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ABSTRACT 3D skeletal based action recognition is being practiced with features extracted from joint
positional sequence modeling on deep learning frameworks. However, the spatial ordering of skeletal joints
during the entire action recognition lifecycle is found to be fixed across datasets and frameworks. Intuition
inspired us to investigate through experimentation, the influence of multiple random skeletal joint ordered
features on the performance of deep learning systems. Therefore, the argument: can joint order independent
learning for skeletal action recognition practicable? If practicable, the goal is to discover how many different
types of randomly ordered joint feature representations are sufficient for training deep networks. Implicitly,
we further investigated on multiple features and deep networks that recorded highest performance on
jumbled joints. This work proposes a novel idea of learning skeletal joint volumetric features on a spectrally
graded CNN to achieve joint order independence. Intuitively, we propose 4 joint features called as quad
joint volumetric features (QJVF), which are found to offer better spatio temporal relationships between
time series joint data when compared to existing features. Consequently, we propose a Spectrally graded
Convolutional Neural Network (SgCNN) to characterize spatially divergent features extracted from jumbled
skeletal joints. Finally, evaluation of the proposed hypothesis has been experimented on our 3D skeletal
action KLHA3D102, KLYOGA3D datasets along with benchmarks, HDM05, CMU and NTU RGB D.
The results demonstrated that the joint order independent feature learning is achievable on CNNs trained
on quantified spatio temporal feature maps extracted from randomly shuffled skeletal joints from action
sequences.

INDEX TERMS Human action recognition, 3D motion capture, spectrally Graded CNNs, skeletal joint
ordering.

I. INTRODUCTION
The Skeletal based action recognition is being practiced
through deep learning on features extracted from 3D joint
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sequences. These sequences represent joint positions across
a 3D action video. However, the quality of these sequences
depends entirely on the capturing technologies. Two most
widely used 3D human action skeleton recording systems are
Microsoft Kinect and motion capture. Kinect is commercially
affordable with a moderate reliability in capturing human
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skeleton representation as joints. On the other hand, motion
capture technology is costly and capable of generating highly
accurate representations of skeletal joints in 3D space.

The objective of skeletal human action recognition algo-
rithms is to learn these 3D joint sequences and identify
unique patterns for classification. Initially, joint positions
were applied for training the classifiers [1], [2]. One such
classifier was the graph matching (GM) algorithm [3], [4].
In GM, graph is constructed using the joint positions as nodes
and the inter joint relationships as edges. Each skeletal action
video frame is represented as a graph during training. Testing
GM involves a computationally intensive frame by frame
matching either through a learning algorithm or a matching
measurement model. Similarly, decision trees [5], [6] also
produced good action estimates from raw positional joint
data for human action recognition on both Kinect and mocap
captures.

In an ever expanding endurance for betterment in recog-
nition accuracies, researchers saw an opportunity to develop
sequence models for characterizing time series 3D joint data.
Sequence modeling designs were exclusively applied to learn
these 3D joint time series variations in actions for recognition.
Recurrent Neural Networks(RNNs) [7] and its upgrades such
as Gated Recurrent Units (GRU) [8] and Long Short Term
Memory(LSTM) [9] has shown exclusive learning capabil-
ities on sequence data. However, these networks are too
deep and often need intensive computing power for execu-
tion. Hence, a successful alternative is to describe the time
series joint data as a spatio temporal feature illustration [10].
In the last four years a dozen varieties of spatio temporal
features have been reported on skeletal joint 3D data. These
are popularly called joint feature maps characterize a human
action sequences into images. Eventually, spatial patterns are
learned from these action feature maps using convolutional
neural networks (CNNSs) for action recognition [11].

Surprisingly, most of the benchmarks works in the area
of action recognition have selected different joint ordering
on the skeleton during the classifier development. Interest-
ingly, these joint orders play a key factor in determining
the recognition accuracies on various datasets. To exem-
plify, HDMOS5 [12] and CMU [13], two most prominent
action datasets have different joint ordering. Similarly, NTU
RGB D [14] and MSRAction3D [15] are showing differ-
ences in joint ordering. This observation has profoundly
influenced our research in this work. Similarly, our datasets
KLHA3D102 [16], KLYOGA3D [17] and KLSLR3D [18]
which are recorded using 3D motion capture (mocap) tech-
nology also show different joint orderings. So far, only a
few researchers have pointed towards the impact of jumble
joints on the performance of skeletal action recognition meth-
ods [19], [20]. Fig 1 shows the joint ordering across action
datasets.

The idea behind this skeletal joint random order training
on the deep learning networks is to learn different possible
random feature representations for a robust action recognition
framework. The point made by is valid as it says that the
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skeletal action recognition is based on joint order combina-
tion. If this order is altered by the system or forgotten by
the user during data preparation, the pre-trained models are
destined to give ambiguous results. In general, researchers
have experienced problem during capturing 3D data using
motion capture system. During capturing, the technician from
multiple departments using it for their applications such as
sign language, yoga poses, human action and medical biome-
chanics e.t.c and have given different joint orders according to
their need. As they were building huge datasets for their appli-
cations over a period, different researchers were involved and
resulted in different joint ordering in the skeletal datasets.
When we want to test these datasets with our deep learning
models, it has been found to give highly discriminate feature
for within class labels. It took a while to understand the prob-
lem. Similarly, when we the models trained on 3D motion
capture skeletal data and used on test inputs from Kinect data
with similar number of joints has again resulted in a failed
model. To convert these data pre-processing anomalies into
refined information, there are two methods. One is to rerecord
or reconstruct the data from scratch and the other is to use
it as an opportunity to solve this problem through automa-
tion. This paper describes the research and experimentations
performed for generating a research on order independent
framework for action recognition.

A question that naturally arises from the above discussion
is, can we design a deep network that will detect patterns
in jumbled join features. Consequently this is the first work
to explore the possibilities of developing a joint order inde-
pendent feature learning through deep networks. Besides
deep networks, features play a crucial part in overall training
and improving the performance of skeletal action recogni-
tion tasks. Over the years, a variety of features [21] were
computed from raw skeletal joint positions for 3D action
representation. Some of these features are joint distances,
angles, lines, planes, angular displacements, quadrilaterals
etc.

The irony is, we actually have to maintain a con-
stant skeletal joint order during the entire experimentation.
Fig.1(a-d) shows joint ordering used in publically avail-
able benchmark 3D skeletal action datasets. Subsequently,
fig’s.1(e - ) are from our own yoga and action datasets.
An inspection of the action skeletons in fig’s.1(a -f) reveals
that the joint orders were indeed different across datasets.
This presents a bottleneck during comparison of a proposed
deep network on these multiple action datasets. The most
common form of feature representation is through the use of
joint positions which intuitively are defined with respect to
the skeletal joint ordering. Hence a change in joint ordering or
sequencing during the recognition process effects the model
accuracies as shown fig.2.

As an example, we extracted joint distance features from
our previous work [22] and color coded them into RGB
images using JET color coding. Fig 2 are the Joint Distance
Maps (JDM) on benchmark action datasets shown in fig 1 for
walking action. Next, the second row of fig 1 shows the JDM
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FIGURE 1. Joint ordering across action datasets.
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FIGURE 2. Computed recognition accuracies of JDMs under the headers
same joint order testing and random joint order testing on all skeletal
action datasets.

maps that are constructed with a different joint ordering than
the original version in fig.1. We trained a deep CNN model
from our previous work [17] on JDMs from first row of fig 2.
Consequently, we tested with JDMs with same ordering and
different joint ordering in second row of fig 2. Further, fig 2
shows the computed recognition accuracies under the headers
same joint order testing and random joint order testing on
all skeletal action datasets with a train test ratio of 15:4.
In summary, the recognition accuracies were found to be
below normal in all the cases when joint ordering differed
in training and testing.

In this paper, we propose to develop a universal joint order
independent learning network called Spectrally Graded CNN
(SgCNN). Additionally, we also extend on the present feature
maps into a more efficient and reliable skeletal representa-
tions. These proposed maps are called quad joint volumetric
features(QJVF). The objectives of this work would be

1) To design QJV features along with a novel deep CNN
model to develop a joint order independent feature
learning.

2) To identify the number of randomly ordered joint fea-
ture maps required for training the designed SgCNN
that results in sovereign 3D skeletal action recognition
systems.
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3) To determine the desirable joint feature maps that can
achieve joint order independence on deep learning
frameworks for 3D skeletal action recognition tasks.

The results of this study are important for attaining explicit
understanding of joint ordering in 3D skeletal based action
recognition on deep learning networks. The following out-
comes can be expected from our experimental study on ran-
dom joint order selection for skeletal action recognition:

1) A 4 joint feature map QJVF, that has shown capabil-
ities to represent joint relationships exclusively in 3D
skeletal actions when compared to existing features.

2) A refined learning network (SgCNN), with multi-
dimensional filter rotations generalize the input by pre-
venting feature loss in the dense layers..

3) A discovery on a potentially optimal feature subset that
can achieve joint order independent learning on deep
networks.

The rest of the manuscript is organized as follows. The
following section describes various features and methods that
were developed previously for skeletal based action recogni-
tion. The third section illustrates the methods developed in
the work. The penultimate section presents results, discussion
and analysis of various experiments conducted to achieve
the formulated objectives. Finally, section V concludes the
proposed problem with obtained results.

Il. BACKGROUND

Human skeletal data is more robust than other modalities
such as RGB video and depth. The robustness to 3D skeletal
action data is because of its independence towards video
backgrounds and human subject inconsistencies. These char-
acteristics have made the 3D skeletal representation of human
actions and activity, the preferred input modality for classi-
fication problems. This trend is fuelled by the availability
of inexpensive hardware sensors such as Microsoft Kinect
and Intel real sense 3D capture system [23], [24]. On the
other hand more expensive and accurate capture technol-
ogy is a multi-camera 3D mocap system [25]. 3D human
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action data from these systems has revolutionized the human
action recognition in the last five years. Although multitude
of action recognition algorithms were proposed on these
datasets [13], [26], [27], we prefer to review works focused
on deep learning frameworks only.

The perfect recipe for 3D skeletal based action recognition
is a combination of joint action data and the deep learning.
Compared to other action data modalities it is observed that
the skeletal data is spatially relational, temporally compat-
ible and also form spatio temporal structures. Eventually,
the machine learning algorithms have shown evidences to
learn one or more of these characteristics for automated skele-
tal action recognition [28]. The first machine learning models
focused on learning temporal patterns by extracting joint
variations across frames [29] which further evolved by char-
acterizing them as time series representations [10]. However
the above models learned these temporal variations specific to
a dataset and could not transfer the gained knowledge during
testing with a different dataset. The recurrent ML models
were found to be on the downshift across datasets. Hence to
develop actionable Intelligence across datasets, deep learning
architectures were applied on skeletal action data. Erstwhile
deep learning models on vision computing applications [30]
has shown impressive performances in decoding spatial and
spatio temporal patterns.

Deep learning methods such as Recurrent Neural Net-
works(RNNGs) [31], Long Short Term Memory(LSTM) [32],
Convolutional Neural Networks (CNN) [33], Recurrent CNN
(RCNN) [34] and lately the Graph Convolutional Networks
(GCN) [35] has shown a monumental growth in human
action recognition with skeletal datasets [12]—[15]. Primarily,
the naturally occurring skeletal joint temporal cues in human
actions are exceptionally well characterized by RNNs [31].
The structure of RNNs allow them to identify joint patterns
by generating relationships between the previous and present
joint variations across action sequences. Despite success-
ful performances on skeletal action datasets, RNNs showed
limitations in processing long sequences due to vanishing
gradients problem [31]. This drawback was succeeded by
inducing memory cells into the current architecture of RNNs
to create upgrades such as Long Short Term Memory (LSTM)
and Gated Recurrent Units (GRU).

LSTMs were most exclusively applied for skeletal action
recognition tasks in unidirectional [32] and bidirectional
modes [36]. The bidirectional LSTM has shown to have
recorded higher recognition accuracies over the other LSTM
models [37]. However, LSTMs are computationally intensive
and sometimes the gradient decay is highly dominant due to
tanh function that becomes hard to ignore. The solution to the
above problems came in the form a new improved architec-
ture called as independent recurrent neural networks. These
models were able to develop longer and deeper architectures
without vanishing gradients problem [36]. However, it is
implied that recurrent models were indecisive on spatial fea-
tures which defined the joint relationships with in a skeletal
action frame. Hence, spatial temporal combination networks
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were proposed with CNNs followed by LSTMs [38]-[40] for
action recognition. The CNNs learned spatial joint features
and the flattened features in the dense layers of CNN are
inputted to LSTMs to determine temporal patterns in the
extracted spatial contents. Despite higher recognition accu-
racies, the CNN LSTM models are not end-to-end trainable
in most of the action recognition framework proposed in
literature [38].

To overcome these network implications for action recog-
nition, a rich spatio temporal feature representations in the
form of RGB color images. These RGB color maps charac-
terize a particular skeletal action across a set of 3D video
frames. Consequently, the proposed spatio temporal images
are found to be independent of length of the video sequences
as well as number of joints. These spatio temporal fea-
tures represent spatial relationships among joints within a
3D action frame and temporal changes between frames as
we move horizontally representing temporal patterns. The
proposed spatio temporal features are joint positional maps
(JPM) [41], Joint Distance Maps (JDM) [11], joint Angu-
lar maps (JAM) [42], Joint Angular displacement maps
(JADM) [17], Joint Velocity maps (JVM) [43], Joint accel-
eration maps (JaM) [44], joint planar maps (JpM) [45], joint
trajectory maps (JTM) [46] and quad joint volume maps
(QJVM). The above spatio temporal feature maps are embed-
ded with patterns that can be quantified using a deep CNN
of any architecture. It has been shown that the deep CNNs
had certainly enhanced the performance of the skeletal action
recognition system on Kinect and mocap datasets.

Undoubtedly, the above analysis shows that the spatio
temporal feature maps can be learned exceptionally well by
the deep networks. But, what if the joint orders on the skele-
ton changes during the experimentation across datasets and
machines. Following the discussion, we propose to investi-
gate, Can Skeletal Joint Positional Ordering Influence Action
Recognition on CNNs for Achieving Joint Order Indepen-
dent Learning. Fig.1 and 2 show how joint order indepen-
dence is necessary if multiple datasets are being used for
testing a proposed skeletal based action recognition system.
We also found evidences where the independent researchers
used different joint orderings on the same datasets [12]-[15].
Surprisingly, we found joint orders play a crucial role in
evaluating classifier models for skeletal action recognition.
Hence, the outcome of this paper which answers the question:
can we achieve joint order independence on deep networks,
is threefold. The first one being the design of spatio temporal
feature maps to represent jumbled skeletal joints that can
achieve order independence. Secondly, the number of these
randomly ordered training feature maps necessary to develop
a reasonably accurate classifier.

Thirdly, to find a deep learning architecture that will
guarantee highest recognition accuracy on Jumbled maps
of certain feature type. We demonstrate the entire process
through experimentation. The following section illustrates the
underlying methodology for the proposed hypothesis and its
evaluation.
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lll. METHODOLOGY

Skeletal action recognition using deep learning models has
to attain a remarkable level of flexibility in disregarding
skeleton joint orders during feature computation. Despite
a large contingent of these successful methods have been
proposed on skeletal based action recognition, this is the
first time to report the effects of joint order variations on
their performance. There are three challenges in designing a
universal deep learning system for skeletal action recognition.
One, to choose how many randomly generated joint ordering
feature maps are required for training, what should be the
optimal CNN architecture for achieving joint independent
learning and finally, to investigate which type of features give
optimized performance with high accuracies. Here, we set
the procedures for creating various feature maps along with
our novel quad joint volumetric features, generating random
joints given a joint order and designing a Spectrally Graded
CNN architecture. This section consists of six subsections:
describing the extraction of features from joints and convert-
ing to maps; our proposed QJVM features; generating ran-
dom joint orders; the proposed SgCNN; Its training; testing
and evaluation.

A. SPATIO TEMPORAL FEATURE MAPS
The spatio temporal features define a human skeleton joint’s
inter and intra frame relationships across 3D action video
frames. The human skeleton is represented digitally with J
joints which convey their spatial location with respect to the
camera coordinates. These spatial locations are positional
vectors defined as p; = (x;,yi,z) € R**/ Vi = 1tolJ.
Currently, all the features are extracted from the positional
vectors which provide spatial temporal relationships between
the joints during an action. The first methods converted the
joint positions in x into a red (R) colour coded plane, y into
a green (G) and z into a blue (B) using a threshold on each
of these positional values [41]. We call these coloured posi-
tional feature maps as Joint Positional Maps (JPM). Similarly,
the method in [47] converts x — y, y — z and z — xplanes into
R, G and B planes to create action feature maps, which are
called as Joint Paired Positional Maps (JPPM). The above two
methods applied three stream CNNss with 8 convolutional lay-
ers with max pooling and ReLu operations in between them.
Each stream has a dense layer followed by a SoftMax layer.
The output class probabilities are predicted using a decision
score fusion model to recognize actions. The results are better
than the previous non deep machine learning models due to
multi feature learning which was automated in deep learning
models. However, the recognition score was further improved
through a small modification to the model in [48] by adding
a 4th stream of xyz combined feature map from [11] in [49].
The above methods propose spatio temporal maps that
does not explore relationships among the joints in spatial and
temporal domains. This was achieved using joint distance
maps (JDMs) in [11] through joint pairs. For a J joint 3D
skeleton, there are Y C» joint combinations accounting for
@ unique pairs. In 3D video frame ¢, the paired i"and

VOLUME 9, 2021

j™ joints represented by positional pointers p; = (x;, yi, zi)
and p; = (xj,y), zj) respectively, develop a I, norm based
relational features expressed as

dij = ||pi — pjll» (1

where, dj; is the Euclidian distance between two joints in a

frame. For the entire frame with J joints, d;; becomes d 5 The

dj is a vector describing all the joint relationships within a

frame 7. Extending on to the entire skeletal 3D video action

sequence with 7' frames, we represent d} as a matrix d ,T( 71y of
2

# x T. Hence for all three axis, we have a distance

size
feature matrix of size @ x T x 3. In [17], these three
planes are colour coded into RGB planes to form a feature
map that represents the spatio temporal variations in the 3D
skeletal action sequence. The maps created were called as
joint distance maps (JDMs). The performance of JDMs was
found to be better on a single stream CNN network which is
less complex and computationally efficient than the networks
using in [40], [50] and [51].

The JDMs were further enhanced by joint angular infor-
mation into a more robust feature representation through
joint angular displacement maps (JADMs) [17]. The JADMs
are created by combining joint distance features with their
orientation angular information. The angular displacement
features between the i and j joint in a " frame is formu-
lated as

d@] = dt X COS (91]) )
where
P
0;; = cos PPy 3

v

The orientation angle 9’ in each frame ¢ is a vector which
is computed with respect to a common adjacent joint k. The
Pk =d(i,k) € R? and ij =d (k,)) € R3 are joint pro-
jection vectors. Consequently, it transforms into a 1(12 Dxr
feature matrix which represents a 3D action video sequence.
The obtained feature matrix in 3D is colour coded to form a
# x T x 3 RGB image. The JADMs characterized very
subtle joint variations across 3D actions, thus transforming
robust patterns into the image pixel representations that pro-
vided good discriminations across actions.

Alternatively, enhanced feature maps such as joint veloc-
ity maps(JVMs) [43], joint angular maps (JAMs) [42],
joint angular velocity maps(JAVMs) [52], joint trajectory
maps(JTMs) [46] and joint acceleration maps(JaMs) [44]
with deep learning networks have shown to improve recog-
nition accuracies over traditional features. All these maps
model 2-joint relationships within a 3D video action
sequence. Substituting 2-joint with 3-joint relationships has
further enriched the patterns on the maps for automated fea-
ture extraction process in CNNs. The 3-joint relational feature
maps were called joint planar maps (JpMs) [45] and joint
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surface maps (JSMs) [53]. Inspired, we propose a 4-joint rela-
tional map called as quad joint volume feature map (QJVMs)
which is elaborated in the following section.

However, we discovered that the created feature maps are
based on one simple rule: Never change the skeletal joint
ordering. Changing joint ordering during feature computation
process across experiments greatly affects the performance of
the deep learning algorithms. Extensive experimentation and
analysis has been performed in this work to meet the pro-
posed objective of discovering a universal action recognition
framework which is independent of the joint ordering.

B. QUAD JOINT VOLUME FEATURES

The human skeletal model is represented on a machine with J
joints which forms / C4 unique 4-joint pairs. In 3D space, each
joint is represented as a position vector described by p; =
(xi, yi, 2i) € R3* V¥ i = 1toJ. To construct a geometric
quadrilateral with 4 sides, we use the 7 C, four joint pairs.
Hence, on a J joint skeleton, we construct ey quadrilaterals
in 3D space from. For our 39-joint action skeleton, we con-
struct 82251 four-sided 3D quadrilaterals of arbitrary shapes.
These 82251 polygons characterize all possible relations
among joints in a 3D frame ¢. Joint volume features of the
82251 quadrilaterals describe the spatial joint relationships
within a 3D video action frame. However, we eliminated the
slow varying quadrilaterals across action frames using aver-
aging threshold. Hence, only 10% of 82251 have impactful
quadrilaterals in each action sequence, which are useful for
feature computation.

During skeletal motion in the 3D video sequence,
the constructed 3D quadrilaterals vary shapes and orien-
tations proportionally with respect to the joint relation-
ships. Thus, transforming these changes into quad joint
volume feature (QJVF) matrices. To find the volume of
the any 3D quadrilateral described by the coordinates
{(xi,Yi, Zi), (xi+lv)7i+1, Zi+1), (xi+2,yi+2, Zi+2), (Xi+3, Yi+3
zi+3)} of its vertices are known, we apply the following
process to calculate quad joint volume. Fig.3 shows the
process of designing relative quad joint volume features.
To find the volume of the irregular quadrilaterals, we split it
into two truncated triangular prisms and we find the volume
using the expression

¢ Zi T Zivl 22 Lo i
Ve = B — I Xit1 yit1
I Xiv2 yit2
L oxi i
Zi + zit2 + Zi+3 !
+ % 1 xig2 yira| (4
1 Xi13 Yit3

where (x;, y;, z;) is the starting coordinate of the sth quadri-
lateral in the ™ frame. Hence the QJVF is a vector of size
0.1 x 7/ C4 x 1 representing 3D quadrilaterals volume. For the
entire 3D video sequence with 7' frames, the spatio temporal
QJVF is a matrix of size 0.1 x /C4 x T € R®. Finally,
for a dataset with N labelled 3D videos, the QJVF is a
multidimensional matrix of size 0.1 x /C4 x T x N.
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Finally, for a dataset with N labelled 3D videos, the QIVF
is a multidimensional matrix of size 0.1 x 7 Cy xT xN.
The chronological arrangement of these features is shown
in Fig.3.

In general, the above process is expandable on skeletal
data captured using sensors like Kinect or a mocap system
with different camera setup other than the one used in this
work. Therefore, we proceed to investigate the performance
of QJVFs on publicly available HDMO5 [12] and CMU
mocap [13] and NTU RGB D [14] Kinect dataset along with
our own 3D mocap dataset KLHA3D-102. The QJVF feature
matrix can be used for training the classifiers directly or can
be encoded as color images for training on deep convolutional
neural networks. Despite the success of classifiers like HMM
and DTW on such time series data, their operating efficiency
reduces on large datasets, such as the one used in this work.
Hence, we encode the QJVFs into color coded pixels using
the procedures from our earlier work [17]. The volume data
is color coded into RGB planes using the ‘jet’ color map to
form quad joint volume (QJVMs) feature maps, by following
standard mapping procedure [54],

C. JUMBLE SKELETAL JOINTS

The color coded feature maps represent joint variations in 3D
skeletal actions as pixels on an image. These pixel patterns
are learned by deep CNN models for recognition of human
actions across classes. The studies on these feature maps have
revealed two interesting observations.

1) The joint ordering is fixed at the start of the experiment
by the capturing sensors, which can be modified by
the user based on the missing joint information after
recording.

2) Training and testing with different joint orders hasn’t
been conducted on the deep learning models to under-
stand its implications on overall performance of the
skeletal based action recognition systems.

Hence, this work proposes to explore the impact and impor-
tance of joint ordering in skeletal based human action recog-
nition tasks from feature maps to training a deep network.

The primary goal is to create a jumbled joint ordering,
given the sensor generated skeletal joints. The initial skeletal
joint ordering in our motion captured KLHA3D-102 is shown
in fig.1(e). This is the joint ordering that was selected during
data capture. To create a different ordering of joints, we used
“The Fisher—Yates shuffle” algorithm [55]. The function
shuffles the inputted J joint list randomly to produce a differ-
ent joint ordering. In this work, the shuffle routine was called
100 times with the original J joint input in every instance.
Out of 300, we selected 100 joint orders that were found to
be uniquely random through a cross correlation coefficient on
the original and the generated joints. Specifically, the selected
100 joints are highly discriminating and independent orders
based on expectation minimization of correlation coefficient.
Hence, we selected these 100 shuffled joint orders for training
and testing the proposed problem through deep networks.
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Fig.1 shows the projected shuffled joints onto the human
skeleton.

However, repeating the same joint orders is not possible
as they are generated randomly. Hence, we performed the
experiments 5 times from scratch on different DL frameworks
and across action dataset features. Consequently, testing is
initiated to find the number of random joint order training set
necessary to achieve good recognition accuracies.

The methods for creating feature maps were initiated on
these 100 joint orders. The fig.5(a) shows the joint angular
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displacement maps (JADM) on the 10 jumbled joint orders.
Similarly fig’s.5(b) to 5(c) show feature maps of joint dis-
tance maps (JDM) and quad joint volume maps (QJVM) used
in this work which are computed from the 100 jumbled joints.

In addition to our motion capture dataset, we experi-
mented to discover universality of the proposed framework
across benchmark skeleton action datasets such as NTU RGB
D [14], MSRACTIONS3D [15], HDMOS [12] and CMU [13].
The HDMO5 and CMU are recorded on 3D motion capture
platform, whereas the others are based on Kinect sensor.
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FIGURE 5. Three feature maps from our previous works for 10 jumbled
joints.

Joint shuffling and spatio temporal feature map creation are
consistent across datasets. The existing deep networks such as
CNN, ResNets, GoogleNet and recurrent CNN have learned
the above feature maps with a fairly small training loss but
couldn’t generalize during validation. The validation errors
have become constant after 50 epochs for most of the feature
maps across datasets. Hence to improve the recognition accu-
racies, we built a grid-like circular transferable feature model
that we call a spectrally enriched graded CNN (SgCNN),
the architecture of which is discussed in detail in the next
section.. The following section describes SgCNN architec-
ture, training and testing procedures.

D. SPECTRALLY GRADED CNN

The aim of Spectrally Graded CNN (SgCNN) is to rotate
the multidimensional features around the network to create
a nonlinear feature vector that can generalize from the input
data samples. This approach is used by ResNets and RNNs
to reinforce lost data and avoid vanishing gradients. These
networks are very deep; the minimum number of layers has
been found to be around 20. Our SgCNN differs from existing
networks in three respects.

1) It processes multiband features simultaneously to gen-
erate a highly nonlinear feature vector and thus avoid
over- or underfitting.

2) Itdoes notuse a dropout layer to induce random feature
nonlinearity before the dense layer.

3) Itis computationally efficient and requires less training.

The SgCNN architecture is shown in fig 4.

Before applying the proposed SgCNN to QjRVMs and
other maps, we needed to evaluate its performance on
standard image datasets. For this, we used several image
and video datasets, namely Fruits-360 [56], Food-101 [57],
Caltech-256 Object Categories [58], KTH-Animal [59], and
UCEF Sports [60]. These were used to compare the proposed
SgCNN against state-of-the-art network architectures such
as CNN8 [22], VGG16 [61], VGG19 [62], ResNet-50 [63],
GoogleNet [64], SENet-154 [65] and proposed SgCNN. The
results of experimentation were presented in table 1. The
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results induced confidence on the SgCNN architectures abil-
ity to learn multiple resolution patterns simultaneously in
images. The next subsection describes training of the SgCNN
on randomly shuffled skeletal joint feature maps.

E. TRAINING SgCNN

To implement the SgCNN algorithm, we used Python 3.6,
with TensorFlow library to train the model. We used the
same hyperparameters for all datasets, except for the learning
rate, which was reassigned during training for each dataset.
Specifically, we decreased the learning rate exponentially
from 0.01 until the error became constant. At the start of the
training phase for each dataset, we set the network’s weights
and bias parameters randomly using a zero-mean Gaussian
distribution function with variance 0.01.

The SgCNN learned by updating its weights and bias
parameters using the back propagation gradient descent algo-
rithms. Consequently, to contain the validation errors during
training we applied a 12 weight regularizer after each convo-
lutional layer.This has enabled the SgCNN to develop uni-
formity in weights across layers during training. We applied
ReLU and SoftMax hyperparameter activations in the con-
volutional and dense layers, respectively. Finally, we used a
fixed batch size of 32 for training, based on the image res-
olution and amount of GPU memory available. The training
was performed on a NVIDIA GTX 1070, 8GB GPU with the
model. The SgCNN model is built from scratch with keras
frontend and tensorflow backend.

F. TESTING AND EVALUATION

Testing sets of different proportions were etched out using
multiple combination of spatio temporal feature maps con-
structed by mitigating skeletal joint orderings. Here, we find
solution to our third objective which aims to find the number
of optimal joint order combinations required to achieve joint
order independence. Consequently, testing process has been
exhaustive which included multiple instances of executions
across combinations of maps in all the considered datasets.
The performance of the SgCNNs was evaluated based on
recognition accuracies averaged across datasets.

IV. EXPERIMENTATION AND ANALYSIS

Exhaustive experiments were designed and subsequently
conducted to discover spatio temporal feature maps and their
train test ratios on deep networks that are better suited to
deal with the skeletal joint order variations across datasets
for action recognition tasks. We start by evaluating QJVMs on
SgCNN against various feature maps and deep networks with
base joint order on KLHA3D102 dataset. The base joint order
is the initial joint orientation followed in the action datasets.
Jumbled joint order is the randomly shuffled skeletal joints
using “The Fisher-Yates Shuffle”’. The obtained results were
then compared against benchmark datasets. Next, the above
experiments are repeated for jumbled joints to identify the
type of skeletal feature maps that will achieve joint order
independence through optimal training on different network
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architectures. Finally, the random joint shuffle routine is
called 5 times on 5 differently configured computer systems
to generate 25 randomly shuffled skeletal joint ordered maps
per class for testing and identify best in class deep networks
that allow joint independent learning.

A. SKELETAL ACTION DATASETS
The KLHA3D102 is captured with an 8§ camera vicon motion
capture technology [18]. The human skeleton in our dataset
has 39 joints from head to toe. The joints in 3D mocap are
placed manually by pre- determining the highly articulated
joints on the human body. In total KLHA3D102 consists
of 102 classes with 10 subjects and each repeating the action
10 times. Hence we have, 102 x 10 x 10 = 10200 skele-
tal actions with a base joint order representation. In order
to achieve a skeletal joint independent action recognition
model, we now consider enumerating the base joint order
to multiple random jumbled joint orders. As discussed in
section III-C, a 100 shuffled joint ordered skeletons were
generated. Subsequently, associated action datasets were for-
mulated from these jumbled skeletons. Finally, features maps
were extracted on these jumbled joint datasets. The complete
jumbled joint dataset consists for a particular feature type
has a set of 102 x 10 x 10 x 100 = 1020K feature maps.
The size of feature map images are fixed to 256 x 256 for
optimum loading effect on the GPU during training. Simi-
larly, the above process is repeated for creating maps across
10 feature types as discussed in the section III-A.

Identically, we followed the above procedure to create
jumble joint dataset for our KLYOGA3D. This is a 42 class
yoga skeletal action dataset recorded with 10 subjects and
5 repetitions. The total size of jumbled joint feature maps on
the yoga dataset would be 42 x 10x5x 100=210K per feature
type. For all 10 feature types combined, we have 10200K on
KLHA3D-102 and 2100K on KLYOGA3D respectively.

Apart from our KLHA3D102, we also used publicly avail-
able 3D mocap action datasets HDMO0O5 and CMU. Out of
the two, HDMOS5 was less noisy and consists of 70 action
classes with 5 subjects performing an action several times.
In this work, we used 70 x 30 x 5 x 100 x 10 = 1575000
action samples for training and testing. The CMU dataset
in this work is carefully crafted to avoid missing and noisy
marker information. Consequently, the CMU dataset used for
training and testing has 30 x 30 x 10 x 100 x 10 = 9000000
samples, with 30 actions classes, 10 subjects and 30 vari-
ations per subject. On the contrary to our 39-joint skele-
ton, HDMOS5 and CMU are captured with 41-joint skeletons.
Finally, to discover the usefulness of the proposed maps and
the ML algorithm, we investigated Kinect skeletal action data
with 25 joints from NTU RGB D dataset. Our refabricated
NTU RGB D dataset has 60 x 30 x 10 x 100 x 10 = 1800000
action samples. Besides, these datasets were selected to have
a 30 to 40% overlap among action classes.

The entire experimentation is divided into 3 clusters in
which different experiments will be conducted. In the first
cluster (C1) we test our proposed feature maps QJVF and the
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SgCNN architecture across multiple features on considered
datasets. In C1, only base joint order or any random joint
order skeleton is used and the joint order is fixed throughout
the experimentation. Experiments in C1 test the usefulness of
our proposed spatio temporal feature maps QJVFs against the
existing maps on deep networks.

The second cluster (C2) is what makes this work really
interesting. Here, we train deep networks to predict human
actions with random joint ordered skeletal maps. We created
a total of 100 random jumbled ordered joint feature maps per
action per subject per repetition across datasets. The entire
dataset has been divided into multiple train and test samples
of different dimensions to discover the necessary train test
ratios for joint independence in skeletal action recognition
systems across datasets. We recorded the end-to-end sys-
tem accuracies over a multitude of these train test ratios
and discovered a possible range for joint order independent
learning by the deep learning models. Additionally, we also
recognized the best of joint feature maps that are suitable for
achieving our proposed objective.

Finally, cluster C3, is designed to validate the proposed
jumble joint independent learning across multiple machines.
This phase is necessary to ensure that the required number
of training samples doesn’t change by a large margin across
different hardware configurations. The proposed method gen-
erates the joint orders randomly which fluctuate between
experiments. Therefore, we performed the experiments
5 times on 5 different hardware configurations to determine
the possibility of a joint order independent learning for skele-
tal based action recognition.

B. C1: MONOSKEL RESULTS

To begin with, we focus on the performance of our proposed
QJVMs and the novel architecture SgCNN as a traditional
approach where the skeletal joints are unaltered throughout
the experiment, MONOSKEL. The focus will be to test the
effectiveness of quad joint relationships for skeletal based
action recognition on deep learning architectures. Also, test
the performance of the proposed SgCNN for classification
tasks. We compare and analyze the test results with respect
to different state-of-the-art maps and networks for skeletal
action recognition.

1) EVALUATING QJVM AND SgCNN ON KLHA3D102

The performance metrics for evaluation is maintained uni-
formly across the work as mean recognition accuracy. Here,
we divided the entire KLHA3D102 dataset into multiple
training units of different train test ratios. Specifically,
we will identifty MONOSKEL Accuracy Maximization Sam-
plers (AMS) on the training data. However, the AMS can
be emphasized as the minimum amount of training sam-
ples necessary for generating maximum recognition accu-
racy. After many different iterations, we selected to start at
20 and reach up to 80 training samples per class with an
increment of 20 samples. Hence, a specific range is being
discovered as AMS. The trained networks are tested with
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TABLE 1. Prediction accuracies achieved for all test sets.

Recognition Rates (%)

Datasets CNN8 VGGI6 VGGI9 ResNet-50 GoogleNet SENet-154  SgCNN
[22] [61] [62] [63] [64] [65] (Proposed)

Fruits-360 [56] 86.15 83.74 85.24 85.64 86.16 87.24 97.24

Food-101 [57] 76.24 6231 67.68 68.22 72.18 78.16 88.45

Objects-256 [58] 7895  72.76 71.35 69.58 75.31 80.45 9291

KTH-Animals [59] 81.24  74.81 76.14 75.19 80.62 84.22 94.06

UCEF Sports [60] 82.54  76.17 77.59 79.64 81.24 83.47 93.49

TABLE 2. Recorded accuracies of different features maps on State of the art models.
g;?:;l‘ﬁ F;f‘;;:e CNNS8 [22] VGGI6[61] VGGI9[62] ResNet-50 [63] GoogLeNet [64] SENet-154 [65] (Piigiljd)
JPM [41] 49.47 52.58 54.40 55.19 56.31 56.80 88.31
JDM [11] 54.50 57.37 60.34 62.66 64.00 66.17 66.77
JAM [42] 51.74 54.61 57.58 59.90 61.24 63.41 64.01
JADM [17] 67.89 69.54 70.45 73.04 74.54 76.34 76.42
20 JSM [53] 54.05 56.87 59.52 59.64 70.87 61.24 61.32
JVM [43] 64.23 66.96 68.14 70.32 72.05 74.20 74.52
JaM [44] 64.80 67.46 68.27 70.65 71.88 74.58 74.88
IpM [45] 66.36 68.01 68.92 71.51 73.01 74.81 75.52
JTM [46] 49.78 52.60 55.25 55.37 56.60 56.97 57.05
QIVM 68.57 70.22 71.13 73.72 75.22 75.36 77.02
JPM [41] 59.16 62.11 63.93 64.72 65.84 66.33 67.84
JDM [11] 65.14 68.01 70.98 73.30 74.64 76.81 77.41
JAM [42] 63.31 66.18 69.15 71.47 72.81 74.98 75.58
JADM [17] 79.14 80.79 81.70 84.29 85.79 87.59 87.67
40 JSM [53] 75.30 78.12 80.77 80.89 82.12 82.49 82.57
JVM [43] 75.48 78.21 79.39 81.57 83.30 85.45 85.77
JaM [44] 76.05 78.71 79.52 81.90 83.13 85.83 86.13
IpM [45] 77.61 79.26 80.17 82.76 84.26 86.06 86.77
JTM [46] 71.03 73.85 76.50 76.62 77.85 78.22 78.30
QJVM 79.82 81.47 82.38 84.97 86.47 86.32 88.27
JPM [41] 73.13 76.24 78.06 78.85 79.97 80.46 81.97
JDM [11] 69.27 72.14 75.11 77.43 78.77 80.94 81.54
JAM [42] 67.44 70.31 73.28 75.6 76.94 79.11 79.71
JADM [17] 83.27 84.92 85.83 88.42 89.92 91.72 91.78
60 JSM [53] 79.43 82.25 84.9 85.02 86.25 86.62 86.45
JVM [43] 79.61 82.34 83.52 85.7 87.43 89.58 89.9
JaM [44] 80.18 82.84 83.65 86.03 87.26 89.96 90.26
JpM [45] 81.74 83.39 84.3 86.89 88.39 90.19 90.9
JTM [46] 75.16 77.98 80.63 80.75 81.98 82.35 82.43
QJVM 83.95 85.6 86.51 89.1 90.6 91.25 92.53
JPM [41] 75.31 78.42 80.24 81.03 82.15 82.64 84.15
JDM [11] 72.5 75.37 78.34 80.66 82.16 84.17 84.77
JAM [42] 70.67 73.54 76.51 78.83 80.17 82.34 82.94
JADM [17] 86.5 88.15 89.06 91.65 93.15 94.95 95.03
30 JSM [53] 81.61 84.43 87.08 87.2 88.43 88.58 88.88
JVM [43] 83.41 86.14 87.32 89.50 91.23 93.38 93.70
JaM [44] 83.98 86.64 87.45 89.83 91.06 93.76 94.06
IpM [45] 85.54 87.19 88.10 90.69 92.19 93.99 94.70
JTM [46] 77.34 80.16 82.81 82.93 84.16 84.53 84.61
QJIVM 88.16 89.81 90.72 93.31 94.81 95.38 96.61
Memory Usage 315MiB 396MiB 415MiB 284MiB 297MiB 308MiB 236MiB

No. of Parameters 24.9M 134.6M 140.2M 9.4M 10.6M 23.6M 10.2M

the remaining 20 samples. Moreover, 30% of the training
data is applied for validation during training sessions. There-
fore, there are 4 training sessions per dataset. Notably, it is
not possible to maintain hyper parameter consistency across
different network architectures that are used in this work.
However, we maintained, weight and bias initialization along
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with learning rates as constant for all networks used in this
work. Stochastic gradient descent optimization was used for
updating the trainable deep parameters. The learning rate
decays are activated by 10% when the loss appeared to be
constant for 10 epochs and training is stopped if loss doesn’t
decay for 20 epochs during training.
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TABLE 3. Performance evaluation of QIVM and SgCNN on benchmark dataset.

Performance evaluation of QJVM and gCNN on benchmark dataset

CNN8 VGG16 VGGI19 ResNet-50 GoogLeNet SENet-154  SgCNN

Datasets 221 611  [62] 163] [64] (65  (Proposed)
HDMO5 [12] 7801 7961  80.08 8023 8235 85.76 87.46
CMU [13] 7509 7628  77.12 7840 80.15 83.47 8531
MSR Action3D [15] 7827 8214 8156 8243 85.50 86.77 89.20
NTURGBD[14] 82.18 8452 8521  86.02 87.51 90.72 9221
KLYoga3D [17]  83.89 8648 8737  88.10 91.44 93.51 95.48
KLHA3D-102[16] 85.53 8652 87.64  88.08 90.51 92.85 93.82

TABLE 4. Performance evaluation of QIVM and SgCNN on KLHA3D-102.

Evaluating QJVM and gCNN on KLHA3D-102

g;‘r‘;‘;ﬁ Fﬁ‘ggze CNNS8 [22] VGGI6([61] VGGI9[62] ResNet-50 [63] GoogLeNet [64] SENet-154 [65] (giiiljd)
JPM 714 10.25 12.07 12.86 13.98 1447 1598

IDM 4561 48.48 51.45 53.77 55.11 57.28 57.88

JAM 42.85 4572 48.69 51.01 52.35 54.52 55.12
JADM  59.00 60.65 61.56 64.15 65.65 67.45 67.53

- ISM 9.73 12.55 15.20 15.32 16.55 16.92 17.00
VM 55.59 58.32 59.50 61.68 63.41 65.56 65.88

JaM 56.16 58.82 59.63 62.01 63.24 65.94 66.24

IpM 57.72 59.37 60.28 62.87 64.37 66.17 66.88

IT™ 5.46 8.28 10.93 11.05 12.28 12.65 12.73

QIVM 5973 61.38 62.29 64.88 66.38 72.50 68.18

TPM 16.83 19.78 21.60 2239 2351 24.00 2551

DM 56.25 59.12 62.09 64.41 65.75 67.92 68.52

JAM 54.42 57.29 60.26 62.58 63.92 66.09 66.69
JADM 7025 71.90 72.81 75.40 76.90 78.70 78.78

20 ISM 20.98 23.80 26.45 26.57 27.80 28.17 28.25
VM 66.84 69.57 70.75 72.93 74.66 76.81 77.13

JaM 67.41 70.07 70.88 73.26 74.49 77.19 77.49

IpM 68.97 70.62 71.53 74.12 75.62 77.42 78.13

JTM 16.71 19.53 22.18 22.30 23.53 23.90 23.98
QIVM 7098 72.63 73.54 76.13 77.63 83.75 79.43

JPM 20.80 2391 25.73 26.52 27.64 28.13 29.64

DM 60.38 63.25 66.22 68.54 69.88 72.05 72.65

JAM 58.55 61.42 64.39 66.71 68.05 70.22 70.82
JADM 7438 76.03 76.94 79.53 81.03 82.83 82.89

6 ISM 25.11 27.93 30.58 30.70 31.93 32.30 32.13
VM 70.97 73.70 74.88 77.06 78.79 80.94 81.26

JaM 71.54 74.20 75.01 77.39 78.62 81.32 81.62

IpM 73.10 74.75 75.66 78.25 79.75 81.55 82.26

IT™ 20.84 23.66 26.31 26.43 27.66 28.03 28.11
QIVM  75.11 76.76 77.67 80.26 81.76 86.73 83.69

JPM 22.98 26.09 2791 28.70 20.82 30.52 31.82

IDM 63.61 66.48 69.45 71.77 73.27 75.28 75.88

JAM 61.78 64.28 67.62 69.94 71.28 73.45 74.05
JADM 7761 79.26 80.17 82.76 84.26 86.06 86.14

%0 ISM 27.29 30.11 32.76 32.88 34.11 34.48 34.56
VM 7477 77.50 78.65 80.86 82.59 84.74 85.06

JaM 75.34 78.00 78.81 81.19 82.42 85.12 85.42

IpM 76.90 78.55 79.46 82.05 83.55 85.36 86.06

JTM 23.02 25.84 28.49 28.61 29.84 30.21 30.29
QIVM  78.19 79.83 80.41 83.46 84.38 84.87 86.15

The state-of-the art networks such as CNN8 [22],
VGG16 [61], VGG19 [62], RESNET-50 [63], GoogleNet
[64], SENet-154 [65] which were highly competitive during
ImageNet classification challenges are being considered for
validating the proposed SgCNN. Table 2 gives the entire
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results of experimentation in C1. The proposed QJVMs con-
sider 4 - joint combinations to calculate features instead of 2
or 3. Although, 4 - joint features need a large computational
space, it is relatively richer in characterizing joint dependen-
cies across actions. This is similar to 2 or 3 joint features
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except for the fact that the 4 joint features are extracted
from the closed 3D volume between joint spaces. Hence,
the feature maps QJVMs show high pixel patterns that are
necessary for discriminating closely related actions. Hence,
the accuracy on all the state-of-the-art CNNs for image clas-
sification problems have shown to generalize well on the
proposed QJVMs. However, the most unsuccessful is the
joint positional maps (JPMs) due to non discriminating pixel
patterns between closely related actions. We can also observe
that the maps with differentiating features such as JVM and
JaM have produced good recognition accuracies. Similarly,
higher dimensional features such as JpMs and JADMs are not
far behind differentiating features. Overall, we found that a
highly relational feature on the skeletal joints has provided
good action recognition capabilities.

Secondly, the deep networks that were used in this work
have already proved their might in the image classifica-
tion space. However, the amount of data used for training
these models is quite different from their usual datasets.
All the models were trained from scratch on a 8GB GPU,
GTX1070 with the same initial hyper parameters. Table 2
shows the recorded accuracies on different features maps.
Since all the networks used are state-of-the-art, their accu-
racies across maps didn’t have large margin. Interestingly
our proposed SgCNN has proved to be competitive along
with these models. However, what separates the state-of-
the-art from SgCNN is the computational complexity and
memory usage during training, which are tabulated in last
two rows of table 2. In particular, these last two rows show
that the proposed network has less trainable parameters and
occupies less memory making it stand out among the best.
The reason for this would be the parallel architecture and
gyroscopic filter Kernels that facilitate hyper hierarchical
feature representation across multiple channels. Moreover,
higher resolution filter Kernels above 9 has found to have
little improvement in recognition accuracies on images and
hence 9 was the maximum size considered for SgCNN.

Finally, the first column in table 2 shows the amount of
training maps considered per feature per deep network. This
is to identify the AMS necessary to achieve prediction con-
fidence of the network. From table 2 AMS can be the range
of 60 to 80 training samples of MONOSKEL data. However,
AMS is subjective to operating GPU systems. Alternatively,
we tested on 4 other GPU configurations and found that there
was around £3 % variation in accuracy levels. To summa-
rize, the optimal value of AMS for our action dataset ranges
between 60 to 80 samples per class when the skeletal joint
orders are unchanged during training and testing periods.

2) MONOSKEL ACROSS BENCHMARK DATASETS

To validate the proposed framework for skeletal action recog-
nition with respect to different data sources, we applied
the benchmark datasets from KLYOGA3D, NTU RGB D,
UTKINECT, MSRACTION3D, HDMO5 and CMU. Since
each of these datasets were discussed elaborately in the start
of this section, we present the results in table 3. Moreover,
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the training and testing samples differ in each case as they
are unevenness in the number of classes and the number of
images per class. Here the intuition is to test performance
of the proposed framework and not to pick the best possible
solution for action recognition. Table 3 generates confidence
in our proposed framework through the computed mean
recognition accuracies that are close to normal. However,
the accuracies in table 3 are on the lower side when compared
to table 2, due to noisy datasets except ours KLYOGA3D.
[lustrating on table 3 allows us to contribute a novel inter-
face for skeletal action recognition. In the following section,
we present cluster C2, where the networks are taught to learn
features from jumbled skeletal joints.

C. C2: JUMBLESKEL RESULTS

In this cluster, we present the results of skeletal action recog-
nition tasks using features constructed using jumbled joints
on deep networks. This cluster is the most captivating part
of the entire experimentation. The focus would be to dis-
cover the JUMBLESKEL AMS on a particular set of fea-
tures. We also extend this by analyzing networks on which
a maximum accuracy is achievable. Finally, the results of
JUMBLESKEL features on different skeleton sources when
they interact with the deep network.

1) EVALUATING JUMBLESKEL ON KLHA3D102 DATASET
This 1020000 jumbled joint feature maps consists of all
actions from different subjects with multiple orientations.
Undoubtedly, one of the objectives is to find the AMS value
that can provide an insight into the learning on jumbled
joint skeleton data. Hence to accomplish this we downgraded
the 1020000 sized jumbled data into 100 feature maps per
class per subject in one orientation. Therefore, we have now
100 jumbled feature maps per classs which contains data
from a single subject in a particular orientation. Notice-
ably, we bring uniformity among the experiments in clusters
C1 and C2. This is important for getting a deeper insight
into the performance of JUMBLESKEL when compared to
MONOSKEL action recognition. Finally, we performed the
experiment on all subjects in all orientations and the results
were averaged across each experiment. Similar to the pre-
vious section, the training samples are incremental with a
positive rate of 20 per experiment. The remaining are used
for testing. In each training set 20% are kept for validation.
Meanwhile, the same networks are trained from scratch with
all the hyper parameters discussed in section III. Moreover,
the hyper parameters are kept constant across networks.
Table 4 presents the results of our experimentation on
different AMS values from KLHA3D102 data. Here the ran-
dom joint maps are from a single run of the *“The Fisher-
Yates Shuffle” on GTX1070 8GB GPU. Table 4 is having
structural similarly with table 2 to help readers understand
the difference between the unshuffled or base joint learning
and shuffled mode. The mean recognition accuracy increased
with as the number of training samples inputted are increased.
Subsequently, it became reasonably consistent in the AMS
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TABLE 5. mean recognition accuracies on jumbled features from multiple sources.

Computed mean recognition accuracies on jumbled features from multiple sources

Datasets CNN8 VGG16 VGGI19 ResNet-50 GoogleNet SENet-154  SgCNN
[22] [61] [62] [63] [64] [65] (Proposed)
HDMOS5 [12] 78.66  80.26 80.73 81.58 83.40 86.11 88.31
CMU [13] 7574 77.13 78.17 79.45 81.30 83.82 86.06
MSR Action3D [15] 79.32  83.19 82.31 83.28 85.95 87.52 90.15
NTURGB D [14] 8343 8537 86.06 86.67 88.36 90.97 93.06
KLYOGA3D [17] 8454  87.13 88.12 88.75 91.69 94.56 96.43
KLHA3D102 [16] 8598  87.17 88.29 88.83 91.47 93.70 95.49
TABLE 6. Performance evaluation of QIVM and SgCNN on KLHA3D-102 from multiple sources.
Evaluating QJVM and gCNN on KLHA3D-102
Machines Used | CNN8 VGG16 VGGI19 ResNet-50 GoogleNet SENet-154  SgCNN
for Experiment | [22] [61] [62] [63] [64] [65] (Proposed)
4GB Nvidia
940MX 7824  79.68 80.57 83.64 85.47 85.25 86.45
Windows
4GB Nvidia
940MX 79.05 80.24 81.06 83.94 85.46 86.54 87.12
Linux
8GB Nvidia
GTX 1070 78.19  79.83 80.41 83.46 84.38 84.87 86.56
Windows
4GB Nvidia
Quadro P100 | 77.96  79.58 79.84 83.24 84.61 84.29 85.42
Windows
6GB Nvidia
Tesla k20 7842  80.07 80.98 83.57 85.07 85.45 86.94
Linux

range of 80 and above. This happened for only SgCNN where
as the other networks it was beyond 80 samples. Here we
have to indeed forced to increase the number of jumbled joint
features to 90 for training the other networks. GoogleNet
and VGG 16 has achieved in 80, whereas others reached a
maximum accuracy at 88 jumbled joint features per class.

Further, the SgCNN was able to achieve this results with
comparatively less computational costs over the other net-
works. Additionally, there was no vanishing gradients prob-
lem in our network which was encountered by us when
training the state-of-the-art models and have to eventually
retrain them by applying weight regularizers. The reason for
better performance in SgCNN has been attributed to the mul-
tiple hierarchical filter Kernels applied across convolutional
layers. In short, variations in joints of the skeleton during
experimentation can effectively be learned by a deep network
which can then identify an differently ordered joint action
class with around 90% accuracy.

2) JUMBLESKEL PERFORMANCE ACROSS DATASETS

Table 5 shows the computed mean recognition accuracies
on jumbled features from multiple sources. The variations
in results were found to be similar to that of table 3. How-
ever, the accuracies across features and networks have been
approximately equal to that of that of table 4. This consis-
tency in mean accuracy can be quantified to the fact that the
networks have learned to characterize the jumbled features
and they have now become powerful enough to generalize
on the noisy skeletal samples. Notably, table 5 has better
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performing networks compared to table 3. This is indeed an
interesting observation showing that jumble joint representa-
tions are helpful in improving the quality of skeletal action
recognition systems. The final cluster C3 evaluates the uni-
versality of the proposed framework for action recognition.

D. C3: OMNIPRESENCE OF JUMBLESKEL FRAMEWORK
This part of the work evaluates the proposed concept of joint
independent learning in deep networks for skeletal action
recognition through iterative execution on multiple machines.
For this purpose we used 5 types of GPUs located on
5 different machines, i.e. 3 laptops, workstation and a high
performance computing (HPC) center located at our univer-
sity campus. The machines used are, NVIDIA GTX1070
8GB GPU with a 16GB RAM, 4GB Quadro P100, 6GB
TESLA K20M and two 940MX 4GB GPUs. All these GPUs
are present on 5 different machines with different memory
configurations. However, all are from NVIDIA and data man-
agement is performed using CUDA architecture.

The entire framework is executed from end-to-end on each
of these machines. The feature maps were extracted on each
machine and they are used for training from scratch. This
operation was necessary to ensure the proposed joint order
independent learning is actually implementable in real sense.
Since, the skeletal joint shuffling process is random, which
generates different joint orders during each routine execution
either on the same machine or on different machine. This
entire cluster is using only KLHA3D102 dataset as input. All
the hyper parameters were made constant across machines
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and iterations. Each model is executed 5 times on 5 different
machines from feature extraction to action prediction.

The mean recognition accuracy has been averaged across
the datasets and the iterations. Therefore, we present table 6
with mean accuracies on different GPUs for QIVM feature
maps trained on multiple models. Since we have the AMS
for our KLHA3D102 dataset, we used 80 training samples for
training each of these networks and tested with the remaining
20 samples of JUMBLESKEL. The resulting accuracies are
averaged across both datasets and iterations on each machine.
We found that the recognition accuracies have fractional
deviation in each iteration on a machine and hence it was
averaged across iterations along with the dataset samples. The
results in table 6 are a replica of the table 4 and the essence
of constant joint ordering can be replaced by capricious.
In short, we found through experimentation and subsequent
analysis that deep learning models can be trained on a random
joint set feature maps to estimate skeletal actions with any
joint representations. However, we estimate that the results
will be slightly different on multiple machines as we have
demonstrated in this cluster.

In conclusion, the minimum number of randomly ordered
joint maps required for achieving independence is found to
be above 80 samples per class. This has indeed achieved
maximum accuracy of 86.56% on our proposed QJVMs and
SgCNN was the highest among the state-of-the-art methods.
Further increasing the AMS has improved the accuracies
across models and features for all the considered skeletal
action datasets fractionally. However, the training and valida-
tion losses were staggering around 0.00143 and 0.00054 after
80 training samples. All the models were run for 200 epochs
and the accuracies reported in this work are average rates at
200th epoch.

E. THREAT ANALYSIS

Adding different randomly generated joint orders as test sam-
ples called as un-controlled group. This un-controlled group
is constantly tested against the control group of test samples
from the actual datasets. If the results from the un-controlled
group are close enough to the controlled test group, the model
outputs will be affected. In our experimentation the recog-
nition accuracies from these two groups were separated by
a margin of £2.6% across all datasets. This process has
nullified the internal threats to a large extent.

Testing on multiple machines has been performed to
counter the external threats imposed by generating the ran-
dom joint sequences on different machines and testing
the resulting action feature maps on multiple machines as
described in the last cluster C3.

V. CONCLUSION

A joint order independent learning method for skeletal based

action recognition is proposed, evaluated and validated along

with recognition method. Skeletal action datasets from mocap

and Kenect are used for experimentation and analysis.
Further, the joint order variational data is created using

random shuffling mechanism on the base skeletal joint data,
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called as jumbled joints. The conclusions are threefold: one,
the new spatio temporal joint feature maps QJVMs has shown
to have discriminating pixel patterns across closely related
actions. Subsequently, a Spectrally Graded CNN architecture
is developed for image classification tasks by using multi-
ple filter Kernel sizes which enhances the non linearity in
the learning through hierarchical receptive fields across the
network. Second, the MONOSKEL training and testing with
different feature maps from various datasets on deep learning
frameworks has shown that the minimum AMS necessary was
in the range of 60 to 80 samples per class. The mean accura-
cies across various skeletal action datasets was found to be in
the range of 88 to 97% across features that have some kind
of joint to joint relationships and if more joints are involved
in a relationship the better are the pixel patterns. Thirdly,
this study facilitated the discovery that it is possible to use
different joint orderings (JUMBLESKEL) for skeletal action
recognition. It further points to a better joint relationships in
features greatly increases the networks capacity to generalize
better. We also found through exhaustive experimentation
on multiple machines that a AMS in the range of 80 and
above training samples per class are necessary to develop
a omnipresence 3D skeletal action recognition system. This
study concludes that it is possible to develop a joint order
independent skeletal action recognition system with joint
relationship feature maps and deep learning networks.
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