
Received August 23, 2021, accepted October 6, 2021, date of publication October 8, 2021, date of current version October 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119077

Design and Implementation of a Distributed
Versioning File System for Cloud Rendering
KYUNGWOON CHO AND HYOKYUNG BAHN , (Member, IEEE)
Department of Computer Engineering, Ewha University, Seoul 120-750, South Korea

Corresponding author: Hyokyung Bahn (bahn@ewha.ac.kr)

This work was supported in part by ICT Research and Development Program of MSIP/IITP (Developing System Software Technologies
for Emerging New Memory That Adaptively Learn Workload Characteristics) under Grant 2019-0-00074, in part by (Development of Data
Improvement and Dataset Correction Technology Based on Data Quality Assessment) under Grant 2020-0-00121, and in part by RP-Grant
2020 of Ewha Womans University.

ABSTRACT Rendering is widely used for visual effects in animations, video games, and movies. As the
computational load in rendering workloads fluctuates greatly over time, it is attractive to use cloud
infrastructures for cost-effective rendering. However, we analyze that cloud rendering has several technical
challenges involved in the handling of rendering input data. In this article, we analyze the workload
characteristics of popular rendering projects, and find out the following three observations. First, total size of
rendering input files reaches tens to hundreds of gigabytes, and uploading these large data to cloud increases
the startup latency of rendering significantly. Second, the consistency requirement of file systems in cloud
rendering is complicated compared to that of traditional distributed file systems. Third, file accesses in
rendering are highly skewed such that the top 20% files account for 60-80% of total accesses, whereas
40-70% are never used or used only once. Based on these observations, we design and implement a new
file system for cloud rendering, which has the function of version control, on-demand fetch, and distributed
cooperative caching for rendering data. This allows for minimizing data transmission overhead caused by
the large input data of rendering and satisfying the rendering data consistency. Measurement studies under
synthetic and real workloads show that the proposed file system performs better than the conventional
uploading scheme and NFS by 55.4% and 29.5% on average, respectively.

INDEX TERMS Cloud, rendering, file system, cooperative caching, versioning file system.

I. INTRODUCTION
Rendering is the process of creating high-resolution photo-
realistic or non-photorealistic images from a 2D or 3D geo-
metric model by making use of computer software [1]–[3].
Rendering is widely used to generate scenes for animations,
video games, simulations, and visual effects in movies, where
a scene consists of more than 24 frames per second. Based on
graphical inputs such as textures, colors, materials, lighting,
and shading, rendering software performs a large number of
computations that take several hours or even more than a full
day to create a single scene. Thus, rendering is commonly
performed on high performance dedicated machines.

However, as the computational load in rendering fluctuates
greatly over time, it may exceed the capacity of the
on-premise facilities as the work due date approaches.
To cope with this situation, public clouds such as AWS [4]
and Azure [5] can be utilized as temporary infrastructures for

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

rendering [6]. That is, rendering users make use of their own
on-premise facilities in usual time, but temporarily rent public
cloud infrastructures in case the rendering workloads become
instantly heavy. This has the advantage of adapting quickly
to the change of computing load over time without owning
expensive equipment. As rendering of each scene is an
independent work, it is also possible to perform rendering on
multiple cloud nodes simultaneously. Concurrent rendering
on multiple virtual machines can further speed up the
rendering operations.

Although cloud is being adopted in a variety of computing
platforms such as virtual desktops, web hosting, and big data
processing, there are some challenges when using clouds
for rendering. Rendering is a computing-intensive task, but
it has an I/O intensive pre-processing phase, where several
co-workers generate a large amount of rendering input data.
In cloud rendering, the input data created at the on-premise
machine should be sent to cloud before rendering starts.
There are two important issues with this input data in cloud
rendering. First, the input data for rendering a single scene

138716 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7188-3889
https://orcid.org/0000-0003-0810-1458


K. Cho, H. Bahn: Design and Implementation of Distributed Versioning File System

reaches tens to hundreds of gigabytes, and it causes heavy
overhead to send them to the cloud instantly. Second, multiple
versions of the rendering input data coexist due to frequent
design modifications, and maintaining the consistency of
these versions is complicated compared to the requirement
of traditional distributed file systems.

Let us discuss the details of these two issues. As there are
separate file systems in the on-premise local machine and
remote cloud machines, the rendering administrator needs to
manually upload the input files for cloud rendering. In this
process, a smart administrator may check the files that will be
actually used during the current rendering process and upload
them selectively. However, in general, all input files in the
on-premise machine should be transferred as it is not known
in advance which files will be actually used. Thus, despite
its simplicity, uploading input files may cause unnecessary
data transfers and is also a burden to the rendering administra-
tor [7]. Our analysis shows that there are 8.1-61.4% of render-
ing input files, which are not actually usedwhile the rendering
is performed in popular animation rendering projects [8].

A distributed file system such as NFS (network file system)
can be alternatively used to resolve the aforementioned
issue [9]. This is because only data to be actually used can be
fetched on-demand when NFS is adopted. However, it also
has much overhead in instant validation and transmission of
rendering input data, which are frequently updated. Note that
modifications to local source data should also be reflected on
remote nodes in distributed file systems, and thus validation
requests to on-premise storage is necessary even if the data
have already been uploaded to the cloud.

In reality, the consistency requirement of file systems in
cloud rendering is even more complicated compared to that
of traditional distributed file systems. That is, although the
input file in the on-premise storage has been modified, any
rendering that is already in progress should use the input
files generated before starting this rendering. This makes it
difficult to use traditional distributed file systems such as
NFS as it is for cloud rendering, because the version of the
file to use depends on the start time of the rendering process
even if a new version has been created. As a result, either
uploading input files by the administrator or using existing
distributed file systems has problems of large overhead and/or
correctness problems.

Caching is an effective way to relieve the overhead of data
delivery in cloud rendering. In caching, once the data has
been fetched, a copy is stored and it will be reused later if the
same data is requested again [10]–[12]. However, caching in
rendering has distinct characteristics and is different from tra-
ditional buffer caching [13] or web caching [14]. Specifically,
unlike file system buffer caching (including NFS) that makes
use of per block-based caching, per file-based caching will be
efficient in cloud rendering from the perspective of validation
and version control. Also, caching for cloud rendering is
different from web caching in that data synchronization
is important in rendering as input files are frequently
updated.

In this article, we analyze the workload characteristics of
popular rendering projects, and present a new file system for
cloud rendering. Our file system is designed as a distributed
file system that synchronizes original files in on-premise
storage and cached files in cloud nodes, while satisfying
the semantics of rendering input. We have implemented our
file system as a user-level FUSE file system [15], and the
rendering software does not need to be aware of the existence
of our file system. It has the function of version control, on-
demand fetch, and distributed cooperative caching.

In the on-premise system side, we have implemented a
file server that manages versions of rendering input files
and performs the on-demand synchronization of the input
files requested by cloud nodes based on the file versions
maintained. In the cloud side, we have implemented a
rendering cache manager, which checks the versions of the
rendering input files and fetches the files necessary for the
current rendering process either from on-premise storage or
from one of the peer cloud nodes.

Our rendering cache manager makes use of two caching
strategies specialized for cloud rendering: version-aware
caching for input data consistency and cooperative caching
for minimizing the data transmission overhead. The version-
aware caching maintains the rendering input files based on
their versions and validates the current version from on-
premise storage when the rendering process requests the files.
As we use cooperative caching, the rendering cache manager
first tries to fetch an input file from one of the peer cloud
nodes in case a valid version is cached there. If not, the file
is retrieved from the on-premise storage. After fetching the
input file, our rendering cache manager maintains it in the
storage cache with the version information. Note that all
caching process including fetching and validation in our
rendering cache manager is performed in a file unit.

To assess the effectiveness of our file system implemen-
tation, we have performed measurement experiments under
both synthetic and real workloads. For synthetic workload,
we extract the characteristics of rendering activities from
the popular animation rendering projects and generate I/O
workloads. For real workload, we execute a well-known
open source rendering software Blender on AWS. Our
experimental results show that the proposed file system
performs better than the uploading scheme andNFS by 55.4%
and 29.5% on average, respectively.

The remainder of this article is organized as follows.
In Section II, we explain the rendering process and the
workload characteristics of rendering. Section III presents
the details of the propose file system for cloud rendering.
Experimental results based on measurement for evaluating
the proposed file system is described in Section IV. Finally,
Section V concludes this article.

II. RENDERING PROCESS AND WORKLOAD
CHARACTERISTICS
A rendering process consists of a certain pipelined phases:
pre-processing, rendering, and post-processing. As shown

VOLUME 9, 2021 138717



K. Cho, H. Bahn: Design and Implementation of Distributed Versioning File System

FIGURE 1. An example of a rendering process.

in Figure 1, the rendering input data are created during the
pre-processing phase by a number of co-working graphic
designers. In this phase, modeling, shading, texturing, and
animating input data are generated by each designer making
use of existing rendering assets or other designer’s output.
By integrating their produced works, rendering input files
are generated. Then, the rendering administrator called the
Wrangler collects the input files and runs the rendering
software. After the long computation process of rendering,
a single image file is generated as the rendering output. In the
post-processing phase, the rendering administrator and the
graphic designers check the created image, and if necessary,
change the input files to perform the rendering again.

As rendering is performed by several co-working designers
and frequent updates are essential until the final version is
prepared, a lot of input file versions coexist. Rolling back to
a previous version is usually performed during the rendering
process, and thus it is important to keep the old version of
the input files undeleted. For example, let us consider an
animation scene in which a black-haired woman appears.
If the rendering designer changes the color of the woman’s
hair from black to blonde but the original black looks better,
the input files should be rolled back to perform the rendering
again.

To generate a photo realistic image via rendering, the size
of input files reaches hundreds of gigabytes even for a
single scene. In cloud rendering, pre-processing and post-
processing are performed on an on-premise machine for
efficient collaboration and I/O work, and main rendering is
performed on the cloud as it has heavy computations. Thus,
the large input data created at the on-premise machine should
be sent to cloud, which incurs heavy network overhead.

In this article, we analyze the characteristics of the
rendering workloads specially focusing on the large input
data by executing a representative open source rendering
software Blender [16].

Figure 2 plots the CPU and I/O usage patterns while
rendering a single image by Blender. As shown in the fig-
ure, rendering exhibits computing-intensive characteristics,
which has the peak usage of CPU during almost all rendering

FIGURE 2. Resource utilizations of CPU and I/O devices while rendering a
scene.

periods. In contrast, I/O usage is bulky only at the beginning
phase of rendering. Most of the remaining process does not
require I/O at all and incurs a small fraction of I/O at the end
of the process for generating output. Based on such resource
usage patterns of rendering, it is clear that cloud rendering
will be effective if the overhead of large I/O in the early stage
can be resolved.

Rendering materials are valuable assets for post-
production and animation studios, so it is not easy to obtain
experimental data sets. Open movie projects are useful for
researchers who need to analyze rendering materials at
a commercial level [8]. We analyze the rendering work-
load characteristics of three computer animation projects:
Laundromat, Nieve, and Monkaa [8]. Table 1 summarizes
the rendering assets of the three movies to be analyzed.
Even though these assets have been well-organized after the
projects were completed, only a small portion of the rendering
input files are involved in producing final output images. It is
also noticeable that there exists quite a large amount of data
that are never used at all in these assets. This implies that
upload-based data synchronization may result in too much
useless data to be transferred.

Figure 3 shows the distributions of rendering input data
as the file size is varied. Although the details are varied
depending on the project size and characteristics, the overall
trends of the distributions are similar. Specifically, a majority

138718 VOLUME 9, 2021



K. Cho, H. Bahn: Design and Implementation of Distributed Versioning File System

FIGURE 3. File size distributions of rendering input data for popular animation rendering projects.

FIGURE 4. Number of references that occurs on the given rankings of input files sorted by their
reference count.

TABLE 1. Brief characteristics of the rendering workloads analyzed in this
article.

of input files are relatively small, but a few large files account
for the most of the total capacity.

To analyze the characteristics of the rendering input
files further, we investigate the popularity distributions.
Figure 4 shows the distributions of input file accesses as
the popularity rankings are varied. In the figure, the x-axis
represents the ranking of files sorted by their total reference
count and the y-axis represents the number of references on
that ranking. As shown in the figure, file accesses made by
rendering input data are extremely biased, and some of the top
ranking files account for most of the references. Also, there
exists an inflection point where the reference count drops
steeply as the file ranking is over that point. This implies that
caching will be effective by maintaining hot files selectively.
Also, from Figure 4 and Table 1, it is worth noting that the
files of rendering asset never used or accessed only once
account for 40.1-69.5% of the total capacity.

To analyze the reference bias of rendering input files more
clearly, we plot the cumulative ratio of file references for the
given ratio of top ranking files in Figure 5. Note that the x-
axis is the ratio of referenced files sorted by their reference
count and the y-axis represents the ratio of references for the
given fraction of top ranked files. For example, 20% in the
x-axis implies the top 20% input files, and the corresponding
value in the y-axis represents the ratio of file references they
made. As shown in the figure, 20% of the top ranked files
account for about 80% of total references in Nieve, implying
that file references in rendering mostly result from some
hot files. In case of Laundromat, 20% of the top ranked
files account for 60% of total references. When compared to
general workloads, the skewness of rendering file accesses is
very strong as it is known that 50-60% of the top ranking files
account for about 80% of file accesses in general workloads
of server systems [17], [18].

Analysis in this section will be used later in Section IV
for generating synthetic workload models and evaluating the
performance of our file system.

III. THE PROPOSED FILE SYSTEM FOR CLOUD RENDING
Two types of storage architectures for cloud rendering can
be considered. The first consists of separate storage for on-
premise and cloud systems, and the rendering administrator
uploads input files from local to cloud for rendering, and
downloads the result after rendering is finished. In this
case, data synchronization should be managed by the
administrator [19]. Although this approach is simple to

VOLUME 9, 2021 138719



K. Cho, H. Bahn: Design and Implementation of Distributed Versioning File System

FIGURE 5. Cumulative ratio of file accesses for the given ratio of top ranked files sorted by their reference
count.

implement, it needs an additional cluster file system to share
data among cloud rendering nodes. Also, it is not easy for the
administrator to distinguish files to be uploaded as there are
too many files involved in rendering and some of them are
duplicated or not used at all, which may incur unnecessary
network transmission. Until the uploading of large data is
completed, rendering cannot start, which incurs additional
latency.

The second storage architecture for cloud rendering is
to make the rendering repository as a virtualized storage.
In this architecture, a virtual file system interface can be used
for cloud nodes to access the on-premise rendering storage.
A simple way to implement the virtualized storage is to
make use of NFS (network file system) [9], [20]. In NFS,
an NFS client on the cloud requests rendering input files
to the on-premise system when they are actually requested
during the rendering process, and the NFS server at the on-
premise system finds the files from its storage and sends them
to the cloud node. Although virtualized storage eliminates the
unnecessary data transmission and long startup latency, it still
has the problem of version control and validation of rendering
data [21].

In this section, we present the file system design
and implementation for cloud rendering that resolves the
aforementioned problems of existing storage architectures.
Our file system is designed as a user-level distributed file
system that synchronizes original files in on-premise storage
and cached files in cloud nodes. It has the function of
version control, on-demand fetch, and distributed cooperative
caching of rendering input data. Figure 6 shows a brief
architecture of the proposed file system. Sections III-A and
III-Bwill explain the on-premise side file server and the cloud
side version-aware cooperative caching, respectively.

A. ON-PREMISE FILE SERVER
In our file system, on-premise storage is used as the
data repository, which controls file-based retrieval and
commits the input files via check-in and check-out functions.
Specifically, a file server residing at the on-premise storage
manages rendering input files. That is, rendering designers
generate input files on the on-premise storage, and the file

server synchronizes these files to cloud nodes when the
rendering software requests the input files.

Meanwhile, as the file server needs to check the modified
time of the input files before sending them, our file system
manages the input files by assigning versions of files based
on the modified time. Specifically, a new version is created
whenever a rendering designer modifies an input file. Then,
the file server sends the last generated version of the input
file just before the current rendering begins on the cloud
node, rather than the up-to-date version of the file. However,
in reality, as rolling back to previous versions is possible,
the default setting of our file server is to use the file versions
of the rendering administrator’s current working directory
rather than the last generated version. Thus, when submitting
a rendering task, the versions of all files at that time are
snapshotted as a tree structure and delivered together to the
cloud node.

B. VERSION-AWARE COOPERATIVE CACHING IN CLOUD
In order to reduce the data transmission overhead caused
by large input files, a rendering cache manager resides on
the cloud side of our file system. If all cloud nodes try
to fetch original files from on-premise storage, it would
be the performance bottleneck. Furthermore, it takes much
time to transfer data between the on-premise storage and
cloud nodes as they are connected by the wide area network
(WAN). To cope with this situation, our rendering cache
manager provides cooperative caching between peer cloud
nodes, and also supports version-aware caching for input data
consistency specialized for cloud rendering.

When rendering starts on a cloud node and input files are
requested, the rendering cache manager first checks whether
the files for the current rendering exist in the cache. If so,
the cache manager checks whether the existing version is
valid. If the cached version is valid, the cachemanager returns
it. Otherwise, the rendering cache manager tries to fetch the
valid version of the input files from the nearest peer cloud
node based on the cooperative caching [22], [23]. If the
cooperative caching fails to find the valid version, the cache
manager fetches the files from on-premise storage.

After fetching the requested input files, our rendering
cache manager maintains them in its storage cache with the

138720 VOLUME 9, 2021



K. Cho, H. Bahn: Design and Implementation of Distributed Versioning File System

FIGURE 6. Our architecture for cloud rendering.

version information. Note that our rendering cache manager
performs caching on a per-file basis, not per-block, which
makes caching and validation more efficient by utilizing the
rendering workload characteristics. A cached file is identified
with its version as well as the path. Note also that the
rendering software does not need to recognize the versions
of files as our file system internally manages them based on
the rendering data consistency, and the virtual file system
interface is used.

IV. EXPERIMENTAL RESULTS
To evaluate the effectiveness of our file system implemen-
tation, we perform measurement experiments under both
synthetic and real workloads.

Synthetic workloads are generated by the rendering
workload characteristics analyzed in Section II. The number
of input files are set to 1,000, and their average sizes are
45 MB. Popularities of the files are distributed such that the
top 20% files account for 60% of total accesses. The total size
of files is 53GB and the number of rendering tasks is set to 80.
646 files are accessed at least once out of the 1,000 files by
the rendering tasks. Total size of the accessed files is 35GB
out of the 53GB. For rendering nodes, we use 4 Citrix Xen
virtual machines, and each node consists of E5-2620 8 Cores
and 4GBmemory. For the on-premise file server node, we use
E5-2620 1 Core and 1GB memory. For a fair comparison, we
experiment both cold start and warm start scenarios. In the
cold start scenario, we measure the performance with the
empty cache pool, whereas the warm start scenario measures
the performance after filling the cache pool of the rendering
nodes. Specifically, for measuring the performance of the
warm start scenario, we first perform the rendering with
the empty cache of the rendering nodes, and 20% of the
input files are modified at the on-premise file server. Then,

we measure the performance by executing the rendering
again.

FIGURE 7. Comparison of the proposed file system and NFS with respect
to the I/O bandwidth (synthetic workload).

Figure 7 shows the I/O bandwidth of the proposed file
system in comparison with NFS. As shown in the figure,
our file system performs significantly better than NFS in
both cold start and warm start scenarios. Specifically, our file
system exhibits 2.1x and 14.8x improved bandwidth for cold
and warm start scenarios, respectively, compared to NFS. The
performance improvement of the warm start scenario is large
as we perform judicious caching by making use of version-
aware caching and cooperative caching. Also, NFS has a
problem in that it cannot provide the exact data consistency
for rendering semantics.

Figure 8 compares the proposed file systemwith the upload
scheme in terms of the total elapsed time. For the upload
scheme, wemeasure the elapsed time of the two experimental
configurations: UploadALL and UploadSMART. UploadALL
uploads all input files to the rendering nodes before starting
the rendering process, whereas UploadSMART uploads only
the files accessed during the rendering phase. As mentioned

VOLUME 9, 2021 138721



K. Cho, H. Bahn: Design and Implementation of Distributed Versioning File System

FIGURE 8. Comparison of the proposed file system and the upload
scheme with respect to the elapsed time (synthetic workload).

in Section III, the rendering administrator performs the
uploading of input files manually, and it is difficult to
identify the files that will be actually used beforehand.
As shown in the figure, our file system performs better
than the upload scheme for all configurations. Specifically,
the performance improvement of our file system against
UploadALL is 49.9% and 92.8%, respectively, for the cold
and warm start scenarios. The performance gap is wider in
the warm start scenario, and this shows the effectiveness
of our judicious caching. When compared to UploadSMART,
the improvement of our file system is 30.3% and 48.9%,
respectively, for the cold and warm start scenarios. This is
a significant result as UploadSMART indicates an ideal case
of uploading only the files that will be used, which needs to
be decided by the administrator beforehand. Even in case of
the cold start scenario, our file system exhibits significant
improvement as we make use of the cooperative caching
among peer rendering nodes.

To assess the effectiveness of the proposed file system
under more realistic scenarios, we measure the performance
while executing real workloads on AWS [4]. Specifically,
we execute the open source rendering software Blender for
rendering the Laundromat movie with 60 files [8], [16]. The
network bandwidth between the on-premise file server and
the cloud nodes is 1.8MB/s on average.

FIGURE 9. Comparison of the proposed file system and NFS with respect
to the elapsed time as the number of cloud nodes is varied (real
workload).

Figure 9 shows the total elapsed time of the proposed
file system in comparison with NFS as the number of
rendering nodes on cloud is varied. As shown in the figure,

the elapsed time decreases almost in proportion to the number
of rendering nodes. This is possible as rendering is an
independent task, which can be performed concurrently on
multiple cloud nodes. When comparing the two schemes, our
file system performs better than NFS in all cases, with a
consistent performance gap. The performance improvement
of our file system is 30.5% on average and up to 42.3%.
There are several reasons behind this result. First, NFS
protocols have a certain overhead as it performs per-block
cache validation, whereas our file system manages the cache
based on the version information of the files. Second, as the
on-premise file server and the cloud are connected via slow
wide area network, the network and I/O bandwidths of the
on-premise file server become the performance bottleneck
in NFS. Third, the performance gap becomes wider as the
number of cloud nodes increases because cooperative caching
increases the likelihood of fetching data from nearby peer
nodes.

FIGURE 10. Comparison of the proposed file system and NFS with respect
to the elapsed time as the same scene is rendered multiple times (real
workload).

FIGURE 11. Comparison of the elapsed time for the proposed file system
and NFS as the same scene is rendered multiple times (with the same
input and the modified input files).

To see the effectiveness of the proposed file system
under warm start scenarios, we choose 4 frames and
perform rendering multiple times. Before rendering the same
frames, which are already rendered, we modify 3.3% of
the input files, and measure the elapsed time of rendering.
Figure 10 plots the elapsed time of the proposed file system in
comparison with NFS. As shown in the figure, our file system
performs consistently better than NFS regardless of the
number of rendering nodes. The performance improvement is

138722 VOLUME 9, 2021



K. Cho, H. Bahn: Design and Implementation of Distributed Versioning File System

26.9% on average and up to 31.1%. Figure 11 compares the
elapsed time of rendering with the same input files and the
modified input files. As shown in the figure, our file system
performs better than NFS by 29.7% and 33.0%, respectively,
for the same and modified input files. Also, it is noticeable
that the elapsed time of NFS increases by 11% with the
modified input files whereas our file system degrades the
performance by only 3%. This implies that the version-aware
cooperative caching proposed in our file system is effective as
it makes use of the cached items within all cache pools across
the peer nodes, whereas NFS cannot do so because it should
request all modified data to the on-premise file server.

V. CONCLUSION
Post-production and animation studios have a growing
demand for rendering on public clouds to cope with
the transient explosion of computational loads. Rendering
workload is commonly known as computing-intensive but our
analysis showed that it incurs heavy I/O due to the large input
files, which makes technical hurdles for implementing cloud
rendering efficiently. Specifically, 1) uploading large input
files to cloud increases the latency of rendering significantly,
and 2) the consistency requirement of rendering input files is
complicated compared to that of traditional distributed file
systems. In order to upload rendering workloads to cloud
nodes seamlessly, this article analyzed the workload char-
acteristics of popular rendering projects, and implemented
a new file system for cloud rendering. Our file system
is designed as a distributed file system that synchronizes
original files in on-premise storage and cached files in cloud
nodes, while satisfying the semantics of rendering input.
We devised the function of version control, on-demand fetch,
and distributed cooperative caching of rendering input files
in our file system design, which allows for minimizing the
data transmission overhead and satisfying the rendering data
consistency. Measurement studies under synthetic and real
workloads showed that the proposed file system outperforms
the conventional upload scheme and NFS by 55.4% and
29.5% on average, respectively.

REFERENCES
[1] G. V. Patil and S. L. Deshpande, ‘‘Distributed rendering system for

3D animations with blender,’’ in Proc. IEEE Int. Conf. Adv. Electron.,
Commun. Comput. Technol. (ICAECCT), Dec. 2016, pp. 91–98.

[2] D. Shin, K. Cho, and H. Bahn, ‘‘File type and access pattern aware buffer
cache management for rendering systems,’’ Electronics, vol. 9, no. 1,
p. 164, Jan. 2020.

[3] C. Rossl and L. Kobbelt, ‘‘Line-art rendering of 3D-models,’’ in Proc. 8th
Pacific Conf. Comput. Graph. Appl., 2000, pp. 87–96.

[4] Amazon Web Services. Accessed: Aug. 23, 2021. [Online]. Available:
https://aws.amazon.com/

[5] Microsoft Azure. Accessed: Aug. 23, 2021. [Online]. Available:
https://azure.microsoft.com/

[6] J. R. Annette, W. A. Banu, and P. S. Chandran, ‘‘Rendering-as-a-service:
Taxonomy and comparison,’’ Proc. Comput. Sci., vol. 50, pp. 276–281,
Jan. 2015.

[7] K. Cho, J. Seo, J. Kang, J. Lee, S. Kim, J. Park, J. Song, J. Kim,
and D. Kwon, ‘‘Render verse: Hybrid render farm for cluster and cloud
environments,’’ in Proc. 7th Int. Conf. Control Autom., Dec. 2014,
pp. 6–11.

[8] Open Movie Projects. Accessed: Aug. 23, 2021. [Online]. Available:
https://www.blender.org/about/projects/

[9] B. Nowicki, NFS: Network File System Protocol Specification,
document RFC1094, 1989.

[10] E. Lee and H. Bahn, ‘‘Caching strategies for high-performance storage
media,’’ ACM Trans. Storage, vol. 10, no. 3, pp. 1–22, Jul. 2014.

[11] T. Kim, H. Bahn, and K. Koh, ‘‘Popularity-aware interval caching for
multimedia streaming servers,’’ IET Electron. Lett., vol. 39, no. 21,
pp. 1555–1557, Oct. 2003.

[12] E. Lee, H. Bahn, and S. Noh, ‘‘Unioning of the buffer cache and journaling
layers with non-volatile memory,’’ in Proc. USENIX Conf. File Storage
Technol. (FAST), 2013, pp. 73–80.

[13] E. Lee, H. Kang, H. Bahn, and K. G. Shin, ‘‘Eliminating periodic flush
overhead of file I/O with non-volatile buffer cache,’’ IEEE Trans. Comput.,
vol. 65, no. 4, pp. 1145–1157, Apr. 2016.

[14] H. Bahn, H. Lee, S. H. Noh, S. Lyul Min, and K. Koh, ‘‘Replica-aware
caching for web proxies,’’ Comput. Commun., vol. 25, no. 3, pp. 183–188,
Feb. 2002.

[15] FUSE Filesystem in Userspace. Accessed: Aug. 23, 2021. [Online].
Available: http://fuse.sourceforge.net/

[16] Blender. Accessed: Aug. 23, 2021. [Online]. Available:
https://www.blender.org/

[17] M. F. Arlitt and C. L. Williamson, ‘‘Web server workload characterization:
The search for invariants,’’ ACM SIGMETRICS Perform. Eval. Rev.,
vol. 24, no. 1, pp. 126–137, May 1996.

[18] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, ‘‘Web caching and
Zipf-like distributions: Evidence and implications,’’ in Proc. 18th Annu.
Joint Conf. IEEE Comput. Commun. Soc. Future, 1999, pp. 126–134.

[19] D. Dobre, P. Viotti, and M. Vukolić, ‘‘Hybris: Robust hybrid cloud
storage,’’ in Proc. ACM Symp. Cloud Comput., Nov. 2014, pp. 1–14.

[20] J. Slawinski, T. Passerini, U. Villa, A. Veneziani, and V. Sunderam,
‘‘Experiences with target-platform heterogeneity in clouds, grids, and on-
premises resources,’’ in Proc. IEEE 26th Int. Parallel Distrib. Process.
Symp. Workshops PhD Forum, May 2012, pp. 41–52.

[21] E. Anderson, ‘‘Capture, conversion, and analysis of an intense NFS
workload,’’ inProc. 7th USENIXConf. File Storage Technol. (FAST), 2009,
pp. 139–152.

[22] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson,
‘‘Cooperative caching: Using remote client memory to improve file system
performance,’’ in Proc. 1st USENIX Conf. Oper. Syst. Design Implement.
(OSDI), 1994, pp. 1–14.

[23] Y. H. Shin, H. Bahn, and K. Koh, ‘‘Directory-based coordinated caching
in shared web proxies,’’ in Information Networking (Lecture Notes
in Computer Science), vol. 2662. Berlin, Germany: Springer, 2003,
pp. 1010–1017.

KYUNGWOON CHO received the B.S., M.S.,
and Ph.D. degrees in computer science and engi-
neering from Seoul National University, in 1995,
1997, and 2012, respectively. He is currently
a Senior Researcher with the Embedded Soft-
ware Research Center, Ewha University, Seoul,
Republic of Korea. Before joining Ewha, he was
a Chief Officer with the Clunix Research and
Development Center, Seoul. His research interests
include multimedia systems, cloud computing,

real-time systems, embedded systems, and operating systems.

HYOKYUNG BAHN (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer
science and engineering from Seoul National
University, in 1997, 1999, and 2002, respectively.
He is currently a Full Professor in computer sci-
ence and engineeringwith EwhaUniversity, Seoul,
Republic of Korea. He has published more than
100 papers in leading conferences and journals
including USENIX FAST, IEEE TRANSACTIONS ON

COMPUTERS, IEEETRANSACTIONSONKNOWLEDGEAND

DATA ENGINEERING, and ACM Transactions on Storage. His research interests
include operating systems, caching algorithms, storage systems, embedded
systems, system optimizations, and real-time systems. He also received
the Best Paper Awards at the USENIX Conference on File and Storage
Technologies, in 2013.

VOLUME 9, 2021 138723


