally efficient solution for (46), which aims at jointly
optimizing both continuous and binary variables in a single
layer. As a standard way to solve a mixed-integer nonconvex
problem [35], [36], we relax binary variables to be continuous
as πn ∈ [0, 1],∀n. The continuous relaxation (CR) of the
JDBAS-EEmax problem (46) is expressed as

maximize
w,ω,π

EE(w,ω,π ) ,
∑

k∈K Rk (w)
Ptot(ω,π )

(49a)

subject to (10b), (10c), (46c), (46d), (46e), (46f)(49b)

0 ≤ πn ≤ 1, ∀n. (49c)

From the relaxed constraint (49c), we can see that any
feasible point of (49) is also feasible to (46), but not vice
versa. Inspired by [36], we incorporate a penalty function
into the objective function to obtain near exact binary values
of (49) at optimum.

For any πn ∈ [0, 1], we have πn ≥ π2
n . The equality holds

(i.e., πn = π2
n ) only if πn = {0, 1}. Constraint (46g) can be

equivalently expressed as

(46g)⇔ πn = {0, 1} & πn ≤ π
2
n , ∀n. (50)

Therefore, to enforce πn = π2
n at optimum, we consider

the penalty function ϒ(π ) =
∑

n∈N (π2
n − πn), which is

always non-positive and can be used to guarantee the satis-
faction in (50). The parameterized CR problem, which incor-
porates the penalty functionϒ(π ) into the objective function,
is expressed as

maximize
w,ω,π

EE(w,ω,π ) ,
∑

k∈K Rk (w)
Ptot(ω,π )

+ βϒ(π )

(51a)
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Algorithm 3 Proposed IA-CR-Based Iterative Algorithm to
Solve JDBAS-EEmax Problem (46)
Initialization: Set κ := 0 and generate an initial feasible point

(w(0),π (0),ϕ(0),φ(0));
1: repeat
2: Solve (53) to obtain the solution (w?,π?,ω?, r?, ρ?,

ϕ?,φ?);
3: Update (w(κ+1),π (κ+1),ϕ(κ+1),φ(κ+1)) := (w?,π?,

ϕ?,φ?);
4: Update ψ (κ+1)

=
∑

k∈K r?k /ρ
?;

5: Set κ := κ + 1;
6: until Convergence
7: Recover exact binary values as: π?n = bπ

(κ)
n + 0.5c,∀n;

8: Repeat Steps 1-6 with a given π? to find the exact solution of
(w?,ω?);

9: Output: The optimal solution (w?,π?,ω?).

subject to (10b), (10c), (46c), (46d), (46e), (46f), (49c)

(51b)

where β is the constant penalty parameter. β should be a
positive value and sufficiently large to guarantee the optimal-
ity of (51) and enforce ϒ(π ) close to zeros. The function
ϒ(π ) is convex and can be directly approximated by IA
method. Denoting by ϒ (κ)(π ) the approximate function of
ϒ(π ), we have

ϒ(π ) ≥ ϒ (κ)(π )

:=

∑
n∈N

(
2π (κ)

n πn − (π (κ)
n )2 − πn

)
. (52)

The approximate convex program of (51) solved at itera-
tion κ + 1 is given as

maximize
w,ω,π ,r,ρ,ϕ,φ

∑
k∈K

rk − ψρ + βϒ (κ)(π ) (53a)

subject to (10b), (11d), (40c)− (40g),

(46c)− (46f), (49c) (53b)

Ptot(ω,π ) ≤ ρ (53c)

where its per-iteration complexity is O
(√

6K +M + N
(KN +3K )3

)
, which is seen much lower than that of the

BFS method presented in Algorithm 2. By numerical results,
we have observed that there may exist some optimal solutions
of π which are close but not exact binary values. To overcome
this issue, we use the following floor function

π?n = bπ
(κ)
n + 0.5c, ∀n (54)

and then re-optimize over other parameters to refine the
optimal solution. The overall iterative algorithm to solve (46)
based on IA-CR is summarized in Algorithm 3.

V. NUMERICAL RESULTS AND DISCUSSIONS
In this section, we use computer simulations to evaluate the
performance of the proposed algorithms. All SRs and PRs
are randomly placed within a ring with the outer radius
of 100 meters and the inner radius of 10 meters, while ST
is placed in the centered cell. The path-loss (PL) exponent of

TABLE 1. Simulation parameters.

FIGURE 2. Convergence behavior of the proposed algorithms.

all the channel vectors is set to PL = 3, while the small-
scale fading follows Rician fading with the Rician factor
of 10 dB [28]. The decoding error probability and the dura-
tion for one TTI in URLLC are set to εk = 10−5,∀k and
τ = 0.05 ms [37], respectively. For simplicity, the maximum
allowable interference power and minimum predetermined
rate requirement are set to be identical to all PRs and SRs,
respectively. Due to the non-cooperation between two sys-
tems, we set δp > δs. Unless stated otherwise, other system
parameters are given in Table 1 for ease of cross-reference,
which mainly follow studies in [28], [35].

In the following, the EE results are obtained by averag-
ing over 1000 simulation runs. The proposed algorithms are
stopped if the error tolerance between any two consecutive
iterations is smaller than 10−3. The achieved EE performance
given in nats/J is divided by ln(2) to have at unit of bits/J.
The convex problems are solved by SeDuMi solver with the
modelling toolbox YALMIP [38] in MATLAB environment.

In Fig. 2, we depict the convergence behavior of
Algorithm 1 for the EEmax problem and Algorithms 2 and 3
for the JFBAS-EEmax problem over one random channel
realization. We note that for Algorithm 2, Fig. 2 only shows
the convergence for solving one subproblem (47) with the
highest EE. As can be seen from Fig. 2 that all algorithms
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FIGURE 3. Average energy efficiency versus the transmit power budget
at ST, Pmax ∈ [0, 26] dBm.

converge within a few iterations, and the EE is mono-
tonically increased after every iteration. The EE of Algo-
rithm 3 decreases at iteration 8 due to the binary recovery
in Step 7, which is to guarantee the feasible solution to
the JDBAS-EEmax problem. This also confirms the impor-
tance of the second phase (i.e., Step 8) to re-optimize other
parameters (w,ω).We remark that althoughAlgorithm 2with
the BFS method provides the best EE, its performance only
acts as an upper bound of the considered system due to the
extremely high computational complexity required to solve a
large number of subproblems.

Fig. 4 illustrates the average EE versus the transmit power
budget at ST, Pmax, for three resource allocation schemes.
We can see that the JDBAS-based schemes (Algorithms 2
and 3) provide significant performance gains over the tradi-
tional beamforming scheme (Algorithm 1) in terms of achiev-
able EE, which clearly confirms the effectiveness of joint
design of beamforming and antenna selection. In addition,
we can see that the impact of antenna selection is even more
significant when Pmax is large. This is due to the fact that, for
large Pmax, ST will allocate more power to the best antennas
to reduce the total power consumption. Moreover, the loss in
EE performance of the proposed IA-CR method compared to
the optimal BFS is quite small, i.e., about 0.04 Mbits/J at the
typical value of Pmax = 26 dBm.

Fig. 4 studies the impact of the maximum allowable inter-
ference power I on the achievable EE. As seen, the higher
the maximum allowable interference power, the better the EE
of all the considered schemes can be obtained. When I is
extremely small (e.g., I < −15 dBm), the EE is mostly
unchanged. In this case, the STmust reduce its transmit power
or design an effective beamforming to avoid or even cancel
strong interference power at PRs.

Next, Fig. 5 plots the average EE of the secondary system
as a function the number of PRs,M . As expected, the average

FIGURE 4. Average energy efficiency versus the maximum allowable
interference power at PRs, I ∈ [−30, 10] dBm.

FIGURE 5. Average energy efficiency versus the number of PRs, M.

EE of the considered resource allocation schemes is degraded
when M increases. The reason is that ST needs to scale
down its transmission power to satisfy interference power
constraints in (10b), resulting in lower EE. Another inter-
esting observation is that the EE tends to saturate when M
becomes large. In this case, ST is likely to avoid transmitting
its downlink signals over the spatial space of PRs.We also see
that the EE gain of joint design of beamforming and antenna
selection over the traditional beamforming is smaller for a
large number of PRs, as the possible optimal sets of active
antennas are reduced significantly.

Finally, Fig. 6 shows the average EE versus the number
of transmit antennas at ST, N ∈ [4, 10]. For small N ,
three resource allocation schemes provide a similar EE per-
formance since all antennas should be active to achieve
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FIGURE 6. Average energy efficiency versus the number of transmit
antennas at ST, N .

maximum EE. For large N ≥ 6, joint beamforming and
antenna selection offers a great EE improvement over the
traditional beamforming scheme. In addition, the EE of the
traditional beamforming scheme is dramatically degraded
when N is larger than a certain threshold. The reason is
that the total power consumption in (6) increases linearly
with N , and the dynamic power consumption (i.e., NPdyn)
will dominate the power consumed for the transmitted data
(i.e., 1

µ

∑
k∈K ‖wk‖

2). This again confirms the effectiveness
of the proposed JDBAS design in (46).

VI. CONCLUSION
We have considered the short blocklength regime for URLLC
in downlink CRNs. We have studied the optimization prob-
lem of energy efficiency maximization for the secondary
system, where two different transmission designs have been
proposed. In the first design, we have focused on developing
an effective beamforming design based on the inner approxi-
mation framework and the Dinkelbach approach. The second
design focused on joint beamforming and antenna selection to
further improve the energy efficiency, which is formulated as
themixed-integer nonconvex problem.We have proposed two
iterative algorithms, namely BFS and IA-CR, to successfully
solve this challenging problem. The former aims to find
the optimal set of transmit antennas among all possible sets
while the latter developed an iterative algorithm to effectively
solve the problem in a single layer. The EE performance of
the proposed algorithms has been analyzed through numer-
ical results, which have confirmed that joint beamforming
and antenna selection provides significant energy efficiency
improvement, especially when the large number of transmit
antennas at ST becomes large.
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