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ABSTRACT This paper considers an unrelated parallel machine problem with job release times and
maintenance activities, in which machines have to periodically undergo maintenance since the status of
the machines will be deteriorated by job-induced dirt. The problem is inspired by a wet station for cleaning
operations in a semiconductor manufacturing process. The objective is to minimize the makespan. Since
the considered problem is proven to be NP-hard, obtaining optimal solutions is almost impossible in a
reasonable computational time when the problem becomes large. We develop specific feature-extraction
procedures to recognize important information in a job sequence and linkage encoding (LE) procedures to
generate new job sequences. The two above procedures are embedded into an iterated algorithm, called a
feature-extraction-based iterated algorithm (FEBIA), to obtain optimal or better solutions for the considered
problem. To examine the performance of the FEBIA, the FEBIA is compared with two population-based
algorithms, the particle swarm optimization (PSO) algorithm and the genetic algorithm (GA), usingmany test
data. The results reveal that the proposed FEBIA perform better than the two population-based algorithms,
demonstrating the potential of the FEBIA to solve the unrelated parallel machine problem with periodic
maintenance and job release times.

INDEX TERMS Unrelated parallel machine, makespan, flexible maintenance, scheduling.

I. INTRODUCTION
This paper considers job scheduling and maintenance activity
optimization problems for unrelated parallel machines with
dynamic job release times. In the literature, the majority
of joint dispatching job and maintenance activity problems
examine single-machine configurations [1]–[3] and assume
that all jobs are ready to be processed at the same time.
However, unrelated parallel machine configuration problems
are commonly encountered in different manufacturing sys-
tems, such as semiconductor and electronics manufacturing,
since a bank of parallel machines can overcome the impact
of a bottleneck in the production line to improve the system
throughput. Additionally, a case in which the job release
times are the same or equal to zero is not practical for such
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a dynamic manufacturing situation, especially in a semicon-
ductor manufacturing system.

Semiconductor wafer fabrication consists of hundreds of
operations and the scheduling complexity is increased by
specific process requirements such as sequence-dependent
setups, machine maintenance, and batch-processing. Some
researchers have noted that when maintenance planning
and production scheduling lack coordination, machines may
remain idle due to waiting for engineering personnel to per-
form maintenance activities, even though jobs are ready to
be processed [4], [5]. Low throughput and inefficient sys-
tem performance consequently occur. This work is inspired
by the importance of integrating job scheduling and main-
tenance simultaneously for a semiconductor manufacturing
process, more specifically, cleaning operations. The cleaning
operation is one stage of the semiconductor manufacturing
process, which cleans the dirt off of wafer surfaces so that
the wafers can maintain a good status for the next process.
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Dirt is a catch-all term for any type of residue, such as the
particles, organic material, and metal-salts remaining in a
machine during this cleaning operation. The amount of dirt
will increase as more (wafer) processing jobs are conducted.
Once the amount of dirt exceeds a specific threshold value,
it will damage the wafer during processing. Therefore, wet
stations (machines) must be stopped and the cleaning agent
must be periodically changed to keep the machines in a good
status.

Our considered problem can be defined as follows. There
are n jobs to be processed on m unrelated parallel machines.
Each machine Mi is at initial status, i.e., there is no dirt
in each machine, and Mi has a positive cleaning time wi
and a dirt threshold Ti. In addition, after cleaning activity,
machines become initial. Each job Jj has a positive processing
time pij, a release time rj, and an amount of dirt dij, wherein
pij and dij are determined by the assigned machineMi. Given
a feasible schedule S of jobs, the amount of dirt in each
machine must not exceed its dirt threshold. The objective is
to find a schedule that minimizes the makespan. According
to the standard machine scheduling classification [6], this
problem is denoted as Rm|rj, dij ≤ Ti, fpa|Cmax , where fpa
in the second field means that the maintenance activity is
flexible and occurs periodically [7]. Flexible maintenance
activity is one type of maintenance where the starting time of
the maintenance must be determined during the production
scheduling process. In addition, the various kinds of flexi-
ble maintenance activities and their practical requirements
have been addressed by many researchers in the literature.
Mosheiov and Sarif [8] considered a single machine prob-
lem where the machine has to complete only one mainte-
nance activity prior to a given deadline, and they proposed a
pseudopolynomial dynamic programming (DP) method and
a heuristic to minimize the total weighted completion time.
Lee and Chen [4] considered the parallel machine problem,
and proposed branch and bound algorithms to minimize
the total weighted completion time, for the two cases in
which machines can be maintained simultaneously and in
which multiple machines cannot be maintained simultane-
ously. Levin et al. [9] also considered a parallel-machine
problem where all maintenance activities must be simulta-
neously performed once. They proved the problem to be
NP-hard and provided a pseudopolynomial DP algorithm and
an SPT-based algorithm to minimize the total completion
time. Yoo and Lee [10] considered the same problem as
Lee and Chen [4], and proved the problems with the objec-
tive of the makespan, the total weighted completion time,
the maximum lateness or the total lateness to be NP-hard.
Qi et al. [11] considered another type of flexible maintenance
where the machine must be stopped and maintained after
working for a period of time. For the single machine, they
proposed three simple heuristics and a branch and bound
algorithm to minimize the total completion time. Sbihi and
Varnier [12] proposed a heuristic and a branch and bound
algorithm to minimize the maximum tardiness. Lee et al. [13]
considered a parallel machine problem in which the objective

was to minimize the total tardiness. A branch and bound algo-
rithm was developed that included the implementation of the
lower and upper bounding procedure, which can find the opti-
mal solutions for problemswith up to 20 jobs. Costa et al. [14]
considered a parallel machine problem with tool changes
where each machine needs to change to a new tool if the tool
service life is reached. The objective was tominimize the total
completion time, and they proposed a mixed integer linear
programming model and a genetic algorithm (GA) to solve
both small- and large-sized problems. Another well-known
flexible maintenance activity in which maintenance must be
started and finished in a predetermined maintenance interval
[u, v] was defined. Chen ( [2] and [7]) developedmixed binary
integer programming (BIP) models and an efficient heuristic
algorithm to minimize the mean flow time and the makespan,
respectively, for a single problem with this type of flexible
maintenance. Low et al. [15] compared the performances of
six kinds of heuristics for a single problem with the objective
of minimizing makespan and provided the calculation of
the error bounds. A more realistic ε-almost periodic main-
tenance was assumed by Xu et al. [5], where the difference
in the times of any consecutive maintenance activities of
the machine is within ε, and proposed an approximation
algorithm to minimize the makespan for the parallel-machine
problem. Qamhan et al. [16] considered a single-machine
problem with time window periodic maintenance where the
time between two maintenance activates was a fixed inter-
val (T) and each maintenance activity could start in a time
window, i.e., T∓w. Additionally, the time of maintenance
activity was not equal. For the problem, they proposed a
mixed-integer linear programming model and ant colony
optimization (ACO) to minimize the number of tardy jobs.
Hidri et al. [17] considered a parallel-machine problem with
a single robot server, where the availability interval of the
machines and the duration of PM activity were deterministic
and known in advance. For the problem, they developed lower
bound, simulated annealing (SA), tabu search (TS), and GA
to find better solutions under the objective of minimizing the
makespan.

In addition to those tasks in which flexible maintenance
activity is considered, most studies in the literature consid-
ered another type of maintenance activity in the scheduling
problem. This problem is called a scheduling problem with
machine availability constraints, where the starting time and
duration of maintenance are assumed to be fixed and known
in advance [1], [3], [18]. Comprehensive reviews for this case
are provided by Sanlaville and Schmidt [19], Schmidt [20],
and Ma et al [21]. Some researchers considered both cases
of fixed and flexible maintenance activities in their studies.
Cui et al. [22] considered a nonpermutation flow shop prob-
lemwhere two cases of nonavailability intervals are involved.
In the first case, the maintenance activity is periodically fixed
and known in advance, while in the second case, the machine
has to be maintained after working for a period of time. Since
the problem is NP-hard in the strong sense, a hybrid incre-
mental genetic algorithmwas proposed. It is worth noting that
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the maintenance activities in the above studies are related to
a time constraint.

Unlike the abovementioned studies where machine main-
tenance is related to a time constraint, i.e., given fixed
time intervals or a maximum continuous working time,
Bock et al. [23] addressed a new model where maintenance
activity is subject to job-dependent machine deterioration
where the maintenance level drops by a certain job-dependent
amount. They considered two types of maintenance activities.
One is full maintenance activity, where the maintenance level
increases to the maximum maintenance level once mainte-
nance activity is completed, and the other is partial mainte-
nance activity, where the maintenance level increases to an
arbitrary maintenance level that is less than the maximum
maintenance level. To address this problem, they considered
the makespan, the total completion time, the maximum late-
ness, and the number of tardy jobs and provided complexity
analysis for the problems. Girgoriu and Briskorn [24] and
Tian et al. [25] extended the study of Bock et al. [23] to
parallel machines. Su and Wang [26] introduced another
new model where the machine status deteriorates due to
job-induced dirt; that is, the machine needs to be maintained
before the accumulation of dirt reaches a threshold value, and
the machine status will return to its initial condition once the
maintenance activity is finished. The main difference from
the study of Bock et al. [23] is that the maintenance time
is fixed and not dependent on the current maintenance level.
To address the problem, they proposed a mixed binary integer
programming model and an effective heuristic to minimize
the total absolute deviation of job completion times (TADC).
Later, Chen et al. [27] also considered the same problem that
Su and Wang [26] had, where the objective is minimizing the
total completion time. Pang et al. [28] extended the study
of Su and Wang [26] from a static problem with a single
objective function to a dynamic problem with a biobjective
function, and they proposed a scatter simulated annealing
algorithm to obtain nondominated solutions.

In this paper, we extend the study of Su and Wang [26]
from a single machine to unrelated parallel machines with
job release times, since the literature on parallel machine
problems is still not as extensive as that of single-machine
scheduling problems. To the best of our knowledge, only
three studies address maintenance constraints and job release
times simultaneously [28]–[30]; however, the three studies
considered single machine problems. Without considering
the job release times, when the processing times of all jobs
are the same and there is only one machine, the considered
problem of Rm

∣∣rj, dij ≤ Ti, fpa∣∣Cmax could be reduced to
the one-dimensional bin-packing problem, which aims to
pack n items of size dj into a minimum number of bins of
capacity T , which it has been proven to be NP-hard [31].
Since this problem can be reduced to a bin-packing prob-
lem, it is also NP-hard, and hence, we focus on develop-
ing a feature-extraction-based iterated algorithm (FEBIA)
to efficiently obtain high-quality solutions. The proposed
FEBIA is inspired by observations from many evolutionary

search algorithms. In the FEBIA, some information of an
individual schedule in the past generation could be further
extracted to generate good solutions instead of straightly
ignoring the information hidden in the individual schedule.
Numerical experiments are conducted to demonstrate the
performance of the FEBIA by comparing it with a basic
particle swarm optimization (PSO) algorithm and a simple
genetic algorithm (GA). The computational results show that
the proposed FEBIA gives promising and better results for
the problem under study. The rest of the paper is organized
as follows. Section II presents a mathematical model for for-
mally describing the considered problem. Section III presents
four feature-extraction matrices to recognize important fea-
tures of job sequences. Our proposed FEBIA is addressed in
Section IV. Section V presents the experimental results.
Section VI offers the conclusions and future research
directions.

II. MIXED INTEGER PROGRAMMING MODEL
In this section, a mixed integer programming (MIP) model
is constructed to describe the characteristics of the consid-
ered problems in which a set of jobs J = {J1, J2, . . . , Jn}
is to be scheduled on m unrelated parallel machines. Pre-
emption is not allowed, and machines are not available all
the time because they must be stopped to be cleaned peri-
odically to prevent amount of dirt in the machine from
exceeding the threshold. The parameters and decision vari-
ables are listed as follows. Our objective is to minimize the
makespan, i.e., Cmax .

A. PARAMETERS
n: number of jobs
m: number of machines
i: index of machines, where i = 1, . . . ,m
j: index of jobs, where j = 1, . . . , n
k: index of the processing sequence, where k = 1, . . . , n
Mi: machine i
Jj: job j
rj: the release time for job j
pij: the processing time of job j on machine i
dij: the remaining dirt for job j when processed on

machine i
Ti: the maximum dirt allowance for machine i
wi : the cleaning time for machine i

BM: a very large positive integer; BM =
∑m

i=1

n∑
j=1

pij

B. DECISION VARIABLES
Xijk : 1 if job j is processed on machine i at position k , and
0 otherwise
Yik : 1 if the maintenance is implemented immediately

after position k where machine i finished a job, and 0 oth-
erwise.
ST ik : the job processing start time for machine i at

position k
PT ik : the processing time for machine i at position k
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CT ik : the completion time for machine i at position k
Qik : the accumulated dirt in machine i after position k

where machine i finished a job
Cj: the completion time of job j.
Cmax = maxCj.

C. MODEL
Objective function

Min. Cmax (1)

Subject to
∑m

i=1

∑n

k=1
Xijk = 1 ∀j = 1, . . . , n (2)∑n

j=1
Xijk ≤ 1 ∀

{
i = 1, . . . ,m
k = 1, . . . , n

(3)

ST ik ≥
∑n

j=1

(
rj × X ijk

)
∀

{
i = 1, . . . ,m
k = 1, . . . , n

(4)

PT ik =
∑n

j=1

(
pij × Xijk

)
∀

{
i = 1, . . . ,m
k = 1, . . . , n

(5)

ST ik ≥ CT i,k−1 +
(
wi × Yi,k−1

)
∀

{
i = 1, . . . ,m
k = 2, . . . , n

(6)

CT ik ≥ ST i,k + PT ik ∀

{
i = 1, . . . ,m
k = 1, . . . , n

(7)

Qi1 =
∑n

j=1
(d ij×X ij1) ∀i = 1, . . . ,m (8)

Qi,k−1 +
∑n

j=1
(d ij×X ijk ) ≤ Qik

+
(
BM × Yi,k−1

)
∀

{
i = 1, . . . ,m
k = 2, . . . , n

(9)∑n

j=1
(dij × Xijk ) ≤ Qik

+
[
BM × (1−Yi,k−1)

]
∀

{
i = 1, . . . ,m
k = 2, . . . , n

(10)

Qik ≤ Ti ∀

{
i = 1, . . . ,m
k = 1, . . . , n

(11)∑n

j=1
Xijk≤

∑n

j=1
Xij,k−1

∀

{
i = 1, . . . ,m
k = 2, . . . , n

(12)

Cj ≥ CT ik + BM × (Xijk − 1)

∀


i = 1, . . . ,m
j = 1, . . . , n
k = 1, . . . , n

(13)

Cmax ≥ Cj ∀j = 1, . . . , n (14)

The objective function (1) minimizes the makespan. Con-
straint (2) ensures that each job is assigned to only one
position on a machine. Constraint (3) ensures that not more

than one job is assigned to any position in the sequence
for any machine. Constraint (4) defines the available time
for processing jobs at the kth position on machine i. Con-
straint (5) specifies the job processing time at the kth position
on machine i. Constraint (6) ensures that the start time at the
kth position on machine i should be greater than or equal to
the completion time of the previous position. Constraint (7)
prevents a job from being processed before its ready time.
Constraint (8) defines the total remaining dirt at the first
position on machine i. Constraints (9) and (10) define the
total remaining dirt left at the kth position on machine i,
excluding the first position. Constraint (11) ensures that the
total dirt is not greater than the maximum dirt allowance
for each machine. Constraint (12) makes it so that at least
one job has to be processed between maintenance activi-
ties. Constraint (13) defines the completion time of job j.
Constraint (14) defines the makespan.

III. FEATURE-EXTRACTION MATRICES
In this paper, we develop feature-extraction matrices and
construct ten procedures to find heuristic solutions based
on these feature-extraction matrices. The purpose of the
feature-extractionmatrices is to find the job-position, job-job,
job-machine, and machine-job relations from each individual
solution and use this information to guide job allocations
and generate better schedule solutions. To construct these
matrices, we first convert each solution into a correspond-
ing feature value to identify its solution quality among the
population and then fill the feature value in the matrices. The
conversion steps from the objective solutions to the feature
values are described as follows.

A. FEATURE VALUE
Step 1. Decode each individual π with (n + m − 1) ele-

ments to obtain a makespan value (Cπmax), which is
described in Section IV. To enlarge the disparities
among the solutions of individuals, we square Cπmax
and obtain Aπ =

(
Cπmax

)2.
Step 2. Calculate the mean value Ā and standard

deviation σA for all Aπ s in this population according
to the following equations:

Ā =
∑L

π=1
Aπ

/
L

σA =

√∑L
π=1 (Aπ − Ā)

2
/
(L − 1), where L is the

number of individuals in the population.
Step 3. Normalize Aπ , i.e., Zπ = (Ā− Aπ )

/
σA.

Step 4. Obtain a feature value for an individual by cubing
Zπ , that is, Ei = (Zπ )3.

The steps to obtain the feature value for an individual in the
population has two functions: (1) Our objective is tominimize
themakespan.We use this conversion tomaximize the feature
values. In other words, a higher feature value is preferred.
(2) The conversion steps can make the better/worse individu-
als more distinguished in the population. Because the feature
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FIGURE 1. The makespan values of the twenty individuals for 5-job example of Table 1.

values of all individuals are normalized and then enlarged,
the best solution is above zero, and the best andworse solution
is significant. An example of five jobs in Table 1 is used
to generate twenty individuals randomly. Among the twenty
individuals, in Fig. 1 and Fig. 2, the fourth individual marked
by a double circle means that the solution is the best where the
makespan and feature value are 16 and 7.03089, respectively.
Additionally, it can be seen that the best andworse individuals
seem to be much more distinguished in Fig. 2 where the
worse feature value is far below zero. Moreover, for other
insignificant individuals, their values seem to be slightly close
to zero, as shown in Fig. 2.

Once we obtained the feature values for all individ-
uals in the population, we next used the feature values
to construct four matrices, including job-position, job-job,
job-machine, and machine-job matrices. The first two matri-
ces were first developed by Chou [32] and embedded into
a genetic algorithm to successfully solve the single machine
total weighted tardiness scheduling problem. We extended
the idea of Chou [32] and constructed job-position, job-
job, job-machine, and machine-job matrices using the feature
values. The construction steps for the matrices are described
as follows.

B. JOB-POSITION (n+m− 1, n+m− 1) MATRIX
The job-position matrix is used to provide the semaphores
of the positions for the jobs in a job-sequence based on the
global feature values. A higher semaphore value of job i at
position j suggests that this kind of designation could be

TABLE 1. An example with five jobs and two machines.

found in better solutions. The construction of the job-position
matrix is described as follows.
Step 1. We initialize two two-dimensional arrays

(JP1 and JP2) with n + m − 1 rows and n + m − 1
columns, where each element in the two arrays is
equal to zero.

Step 2. For each selected individual in the population, if
job i exists at position j, the values of JP1(i, j) is
added by its feature, and the value of JP2(i, j) is
added by 1.

Step 3. We repeat Step 2 until all individuals of the pop-
ulation have been selected and we obtain JP1 and
JP2 for this population. To demonstrate the working
process, a 5-job example of Table 1 is used. Suppose
there are twenty sequences (individuals) whose fea-
ture values are obtained. Then, we accumulate the
information from these twenty individuals to gener-
ate JP1 and JP2 arrays as shown in Fig. 3.
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FIGURE 2. The feature values of the same twenty individuals for 5-job example of Table 1.

FIGURE 3. Collect information from individuals and generate JP1 and JP2 arrays.

Step 4. The job-position matrix is obtained by JP1
JP2 . Accord-

ing to Fig. 3, the job-position matrix is obtained as
shown in Fig. 4.

It is worth noting that if an element in the JP2 matrix is equal
to zero, the division is neglected, and the value is straightly
replaced with zero.
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FIGURE 4. The job-position matrix obtained based on the twenty individuals.

FIGURE 5. The job-job matrix is obtained based on the twenty individuals.

C. JOB-JOB (n+m− 1, n+m− 1) MATRIX
The precedence information between the jobs in a job
sequence is also an important factor in determining an optimal
schedule [33]. Thus, we use the job-job matrix to provide the
signals for any pair of jobs in the job-sequence based on the
global feature values. The generation of the job-job matrix is
similar to the steps of the job-position matrix and described
in the following.

Step 1. We initialize two two-dimensional arrays (JJ1 and
JJ2) with n+m−1 rows and n+m−1 columns, where
each element in these matrices is equal to zero.

Step 2. For each selected individual in the population, if job
i is before job j, the values of JJ1 (i, j) and JJ1 (j, i) is
added by its feature, and the element of JJ2(i, j) and
JJ2(j, i) are added by 1.

Step 3. Repeat Step 2 until all individuals of the population
have been selected and obtain the JJ1 and JJ2 for this
population.

Step 4. The job-job matrix is obtained by JJ1
JJ2 .

Using these steps for the job-job matrix, for the same pop-
ulation, the JJ1, JJ2, and job-job matrices are obtained and
shown in Fig. 5.

For unrelated parallel-machine scheduling problems, there
are two interrelated subproblems: first, one needs to deter-
mine which jobs are to be allocated to which machines;
and, second, one needs to determine the sequence of the
jobs allocated to each machine. The above job-position
and job-job matrices mainly provide information about the
job sequence, whereas the information of the second sub-
problem is provided by the following job-machine and
machine-job matrices. The processes are demonstrated in the
following

D. JOB-MACHINE (n, m) MATRIX
The job-machine matrix aims to find the information on
which jobs are assigned to which machine. The steps of
building the job-machine matrix are also similar to those of
the job-position matrix and are described below.
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Step 1. We initialize two two-dimensional arrays
(JM1 and JM2) with n rows and m columns, where
each element in these matrices is equal to zero.

Step 2. We construct the JM1 and JM2 arrays, which is
similar to Step 2 of the job-position matrix. If job i
is assigned at machine j, the values of JM1(i, j) is
added by its feature value, and the value of JM2(i, j)
is added by 1.

Step 3. Repeat Step 2 until all individuals of the population
have been selected and obtain JM1 and JM2 for this
population.

Step 4. The job-machine matrix is obtained by JM1
JM2 .

For the 5-job example of Table 1, the job-machine matrix
is obtained as shown in Fig. 6.

FIGURE 6. The job-machine matrix is obtained based on the twenty
individuals.

E. MACHINE-JOB (n+ 1, m) MATRIX
The machine-job matrix is applied to forecast the number
of jobs processed in each machine. The steps are described
below.

Step 1. We initialize two two-dimensional arrays (MJ1 and
MJ2) with n + 1 rows and m columns, where row
number starts with zero, and each element in these
matrices is equal to zero.

Step 2. For each selected individual in the population, if the
number of jobs processed onmachine j is i, the values
of MJ1 (i, j) is added by its feature value, and the
value of MJ2(i, j) is added by 1.

Step 3. We repeat Step 2 until all individuals of the popu-
lation have been selected and obtain the MJ1 and
MJ2 for this population.

Step 4. The Machine-job matrix is obtained by MJ1
MJ2 .

Based on the above steps, the machine-job matrix is obtained
for the same population with 20 instances and is displayed
in Fig. 7.

Following the construction steps of each matrix, the com-
putational complexity of each matrix is O (L � (n+ m)).

FIGURE 7. The machine-job matrix is obtained based on the twenty
individuals.

IV. FEATURE-EXTRACTION-BASED ITERATED
ALGORITHM (FEBIA)
In this paper, we propose a population-based stochastic search
algorithm, called a feature-extraction-based iterated algo-
rithm (FEBIA), where a group of solutions is maintained
in each iteration using linking encoding (LE) procedures
based on the mentioned feature-extraction matrices to solve
Rm|rj, dij ≤ Ti, fpa|Cmax problems.
Similar to many metaheuristic algorithms such as genetic

algorithms (GAs) [34], particle swarm optimization (PSO)
algorithms [35], and simulated annealing (SA) algo-
rithms [36], the individuals of the group in the FEBIA
are maintained by certain operators, and each individual is
represented by an encoding scheme and then decoded to
the corresponding objective value. The encoding scheme
makes a solution recognizable, whereas the decoding obtains
a feasible solution for algorithms. Before demonstrating the
proposed FEBIA, the encoding and decoding scheme for the
Rm|rj, dij ≤ Ti, fpa|Cmax problem is described as follows.

A. ENCODING/DECODING SCHEME
Regarding the encoding scheme, Borovska [37] noted that
permutation coding is the best method for ordering problems,
and to date, many meta-heuristic algorithms have used per-
mutation coding to solve parallel machine scheduling prob-
lems in the literature (Vallada Regalado and Ruiz Garcia [38],
Borovska [37]). Thus, we also used permutation coding sim-
ilar to that of Cheng and Gen [39], where an (n + m − 1)
array is used to represent an individual. For 5-job instance
with two machine in Table 1, the corresponding solution
encoding is represented as 1-3-5-6-2-4 as shown in Fig. 10,
in which the dummy job (job 6) is used to separate machines,
indicating jobs 1, 3, and 5 to machine 1, and the rest of the
jobs 2 and 4 are to allocated machine 2.

For our considered problem, there are three decisions to be
made: (1) allocating jobs to eachmachine; (2) the sequence of
jobs to be processed on eachmachine; and (3) the timing point
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FIGURE 8. Comparison between the modified DP and the full batching methods.

of cleaning activity for each machine under the limit of dirt
left in each machine. The proposed permutation coding could
solve the first two decisions as shown in Fig. 10. Regarding
the third decision, wemodify the dynamic programming (DP)
method provided by Pang et al. [28] to solve this issue. Addi-
tionally, we use this instance of Table 1 for comparison with
the full batching method commonly used in the bin-packing
problem [40]. The comparison is shown in Fig. 8. In the third
decision, the amount of dirt in each machine not exceeding
the threshold value is a hard constraint. That is, the mod-
ified DP method is used to minimize the makespan; in the
meantime, the obtained solution has to satisfy the constraint
of dirt left in each machine. Thus, a certain relationship
between the solution and dirt left in the final state was not
verified in this paper. Fig. 8 shows that using the two batching
methods, the amount of dirt in the final state of the machine
is different, and using the modified DP method, the final
solution (i.e., makespan) is shorter, but there is more dirt left
in the machine. However, another example in Fig. 9 shows
that there is different dirt left in the machine at the final state
even when the makespan is the same. In this paper, we adopt
the modified DPmethod to obtain complete feasible solution.
For the sake of brevity, for the procedures of the DP method,
the readers can refer to the study of Pang et al. [28].

B. LINKAGE ENCODING (LE) PROCEDURES
The LE procedure aims to generate ten individuals based on
the four feature-extraction matrices mentioned above for the

next iteration of the FEBIA. The ten different LE procedures
described in the following.

1) LE01 PROCEDURE
The LE01 procedure employs an assignment heuristicmethod
to obtain a permutation encoding based on the job-position
matrix. The steps of LE01 are given in the following.

Step 1. Initialize a permutation encoding with (n + m − 1)
items.

Step 2. Find the largest feature value (v∗ij) among the
job-position matrix and place job i into position j in
the permutation encoding.

Step 3. Replace all values (vij) in row i and column j of the
job-position matrix with null.

Step 4. Repeat step 2 until the values (vij) in the job-position
matrix are equal to null.

2) LE02 PROCEDURE
The LE02 procedure employs the roulette wheel technique
to obtain a permutation encoding based on the job-position
matrix. The steps of LE02 are given below.

Step 1. Initialize a permutation encoding with (n + m − 1)
items.

Step 2. Calculate the range value (Rj) for each column of the
job-position matrix, i.e., max (v∗j)-min (v∗j). Select
the column j′ with the largest Rj′ .
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FIGURE 9. The same makespan with different dirt left in the final state.

FIGURE 10. Permutation coding.

Step 3. Calculate the probability probi for each row i of
column j′ based on its corresponding vij′ , where i =
1, . . . , (n+ m− 1). If vij′ = null, then probi = 0.

Step 4. Generate a random number r from the range (0, 1].
Step 5. Calculate the cumulative probability qi for each i of

column j′, where i = 1, . . . , (n+ m− 1).
Step 6. Select job l such that ql−1 < r ≤ ql .
Step 7. Place the selected job l into position j′ in the permu-

tation encoding.
Step 8. Replace all values vlj′ in row l and column j′ of the

job-position matrix with null.
Step 9. Repeat step 2 until the values of vij in the job-position

matrix are equal to null.

3) LE03 PROCEDURE
LE03 is similar to LE02. The difference is that the cal-
culations for the roulette wheel are based on the rows
of the job-position matrix. The steps of LE03 are given
below.

Step 1. Initialize a permutation encoding with (n + m − 1)
items.

Step 2. Calculate the range value (Ri) for each row of the
job-position matrix, i.e., max (vi∗)-min (vi∗). Select
the row i′ having the largest Ri′

Step 3. Calculate the probability probj for each column j of
row i′ based on its corresponding vi′j, where j =
1, . . . , (n+ m− 1). If vi′j = null, then probj = 0.

Step 4. Generate a random number r from the range (0, 1]
Step 5. Calculate the cumulative probability qj for each j of

row i′, where j = 1, . . . , (n+ m− 1).
Step 6. Select the position h such that qh−1 < r ≤ qh. The

selected position is denoted as h.
Step 7. Place job i′ into the selected position h in the permu-

tation encoding.
Step 8. Replace all values of vi′h in row i′ and column h of

the job-position matrix with null.
Step 9. Repeat step 2 until the values of vij in the job-position

matrix are equal to null.

For the three procedures of LE01, LE02, and LE03, the
computational complexity is O((n+ m)2), where n is the
number of jobs and m is the number of machines.

The following four procedures (LE04, LE05, LE06, and
LE07) are developed based on the job-job matrix.

4) LE04 PROCEDURE
The LE04 procedure tries to find the higher priority jobs in
the permutation encoding. In the job-job matrix, the value of
a pair (i, j) indicates the priority that job i is before job j in the
permutation encoding from the past population. Therefore,
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we develop the LE04 method using the information of the
job-job matrix. The steps of LE04 are given below.

Step 1. Sum the values for each row of the job-job matrix,
i.e., Sumi =

∑n+m−1
j=1 uij.

Step 2. Obtain a permutation encoding by sorting the jobs in
descending order of their Sumi.

5) LE05 PROCEDURE
LE05 is also developed to obtain a permutation encoding
based on the job-job matrix. The steps of LE05 are given
below.

Step 1. Sum the values for each column of the job-job
matrix, i.e., Sumj =

∑n+m−1
i=1 uij.

Step 2. Obtain a permutation encoding by sorting the jobs in
increasing order of their Sumj.

6) LE06 PROCEDURE
LE04 and LE05 only use a simple index (Sumi or Sumj,
respectively) to generate a permutation encoding. In LE06,
both the Sumi and Sumj indexes are considered. The steps of
LE06 are given below.

Step 1. Sum the values for row i and column j of the job-
job matrix, i.e., RSumi =

∑n+m−1
j=1 uij and CSumj =∑n+m−1

i=1 uij.
Step 2. Calculate the priority (PV i) for job i using the for-

mula (CSumi − RSumi).
Step 3. Obtain a permutation encoding by sorting the jobs in

increasing order of their PV i.

For the three procedures of LE04, LE05, and LE06, the
computational complexity is O((n+ m) log(n+ m)).

7) LE07 PROCEDURE
In the job-job matrix, a positive value for a pair (i, j) implies
that job i is before job j; in contrary, job i is after job j if
the value is negative. Therefore, we can count the successive
number of jobs for job i according to positive values in the
job-job matrix. The steps of LE07 are given below.

Step 1. Set k = 1.
Step 2. Based on the job-jobmatrix, count the number (CN i)

of rows where uij is greater than zero, and sum the uij
values for the rows where uij > 0, i.e., Sumi.

Step 3. Choose the row i′ with the largest CN i. If there is a
tie, choose the row with the largest Sumi; otherwise,
choose arbitrarily. Place job i′ in position k.

Step 4. Replace the values of ui′j with null for j =
1, . . . , (n+ m− 1). k = (k + 1).

Step 5. If k = (n+m− 1), place the unassigned job into the
last position. Then, stop the procedure. Otherwise,
return to step 2.

8) LE08 PROCEDURE
The feature-extraction procedures mentioned above only
use a single matrix such as the job-position or the
job-job matrix. We integrated the information from the

job-position and job-job matrices to develop LE08 and the
steps of LE08 are given below.
Step 1. Calculate the mean µ̂ and standard deviation σ̂

based on the values in the job-position matrix. Set
a threshold value (ω) equal to µ̂+ 3σ̂ .

Step 2. For each column j, find the value (vi′j′ ) of the
job-positionmatrix that is greater than the threshold
value (ω). If there is a tie, choose the largest vi′j′
and place job i′ in position j′ in the permutation
encoding.

Step 3. If the permutation encoding is null, randomly gen-
erate a permutation encoding. Otherwise, go to
step 4.

Step 4. Find the position j′ first occupied by a job in the per-
mutation encoding. If j′ = 1, go to step 5 (forward
filling). Otherwise, go to step 9 (first backward
filling and then forward filling).

Step 5. Update the job-job matrix by replacing the values
of the occupied rows and columns with null.

Step 6. Sum the values for each row of the job-job matrix,
i.e., Sumi =

∑n+m−1
j=1 uij.

Step 7. Select the job i′ with the largest Sumi′ and put it into
the next unoccupied position in the permutation
encoding. If there is a tie, choose randomly.

Step 8. Return to step 5 until all successive positions are
occupied, and then stop.

Step 9. Update the job-job matrix by replacing the values
of the occupied rows and columns with null.

Step 10. Sum the values for each row of the job-job matrix,
i.e., Sumi.

Step 11. Select job i with the largest Sumi and put it into the
previous unoccupied position in the permutation
encoding. If there is a tie, choose randomly.

Step 12. Return to step 9 until all previous positions are
occupied.

Step 13. If one of the successive positions is not occupied,
return to step 5; otherwise, stop.

C. LE09 PROCEDURE
LE09 integrates the information of the job-position,
job-machine and machine-job matrices to generate a new
permutation encoding. First, the Machine-Job matrix is used
to find the number of jobs processed in each machine. Next,
we applied the job-machine matrix to find which jobs were
processed on which machine. Finally, we use the job-position
matrix to determine the job sequence in each machine. The
detail steps of LE09 are listed below.
Step 1. j = 1, and k = 0
Step 2. According to the Machine-Job matrix, find the

largest value (α∗i′j) in column j, i.e., machine j.
The corresponding row number (i′) is the num-
ber of jobs (NM j) processed on machine j, where
k =

(
k + i′

)
.

Step 3. Delete column j from the Machine-Job matrix and
replace the values of αij for i > (n− k) with null
for the Machine-Job matrix. j = (j+ 1)
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Step 4. If j ≤ m, return to step 2; otherwise, go to step 5.
Step 5. Set j = 1.
Step 6. Choose the number of jobs (NM j) with the largest

values of β∗i′j in the job-machine matrix and put the
chosen jobs into the set for machine j (MJ j).

Step 7. Delete the chosen row from the job-machine
matrix. j = (j+ 1).

Step 8. If j ≤ m, return to Step 6; otherwise, go to step 9.
Step 9. Set j = 1.
Step 10. Construct a sub job-position matrix from the cur-

rent job-position matrix based on the chosen jobs
in the set of machine j (MJ j).

Step 11. Apply the assignment heuristic method to deter-
mine the job sequence based on the sub job-position
matrix and put the jobs into the permutation encod-
ing accordingly.

Step 12. If j < m, add the number (i.e., n + j) at the next
position in the permutation encoding, j = (j+1) and
return to step 10. Otherwise, stop the procedure.

D. LE10 PROCEDURE
LE10 integrates the information of the job-job, job-machine
and machine-job matrices to generate a new permutation
encoding. LE10 is similar to LE09. The difference is the steps
of determining the job sequence; thus, steps 1 to 8 of LE10 are
the same as steps 1 to 8 of LE09.

Steps 1 to 8. Use steps1 to 8 of LE09.
Step 9. Set j = 1.

Step 10. Construct a sub job-job matrix from the current
job-job matrix based on the chosen jobs in the
set of machine j (MJ j).

Step 11. Sum the values for each row of the sub job-job
matrix, i.e., Sumi.

Step 12. Obtain a permutation encoding by sorting
the jobs in decreasing order of their Sumi.
j = (j+ 1).

Step 13. If j < m, add the number (i.e., n + j) at
the next position in the permutation encoding,
j = (j + 1) and return to step 10. Otherwise,
stop the procedure.

For the four procedures of LE07, LE08, LE09, and LE10,
the computational complexity is O((n+ m)2).
Regarding the mentioned 5-job instance, the four

feature-extraction matrices are given earlier in Figs. 4-7,
therefore, ten permutation lists could be obtained by the
LE procedures, and then the solutions are obtained by the
modified DP methods, as illustrated in Table 2. All new
individuals obtained by LE procedures are put into the next
iteration. Notably, the optimal solution of the 5-job instance
is 15.

In Table 2, it can be seen that using LE procedures to
generate ten new individuals in each iteration is likely to
promote the FEBIA to search for good individuals because
the optimal or better solutions are included in those obtained
by LE procedures. On the other hand, Table 2 also shows that

TABLE 2. The ten solutions obtained by LE procedures for the 5-job
instance.

LE procedures will impede the diversity of the population
such that it is trapped in local optima. To overcome this
drawback, we generate other individuals randomly in each
iteration of the FEBIA to diverse the population. That is,
L individuals of the population in the FEBIA are randomly
generated in the initial iteration, and in a subsequent iteration,
the population includes that of the best individual of the
current population (i.e., adopting elite strategy), ten individ-
uals are generated by the LE procedures, and the remain-
ing individuals, i.e., L-11, are randomly generated. In the
FEBIA, all new individuals with (n + m − 1) elements are
manipulated for the next iteration based on permutation
encoding; thus, their corresponding solution schedules are
feasible by the DP method. Additionally, in each iteration,
each matrix is updated by the following equation (seen
in Fig. 11) for the next iteration. The process continues until
the stopping criterion is met. Fig. 11 shows the framework of
the proposed FEBIA.

It is worth noting that the FEBIA almost does not need
to tune parameters and the simple framework is also easy to
implement for other problems.

V. COMPUTATIONAL EXPERIMENT
To examine the efficiency of our proposed algorithm, we test
our FEBIA, the basic PSO and simple GA on different sets of
randomly generated instances.

The experiment is conducted for fifteen different problem
sizes, that is, n = 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70,
80, 90, 100, 200, 300, 400, and 500. The release time rj,
processing time pij and dirt dij of the problems are generated
using discrete uniform distributions over [0, 20], [3, 15], and
[1, 9], respectively. For machines, the dirt threshold values
are generated in the ranges of [10, 12], [10, 15], and [15, 25].
Finally, the maintenance times for machines were generated
in the ranges of [3, 5], [5, 10], and [10, 20]. Ten instances
are generated for each combination; thus, there are a total
of 90 instances for each problem size.
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TABLE 3. The parameter settings of the GA method in the preliminary
experiment.

TABLE 4. The parameter settings for PSO, GA, and FEBIA.

To obtain the benchmark solutions, the MIP model is
solved using IBM ILOGCPLEXOptimization studio version
12.7.1 on a PC with an Intel Xeon E-2124 3.4 G-Hz CPU
with 32 GB of DRAM, and the time limit of the MIP is set
to 1800 seconds. For the basic PSO algorithm [35], that is,
vi (t + 1) = vi (t)+ c1r1

(
pbi − xi (t)

)
+ c2r2

(
pbg − xi (t)

)
,

xi (t + 1) = xi (t) + vi(t + 1), where c1 and c2 are learning
factors, usually c1 = c2 = 2 [35], [41], and to control
the excessive roaming of particles outside the search space,
the values of xi(t) and vi(t) are limited, i.e., vi (t) ≤ |Vmax | =
5, and xi (t) ≤ |Xmax | = 5 in this paper. Regarding a simple
GA to generate new population, rrep × Ps individuals with
the lowest makespan values from previous generation are
automatically copied to the next generation, where rrep and
Ps are the reproduction rate and population size. Two-point
crossover is used to generate the rest of individuals for the
next generation. Swap mutation is performed on offspring
with a probability rmut to make the offspringmore diversified.
For the three algorithms (PSO, GA, and FEBIA), five repli-
cations are performed for each instance. These algorithms
are coded in C++ and run on the same personal computer
mentioned above.

For the GA, we first conduct a preliminary experi-
ment. The parameter values are set in Table 3. For each

FIGURE 11. The framework of the proposed FEBIA.

instance, the minimum, average, and maximum makespan
among 5 replications are obtained, and then the mean val-
ues for the minimum, average, and maximum makespan are

TABLE 5. The results obtained by PSO, GA and the FEBIA compared with the MIP model.
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FIGURE 12. The results under different reproduction rate for n = 20.

FIGURE 13. The results under different reproduction rate for n = 40.

calculated among ninety instances for each problem. The
comparison results under different parameter values shown
in Figs. 12-16. These results indicate that when the number
of jobs is less than 100, the parameter setting of (rrep =
0.1, rc = 0.9, rmut = 0.1) is better. However, when the
number of jobs is equal to 100, the parameter setting of

(rrep = 0.15, rc = 0.85, rmut = 0.1) seems to improve.
Table 4 shows our parameter settings for PSO, GA, and
FEBIA in the computational experiment, where for a fair
comparison, the number of individuals (Ps) in the population
and stopping condition (TL) are the same setting depending
on the problem sizes.
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FIGURE 14. The results under different reproduction rate for n = 60.

FIGURE 15. The results under different reproduction rate for n = 80.

In this paper, the average relative percentage deviation
(ARPD) is adopted as a performance index, and the formula
is as follows:

ARPD =
∑R

1
(
(Cmax (Alg)− Best)× 100

Best
)
/
R,

where Cmax (Alg) denotes the makespan generated by the
PSO, GA, and FEBIA algorithm in each run, Best is the best
solution obtained by the algorithm or the optimal solution
by the MIP model, and R is the number of replications for
each instance, i.e., R is equal to five in this paper. In addition,
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FIGURE 16. The results under different reproduction rate for n = 100.

FIGURE 17. Average computational time required by MIP and algorithms.

1min,1avg, and1max denotes the minimum, mean and max-
imum of ARPD values among 90 instances for each problem.
For small-sized problems, all three algorithms (PSO, GA,
and FEBIA) could consistently obtain optimal solutions in
a short time compared to the MIP model shown in Table 5
and Fig. 17.

When the number of jobs is greater than or equal to 20, the
solutions obtained by theMIP model in the time limit of 1800
seconds are not certain to be optimal. Table 6 shows the1min,
1avg, and1max values obtained for each method. In Table 6,
it is obvious that the FEBIA outperforms other algorithms in
terms of solution quality and stability. The proposed FEBIA
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FIGURE 18. The number of the best solutions found by different algorithms.

FIGURE 19. The number of the best solutions found by different algorithms for large-sized problems.

found all of the best solutions among 810 instances, while the
number of the best solutions obtained by the PSO, GA (0.1,
0.9, 0.1), GA (0.15, 0.85, 0.1) and MIP incredibly decreases
as problem size increases.

Table 7 provides the comparison results for large-sized
problems, the results reveal that FEBIA performed very
better in terms of solution quality and stability than the
other compared algorithms. From Tables 6 and 7, the
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TABLE 6. The results obtained by MIP, PSO, GA and the FEBIA for medium-sized problems with 2 machines.

TABLE 7. Comparison of PSO, GA and the FEBIA for large-sized problems.

GA(0.15, 0.85, 0.1) seemed more sensitive to problems
than the GA(0.1, 0.9, 0.1). Fig. 19 shows that the num-
ber of the best solution found by each algorithm. The pro-
posed FEBIA apparently performs well and the number
of better solutions found by the FEBIA slightly increases
as the number of jobs increases with the same number of
machines.

To further show how fast the algorithms converge to a
better solution, we use an instance with 100 jobs and two
machine to record the best solution found by each algo-
rithm every 0.005 seconds. As revealed in Fig. 20, the pro-
posed FEBIA converges fast to a better solution. This result
confirms that the proposed feature-extraction matrices and
LE procedures could make an iterated algorithm to find better
quality solutions and that the convergence of the solution can
be faster. On the whole, the experimental results provide evi-
dence that the proposed FEBIA has significant performance
advantages in terms of solution quality and stability. This
achievement is mainly due to the inclusion of LE procedures
based on feature-extraction matrices in the FEBIA together
with randomness when generating new solutions for the next

FIGURE 20. The convergence of the GA, PSO and the FEBIA.

iteration. Moreover, the proposed FEBIA does not require
excessive parameter tuning, which is an apparent advantage
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of the FEBIA in decreasing the influence on the solution due
to different parameter settings.

VI. CONCLUSION
In this paper, we introduce the unrelated parallel machine
scheduling problem with periodic maintenance activities and
a dynamic job release time, which is denoted as Rm|rj, dij ≤
Ti, fpa|Cmax . This problem is NP-hard and is of consider-
able practical interest since it can be used to model many
industrial applications, such as for the motivation of this
article, which was semiconductor manufacturing cleaning
operations. Because the considered problem is NP-hard, algo-
rithms for obtaining an optimal solution in polynomial time
are unlikely to exist. Thus, this paper develops an effective
and efficient novel scheduling algorithm, namely, the FEBIA,
for the Rm|rj, dij ≤ Ti, fpa|Cmax problem. The FEBIA is
similar to population-based algorithms. Each individual in the
population is represented by permutation encoding that con-
siders the job allocation and job sequence simultaneously, and
the corresponding solution, i.e., the makespan, is obtained via
a dynamic programming algorithm. In the FEBIA, the two
novel parts are the feature-extraction matrices that are used
to recognize the feature values from the previously found
solutions and the LE procedures that are used to find better
solutions based on thematrices. Based on the results of a com-
prehensive experiment, the FEBIA outperformed MIP, PSO
and the GA, especially for small to medium problem sizes.
Additionally, the solutions of the FEBIA are better than those
obtained by PSO and the GA for large problem sizes with the
same computation time. This study concludes that the combi-
nation of feature-extractionmatrices and LE procedures gives
the FEBIA encouraging performance. Moreover, it is worth
noting that the advantages of the FEBIA include its simple
framework, fewer parameters to tune and quick convergence,
all of which make it a promising and competitive scheduling
algorithm.

In summary, the proposed FEBIA is successful at solving
the Rm|rj, dij≤Ti, fpa|Cmax problem. The problem is a gen-
eral real-world case that has not been investigated by many
researchers in the literature. Our research will continue in
the following directions. (1) We will consider combining the
feature-extractionmatrices and LE procedure with other meta
heuristic algorithms such as the GA or SA. (2) In the current
FEBIA, no improvement mechanism is involved, so local
search procedures will be included in our algorithm. (3) Other
shop environments such as open shops, flow shops, job shop
problems can be studied in future research.
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