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ABSTRACT This paper devises an algorithmic processmining framework characterized by themathematical
process model of structured information control nets (SICN) and the concept of mass-driven ρ-function as
a decision-making criterion of structural process patterns. In order to prove the functional correctness of the
proposed algorithmic framework, this paper also implements all the related algorithms as a process mining
system and carries out an operational experiment on a typical synthetic dataset of process enactment event
logs prepared and released in the 4TU Centre for Research Data. The core contribution of the paper is just
the algorithmic framework development named as the ρ-Algorithm, which ought to be a novel approach
not only for mining all the primitive process patterns, such as linear (sequential), disjunctive (selective-OR),
conjunctive (parallel-AND), and repetitive (iterative-LOOP) process patterns, with perfectly keeping the
structural properties of matched pairing and proper nesting, but also for reasonably discovering structured
(even unstructured) information control nets from such IEEE XES-formatted datasets of process enactment
event logs. The mining functionality of the ρ-Algorithm is made up of three stepwise algorithms: STEP-1,
STEP-2 and STEP-3 algorithms, and these algorithms are formally described as an algorithmic framework
supported by the conceptual process mining architecture with a series of theoretical concepts with the
temporal work-case model and the temporal loop-case model. Finally, we validate the functional correctness
as well as the discovery perfectness of the proposed algorithmic framework named as ρ-Algorithm by
deploying the implemented ρ-Algorithm on a synthetic, non-noise and IEEE XES-formatted dataset of
process enactment event logs recorded from the 10,000work-caseswith 113 activities of the Petrinet-oriented
process model named as the Large Bank Transaction Process Model.

INDEX TERMS Structured information control net, process mining, process reengineering, process analyz-
ing, process discovery and rediscovery, process enactment event log datasets.

I. INTRODUCTION
Aworkflowprocess (or business process, from now on, which
is named as process) management system (WPMS or BPMS)
is defined as a system that partially or fully automates the
definition, creation, execution, and management of work pro-
cedures through the use of software that is able to interpret the
procedure definition, interact with business-task participants,
and invoke their uses of IT tools and applications. Steps of a
work procedure are called activities, and jobs or transactions
that flow through the system are called work-cases or process
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instances. One of the recent research issues in the process
management literature is the process intelligence coping with
the process mining [1]–[4] and its related process-aware
knowledge [5]–[10] discovery and rediscovery. The motiva-
tion of the paper is to develop an algorithmic process redis-
covery framework (which is called a SICN-oriented process
mining framework in this paper), in particular, that becomes
an effective catalytic means for successfully accomplishing
not only the organizational change management works but
also the process automation works in all the phases of the
process life-cycle, continuously. At this moment, we have
to emphasize that the rediscovered process model ought not
to be equivalent to its original process model in terms of its
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FIGURE 1. A conceptual definition of process-aware knowledge discovery and rediscovery.

process aspect itself as well as almost all the other aspects
like process resource allocation aspect, performer behavioral
aspect and process relevant data aspect.

Figure 1 is to illustrate a situational view of a certain
process-aware enterprise (or organization) to define the
conceptual difference between process-aware knowledge dis-
covery and rediscovery. As you see, we assume that the
enterprise has been supported from a variety of information
systems that manage all the valuable assets of data, informa-
tion and knowledge available and produced in the business
and organizational environments. One of the recent trends in
the traditional business and managerial information systems
ought to be the introduction of process management systems
and the deployment of the process automation methodologies
as a means of monitoring and controlling business-activities
and managements. We call those enterprises and organi-
zations fortified with process automation and management
methodologies, tools and systems as the process-aware enter-
prises and organizations, in general. The core competitiveness
of the process-aware enterprises and organizations ought to
be on the process mining functionality that is able to contin-
uously manage as well as repeatedly evolve all the processes
deployed in the corresponding enterprises and organizations.
The process mining functionality is mainly composed of the
process discovery [7], [11], [12] functionality and the process
rediscovery [1], [5], [13], [14] functionality. The former is to
discover business-activity processes from the event logs of
the executions of the traditional information systems, while
the later is to rediscover the enacted business-activity pro-
cesses from the event logs stored whenever the corresponding
business-activity processes are enacted and executed by their
process management system. Especially, the rediscovered
processes can be re-engineered and re-designed according
to their performances measured and mined from the event
logs by the process knowledge mining tools [15] and the

process intelligence solutions as well. Note that we won’t,
from now on, differentiate the terminology of discovery from
the rediscovery in this paper.

Particularly, the paper proposes an algorithmic process
mining framework for discovering structured process pat-
terns from process enactment event logs and validates the
proposed algorithmic framework by implementing all the
related stepwise algorithms. Also, it carries practically out
an experimental analysis by deploying the implemented
framework onto the dataset provided by the BPI challenges
of 4TU.Centre for Research Data [16] and formatted in the
IEEE XES standardized format [17]. The following are the
characteristics of the algorithmic process mining framework
proposed in the paper. First, the algorithmic framework is
able not only to discover the process patterns [18] but also
to discover the enactment occurrences [19], [39] of the pro-
cess patterns from a dataset of the IEEE XES-formatted
enactment event logs of a corresponding process model.
Second, the algorithmic framework is theoretically supported
by the information control nets modeling methodology [20]
of process models. Third, the essential algorithm of the algo-
rithmic framework named as ρ-Algorithm (rho-Algorithm)
is able to discover a structured information control net
model with the enactment occurrences of the activities
associated with an underlying process model. Fourth, the
ρ-Algorithm is firstly developed in the process manage-
ment and mining literature as the process mining algorithm
that discovers a structured process model theoretically sup-
ported by the structured information control net modeling
methodology. Fifth, the ρ-Algorithm is able to discover all
the process patterns such as linear (sequential), conjunctive
(parallel-AND), disjunctive (exclusive-OR), and repetitive
(iterative-LOOP) process patterns and discover the enactment
occurrences and proportions of each branch of the process
patterns.
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FIGURE 2. An operational verification of discovering the petrinet-oriented process model by the α-algorithm.

As the validation study of the proposed algorithmic
framework (ρ-Algorithm), the paper applies the imple-
mented framework and system to a real dataset that contains
non-noise and synthetic event logs from the enactment history
of 10,000 process instance event traces of the Large Bank
Transaction Process Model [16]. Through the feasibility
study, the paper verifies the functional correctness of the
ρ-Algorithm in discovering all the types of process patterns
from the real dataset formatted in the IEEE XES standardized
specification [17].

In terms of organizing the paper with the sections, the next
section summarizes the related research works and scope
as the algorithmic challenges of the conventional process
discovery algorithms done in the business and workflow
process intelligence literature. In the consecutive section,
we describe the theoretical and algorithmic details of devis-
ing the ρ-Algorithm with three stepwise algorithms under
the name of the SICN-oriented process mining framework.
Subsequently, the implementation and operational details of
validating the core functions of the ρ-Algorithm are expli-
cated with focusing on how it works for discovering all the
structural process patterns and finally building up a structured
information control net from an exemplary dataset as well as
the synthetic and non-noise dataset with the 10,000 instances’
enactment histories of the Large Bank Transaction Process
Model, respectively. Finally, the last section summarizes our
research outcomes and experimental validation results with
concluding our future works and remarks.

II. RELATED WORKS AND MOTIVATION
Themain research challenge of this paper is to devise an algo-
rithmic process mining framework for discovering a model of
structured information control nets from a process enactment
event log dataset. Therefore, the literature surveys of the

challenge are summarized in this section of related works.
The most popular approaches of the theoretical modeling
methodologies to formally define and graphically represent
business process models are the Petrinet-oriented model
[21]–[23] of process modeling methodology and the informa-
tion control net model [10], [24]–[26] of process modeling
methodology. Both of them are based upon the mathemat-
ical representation and the graphical representation at the
same time. The Petrinet-oriented process model has a strong
advantage in terms of the mathematical and analytical power,
whereas the information control net process model has a
much stronger merit in terms of the expressiveness of the pro-
cess domain. So far, there have been several process mining
algorithms in the literature. One of the typical process mining
algorithms for discovering the Petrinet-oriented process mod-
els is the α(alpha)-Algorithm [13], [27], whereas the typical
process mining algorithm for discovering the information
control net process models is the σ (sigma)-Algorithm [1].
Note that the name of the process mining algorithm proposed
in the paper is the ρ(rho)-Algorithm, and the naming
reason of the ρ-Algorithm will be explained later. The
crucial idea and characteristics of these algorithms and
their comparisons with the ρ-Algorithm are arranged in this
section.

A. THE α-ALGORITHM FOR DISCOVERING THE
PETRINET-ORIENTED PROCESSES
Through publishing the α-Algorithm, Aalst et al. [13] firstly
addressed the process mining problem. This problemwas for-
mulated as follows: Find a mining algorithm able to discover
a large class of sound Petrinet-oriented process model on the
basis of complete process event logs. The α-Algorithm is
able to discover a large and relevant class of structured pro-
cesses. Through examples they showed that the algorithm
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FIGURE 3. An operational verification of discovering the structured information control net process model by the
σ -algorithm.

provides interesting analysis results for processes and tackled
the problem of short loops with focusing on hidden tasks,
duplicate tasks, and advanced routing constructs. The discov-
ery problem is not a goal by itself. They also assumed that the
overall goal is to be able to analyze any process event logs
without any knowledge of the underlying process and in the
presence of noise. In a common sense in the literature, their
works were accepted as a stepping stone for good and robust
process mining techniques. Figure 2 shows the three types
of Petrinet-oriented process patterns that can be discovered
from the process event logs by the α-Algorithm, and the
log-based ordering relations, such as causality, parallel and
choice, that are used for deciding the type of process patterns
by the α-Algorithm, respectively. Based upon these ordering
relation operators, they applied the α-Algorithm to an exem-
plary dataset of the process enactment event logs as depicted
in Figure 2, and proved that the α-Algorithm is reasonable
and applicable in the real process intelligence arena.

B. THE σ -ALGORITHM FOR DISCOVERING THE
INFORMATION CONTROL NET PROCESSES
Through publishing the σ (sigma)-Algorithm, Kim and
Ellis [1] proposed a mining algorithm for discovering
process models from the underlying process enactment
event logs. Differently from the α-Algorithm dealing with
the Petrinet-oriented process modeling methodology as
introduced in the previous section, the σ -Algorithms theo-
retical basis is the structured information control net process
modeling methodology. They understood process manage-
ment systems as process-aware information systems that help

to execute, monitor and manage work process flow and exe-
cution. These systems, as they are executing, keep a record
of who does what and when (e.g. log of events). Also they
defined the basic concept of the processmining as those activ-
ities of using computer software to examine these records
and deriving various structural data results. They thought that
the process mining activity needs to encompass behavioral
(process/ control-flow), social, informational (data-flow), and
organizational perspectives. Especially, they were insisted
that process management systems are people systems that
must be designed, deployed, and understood within their
social and organizational contexts. The process mining activ-
ity ought to be planned and fulfilled under the preconditions
of the people systems, too. They especially focused on the
behavioral perspective of a structured process model that pre-
serves the proper nesting and the matched pair properties and
proposed a process mining algorithm that is able to discover
a structured information control net process model, which
is named as σ -Algorithm. The main reason of naming the
σ -Algorithm is because it is incrementally amalgamating a
series of temporal work-cases (process instance event traces)
according to three types of basic merging principles. Figure 3
shows how the σ -algorithm works with temporal work-cases
by illustrating an example of the information control net
process discovery using the σ -Algorithm.

C. THE MOTIVATION OF THE ρ-ALGORITHM
The essential motivation of the paper is about the proof
of concept and feasibility with the SICN-oriented process
mining framework that is able to discover a process model
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FIGURE 4. The conceptual process mining architecture for discovering structured information control net process models.

of structured information control net from such a dataset
of process enactment event logs formatted in IEEE XES
standardized specifications. As stated in the previous sub-
sections, for the sake of eventually supporting the model-log
comparison, which is the process fidelity issue [13], [22],
[28]–[30], the literature has produced so far the two concepts
and theories; one is the Petrinet-oriented process modeling
methodology and the other is the information control net
process modeling methodology. Also, the literature has pub-
lished the α-Algorithm [2], [30] and the σ -Algorithm [1] for
discovering Petrinet-oriented process models and informa-
tion control net process models, respectively. However, all of
these discovery approaches have the limitations that they are
able to deal with only sequential, parallel and selective pro-
cess patterns out of all the types of the process patterns such as
sequential, parallel, selective and repetitive process patterns.
In other words, both of the discovery algorithms have a limita-
tion in dealing with discovering the repetitive-LOOP process
patterns; the α-Algorithm, in principle, is implicitly dealing
with the repetitive-LOOP process pattern as the selective pro-
cess pattern. In recent, some [25], [30]–[33] of the research
groups tried to not only extend the α-Algorithm and the
σ -Algorithm so as to explicitly deal with the repetitive-LOOP
process patterns, but also expand the process mining usages
to the predictive process managing and monitoring area.

III. DEVISING THE ρ-ALGORITHM
In this section, a SICN-oriented process mining framework
is proposed and formalized with a series of formal concepts

and models. Especially the proposed algorithmic framework
is characterized by the concept of mass-driven ρ-function as a
decision-making criterion of process patterns. In other words,
the proposed algorithmic framework is able to eventually
discover all the four types of primitive process patterns in a
structured information control net process model from a pro-
cess enactment event log dataset by applying the mass-driven
ρ-function with their enactment event log occurrences. In this
section we formally describes a series of conceptual compo-
nents of the conceptual process mining architecture at first.
Next, we also devise an algorithmic process mining frame-
work with a series of algorithms for transforming and discov-
ering all the process patterns and their enactment event log
occurrences. Especially, the core component of the devised
algorithmic framework is the ρ-Algorithm,1 which is firstly
introduced and so named by this paper, and the ρ-operator of
which gives the masses (occurrences) of all the activities in
the event log dataset of a corresponding process model.

A. THE CONCEPTUAL PROCESS MINING ARCHITECTURE
In this section, we explicate the conceptual approach with
formal notations for devising the ρ-Algorithm proposed in
the paper, which is to formally define a conceptual process

1In the ρ-Algorithm, the symbol and name of rho (ρ) comes from the A
programming language (APL) firstly released in 1960s. The function rho,
coded like ρX in APL, implies that it gives the number of elements in X,
from which the concept of mass comes. The central idea of the discovery
algorithm of the framework is exactly same to the implication of the APL
function, rho (ρ).
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FIGURE 5. Four types of process patterns in the structured information control net
modeling methodology.

mining architecture to discover a structured information con-
trol net process model from its enactment event histories
logged by executing the corresponding process model built
from any combinations of all the four types of primitive
process patterns. Figure 4 illustrates a series of formal com-
ponents of the conceptual process mining architecture, which
is revised from the original architecture [1] to emphasize
the proposed algorithm’s conceptual requirement with dis-
covering all the possible combinations of the four types of
primitive process patterns [18], [34], such as linear, disjunc-
tive (exclusive-OR), conjunctive (parallel-AND) and repeti-
tive (iterative-LOOP) process patterns, with their graphical
representations given in Figure 5.
The concrete algorithm is theoretically supported by a

series of functional routines that are formalized by a series of
formal concepts and their related algorithms, such as process
enactment event log datasets, process warehouses, temporal
work-cases, temporal loop-cases, temporal work-case model,
temporal loop-case model and a process pattern rediscovery
algorithm named as the ρ-Algorithm. Especially, the func-
tional core of the ρ-Algorithm is to receive a bunch of
temporal work-cases as inputs and to discover a structured
information control net as an output. At the moment of
composing a structured information control net as the out-
put, the ρ-Algorithm has to precisely situate three types
of special nodes, such as selective-XOR, parallel-AND and
iterative-LOOP nodes, between those activity nodes hav-
ing multiple incoming or outgoing transition relationships,
as shown in Figure 5. Besides, these three types of special

nodes are called gateway activity nodes; each type of the
special nodes has to match a pair of OPEN and CLOSE
gateway activities; simultaneously, the rule of properly nested
formation must be kept so that multiple sets of the OPEN and
CLOSE gateway activities are theoretically satisfied with the
principles of safeness and soundness. Eventually, the discov-
ered process model is graphically represented by the control
flow aspect of the information control net that is built from a
starting node, a terminating node, the enacted activities with
their nodes, and the edges combining all these nodes with a
set of sequential node, a set of pairs of OPEN and CLOSE
parallel gateway nodes, a set of pairs of OPEN and CLOSE
selective gateway nodes, and a set of pairs of OPEN and
CLOSE iterative gateway nodes. Likewise, it is necessary
to be graphically visualized as a graphical process model
with keeping the structural properties of matched-pairing and
proper-nesting according to the following graphical compo-
sition rules:
• Primitive OPEN-Transition (Open or Split Gateway
Activity) Types: The conjunctive (or parallel) open gate-
way activity is graphically represented by a solid dot (•)
with a single incoming transition and multiple outgoing
transitions; the disjunctive (or selective-decision) open
gateway activity is graphically represented by a hollow
dot (◦) with a single incoming transition and multiple
outgoing transitions; the repetitive open gateway activity
is graphically represented by a double-hollow dot (�)
with multiple incoming transitions and a single outgoing
transition.
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• Primitive CLOSE-Transition (Close or Join Gateway
Activity) Types: The primitive Close-transition types
have the same graphical notations, but their connections
vice versa.

• The starting and the terminating event nodes are
medium-sized circle with thin line and medium-sized
circle with thick line, respectively.

The conceptual architecture is concretized by a series
of formal concepts and their algorithms, such as process
enactment event log datasets, process warehouses, temporal
work-cases, temporal loop-cases, temporal work-case model,
temporal loop-case model and a process pattern discovery
algorithm named as the ρ-Algorithm. Especially, the figure
highlights the conceptual role of the ρ-Algorithm that is the
core component of the conceptual architecture. This section
formally defines these formal components.

1) PROCESS ENACTMENT EVENT LOGS
On the conceptual approach of Figure 4, the starting point
is the process enactment event logs that are organized into a
cubic structure of the process enactment event logs of each
process package, the accumulated process instance enact-
ment event traces of each process model and the process
work-item enactment events of each process instance. In other
words, the event logs imply the enactment histories of all
the process models (or packages) managed by an underlying
process management system. According as an instance of a
process model executes, its temporal execution sequence is
produced and logged into the backup databases or files; this
temporal execution sequence is called a process enactment
event trace. The process enactment event trace is made up of
a temporal sequence of the activity event logs associated with
a specific process instance. According as a process instance is
executed, the logging and auditing component of the process
enactment engine records its work-item (activity instance)
execution events on a log repository, and those logged events
are arranged in a form of temporal sequence of events. This
execution sequence of a process instance is forming a process
instance event trace. Here, we start to formally describe the
conceptual architecture from defining a formal structure of
the process enactment event logs with its three dimensional
cube as defined in the following consecutive definitions from
Definition 1 through Definition 4.
Definition 1: Process Work-Item Enactment Event. Let

pe = (α, pc, wf , wc, ac, p∗, t , s) be a process work-item
enactment event stored as logs, where

− α is a work-item (activity instance) identifier,
− pc is a package identifier,
− wf is a process identifier,
− wc is a process instance (work-case) identifier,
− ac is an activity identifier,
− p2 is a participant (or performer) identifier,
− t is a timestamp, and

2Note that * indicates multiplicity.

− s is a work-item’s current state, which is one of the states
such as ready, assigned, reserved, running, completed,
and cancelled.

Definition 2: Process Instance Enactment Event Trace.
LetPET (c) be the process instance event trace of awork-case,
c, where PET (c)= (pe1, . . . , pen), where {pei | pei.wc= c ∧
pei.t ≤ pej.t ∧ pei.pc= pej.pc∧ pei.wf = pej.wf ∧ pei.wc=
pej.wc ∧ i < j ∧ 1 ≤ i, j ≤ n}, which formally represents a
temporally ordered work-activity event sequence of a specific
work-case, which is built through preprocessing the process
enactment event logs by considering the TIMESTAMP and
the STATE attributes.
Definition 3: Process Enactment Event Log. Let PL(Ii),

Ii = {ci1, . . . , c
i
m}, be a process enactment event log with a

set of completed process instances (m is the number of the
process instances) that have been instantiated from a process
model, Ii.
Definition 4: Process Package Cubic Warehouse. Let PW

be a process package cubic warehouse consisting of a set
of process enactment event logs, PL(I1), . . . , PL(In), where
PL(Ii) = ∀PET (ci ∈ Ii), and n is the number of process
models in a process package managed in a system.
Basically, we build a series of the formal models of a

process package cubic warehouse, PET , PL and PW , so far.
Importantly, we remind that a process instance enactment
event trace is composed of a temporally ordered group of
the work-item enactment events having the same process
instance identifier. Note also that the meaningful temporal
order in managing process instances (work-cases) ought to
be based upon one of the following instantaneous points
of time, each of which is named as a timestamp-origin.
Accordingly, we necessarily build several different types of
process package cubic warehouses based upon the type of
timestamp-origins as follows:
• The Scheduled Point of Time: the event’s timestamp is
taken at when the state of a work-item is changed from
READY3 to ASSIGNED4: a work-activity event log with
scheduledTimestamp, wet.s ⇒ (t = we.t ∧ s = we.s ∧
s = ‘‘assigned’’)

• The Assessed Point of Time: the event’s timestamp is
taken at when the state of a work-item is changed from
ASSIGNED to RESERVED5: a work-activity event log
with assessedTimestamp, wet.e ⇒ (t = we.t ∧ e =
we.s ∧ e = ‘‘reserved’’)

• The Started Point of Time: the event’s timestamp is
taken at when the state of a work-item is changed from
RESERVED to RUNNING6: a work-activity event log

3The READY state of a work-item implies that the work-item is ready to
be processed but has not been assigned to a particular participant.

4The ASSIGNED state of a work-item implies that the work-item has been
assigned to a role (potentially a group of participants), but work has not
started yet.

5The RESERVED state of a work-item implies that the work-item has been
assigned to a named user (a single participant), but work has not started yet.

6The RUNNING state of a work-item implies that the work-item is actively
being worked on, and time spent in this state would be recorded as processing
time or work time.
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with runningTimestamp, wet.u ⇒ (t = we.t ∧ u =
we.s ∧ u = ‘‘running’’)

• The Completed Point of Time: the event’s timestamp is
taken at when the state of a work-item is changed from
RUNNING to COMPLETED7: a work-activity event log
with completedTimestamp, wet.o ⇒ (t = we.t ∧ o =
we.s ∧ o = ‘‘completed’’)

2) TEMPORAL WORK-CASES AND MODELS
In order to develop a formal algorithm for discovering a
structured information control net model from the process
enactment event logs, we need to build a formal concept and
model of temporally ordered activity event sequences of pro-
cess instances, which can be extracted from the formal model
of process instance enactment event traces, PET (c). The
formal model of temporally ordered activity event sequences
is named as temporal work-cases. At this moment, we have
to remind that the meaningful temporal order in manag-
ing process instances ought to be based upon one of the
timestamp-origins like scheduled, assessed, started and com-
pleted timestamps. Accordingly, we necessarily build four
species of temporal work-cases with holding one of the
timestamp-origins. Figure 6 illustrates the formal concepts
and models of the temporal work-cases including the tempo-
ral loop-cases associated with the repetitive-LOOP process
patterns. The formal definition of the temporal work-cases is
as follows:
Definition 5: Temporal Work-case. Let TWC(c) be a

temporal work-case of the activity event sequence of a spe-
cific process instance, c:

• TWC(c) = (weτ [.φ]α1 , . . . , weτ [.φ]αm ),
where {weτ [.φ]α | α = we.ac ∧ τ = we.t ∧ φ ∈
{s, e, u, o} ∧ weα.wc = c ∧ (weτiαi ≺ we

τj
αj )

8
∧ τi < τj

∧ i < j ∧ 1 ≤ i, j ≤ m},
which is a temporally ordered work-activity event sequence
along with one of the timestamp-origins. Especially, each
temporal work-case is formally defined as a temporal
work-case model, and it is assumed that all the work-items
(work-activity instances) in the corresponding temporal
work-case are successfully completed, and their executions
are running without being suspended, as well.

Based on Definition 5, we can interpret the formal defini-
tion as the conceptual implication that all of the work-activity
events holding an identical INSTANCE ID are lined up in a
temporal work-case along with its timestamp-origin. Conse-
quently, from a process instance event trace, we produce a
corresponding temporal work-case by extracting the activity
identifiers and their timestamps, and we name it as a temporal
work-case along with one of the timestamp-origins like the
scheduled time, assessed time, started time, and completed
time. For the sake of the formal representation, a tempo-
ral work-case is defined as a temporal work-case model as

7The COMPLETED state of a work-item implies that the work-item has
been fully executed and completed with either success or failure.

8weτiαi is the predecessor of we
τj
αj in the list of a temporal work-case.

formally described in Definition 6. Accordingly, there possi-
bly exist four species of the temporal work-cases and their
models, as follows:
• ScheduledTime Temporal Work-case Species and
Model

• AssessedTime Temporal Work-case Species and Model
• StartedTime Temporal Work-case Species and Model
• CompletedTime Temporal Work-case Species and
Model

Definition 6: Temporal Work-case Model. A temporal
work-case model is formally defined through 3-tuple
TWCM = (ω, Fcr , T

c
o ) over a set A of activity trace-nodes,

∀η
τ [.φ]
α , on a temporal work-case, TWC(c), of a process

instance, c, and a speciesK (= {s, e, u, o}) of the timestamp-
origins, where
• Fcr is an activity or an activity-group linked from an
external temporal work-case model;

• T co is an activity or an activity-group linked to an external
temporal work-case model;

• ω = ωi ∪ ωo on ∀η
τ [.φ]
α ∈ A,

− ωo : A −→ ℘(A) is a single-valued mapping function
of an activity event node, ητ [.φ]α = weτ [.φ]α ∧ φ ∈ K,
to its (immediate) successor in a temporal work-case;

− ωi : A −→ ℘(A) is a single-valued mapping function
of an activity event node, ητ [.φ]α = weτ [.φ]α ∧ φ ∈

K, to its (immediate) predecessors in a temporal
work-case.

• The species of temporal work-case models: TWCMφ

− ScheduledTime Temporal Work-case Model: φ = ‘s’
in ∀ητ.φα of a temporal work-case model

− AssessedTime Temporal Work-case Model: φ = ‘e’
in ∀ητ.φα of a temporal work-case model

− StartedTime Temporal Work-case Model: φ = ‘u’ in
∀η

τ.φ
α of a temporal work-case model

− CompletedTime Temporal Work-case Model: φ =
‘o’ in ∀ητ.φα of a temporal work-case model

The formal concept and the theoretical model of a tem-
poral loop-case are given in Definition 7 and Definition 8,
respectively. As shown in Figure 6, those temporal loop-cases
are extracted from their corresponding process enactment
events, too. For instance, {α11, α12, . . . , α1s(1)} is a temporal
loop-case having an identical work-case identifier with oth-
ers of the bag and being temporally ordered activity events
with their timestamp-origin properties, because each tempo-
ral loop-case represents each of the iterative work-activities
involved in a loop transition construct. Therefore, two ormore
identical temporal loop-cases can be iterated in a temporal
work-case according to the number of iterations of a corre-
sponding loop transition. In addition, we have to consider
a work-case of nested loop transitions, and then its tempo-
ral loop-cases have to be unfolded with multiple temporal
loop-cases from its inner loop transitions, recursively.
Definition 7: Temporal Loop-case. Let TLC(c) be the tem-

poral loop-case of one of the work-activity iteration event
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FIGURE 6. The formal concepts and models of the temporal work-cases and temporal loop-cases.

traces in the temporal work-case of a corresponding process
instance, c:

TLC(c) = {
{α11, α12, . . . , α1s(1)},
{α21, α22, . . . , α2s(2)},

. . .

{αk1, αk2, . . . , αks(k)}

}
∗

where, {αij | αij.c = c ∧ αij.t < wemn.t ∧ (i < m∨
(i = m ∧ j < n)) ∧ 1 ≤ i,m ≤ k ∧ 1 ≤ j, n ≤
∀[s(1), . . . , s(k)]},

which is a bag of temporally ordered sub-sequences of
work-activity events according to the timestamp-origin prop-
erty. A work-activity iteration event trace is called a temporal
loop-case.
Definition 8: Temporal Loop-case Model (TLCM). A tem-

poral loop-case model is formally defined through 3-tuple
L = (ω,P, S) over a bag of iterative activities’ (∀α ∈A) event
logs on a process trace, where
• P is a predecessor activity of the first activity of the
loop-case model folded out from the first iteration;

• S is a successor activity of the last activity of the
loop-case model folded out from the last iteration;

• θ = θi ∪ θo,
where, θo : A −→ ℘(α ∈ A) is a single-valued map-
ping function of a work-activity event log to
its (immediate) successor in a work-activity iteration
trace with one of the timestamp-origin types, and
θi : A −→ ℘(α ∈ A) is a single-valued mapping func-
tion of a work-activity event log to its (immediate)
predecessors in a work-activity iteration trace with one
of the timestamp-origin types.

In the formal approach of Figure 4, there are four dif-
ferent process patterns expected to be discovered from a
bunch of temporal work-cases associated with a specific
process model through the formal discovery algorithm of
the ρ-Algorithm. Also, there are four different temporal
work-case types forming the temporal work-cases that are
characterized by the types of timestamp-origins such as
scheduled, assessed, started, and completed timestamps held
by their work-activity event logs. The types of temporal
work-cases are differentiated from each other according to
such temporal information, i.e. the activity execution (work-
item) events’ timestamps, logged at the time when the
corresponding activities work-items were performed. The
enactment engine of a process management systemmaintains
the four types of timestamp-origins when it stores the enact-
ment event timestamps of activity execution work-items.
Accordingly there possibly exist four types of temporal
work-cases in the process enactment event log traces at the
same time, and from which there also possibly exist four
types of process warehouses, too. The concepts and their
related algorithms in this paper do not differentiate from these
specific types of the temporal work-case models in detail, and
assume that the type of the completed timestamp-origin is the
most appropriate timestamp type in terms of forming a dataset
of process enactment event log traces.

B. ρ-ALGORITHM: THE PROPOSED ALGORITHMIC
FRAMEWORK FOR DISCOVERING STRUCTURED
INFORMATION CONTROL NETS OF PROCESS MODELS
The algorithmic process mining framework is based mainly
upon the detailed implementation of the ρ-Algorithm simply
stated in the conceptual architecture in the previous section.
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FIGURE 7. ρ-algorithm: the algorithmic process mining framework for discovering sicn-oriented process models.

As shown in Figure 7, the algorithmic framework is com-
posed of seven procedural concepts and six transformation
algorithms, each of which conducts a transformation from
one concept to another concept, one after another, to sup-
port the procedural process discovery and process-aware
knowledge mining experiments. These concepts are proce-
durally started from process enactment event log histories
formatted in the IEEE XES standard: process instance
event traces, temporal work-case models, pairs of temporally
ordered adjacent-activity groups, weighted adjacent-activity
set, weighted process pattern graph, and structured informa-
tion control net process model, whereas the transformation
algorithms are listed as a series of the functional analyt-
ics algorithms: the event trace mining algorithm, temporal
work-case composing algorithm, adjacent-activity fragmen-
tizing algorithm, adjacent-activity quantifying algorithm,
process pattern discovering algorithm, and the structured
information control net discovering algorithm. In this section,
we axiomatically formalize the algorithmic framework with
its core concepts and algorithms related with the ρ-Algorithm
in particular.

1) DATA FORMATS FOR THE ρ-ALGORITHM
In terms of the event format, we consider the work-item
event being stored in a tag-based language (XML schema).
An XML-based process work-item event format, XWELL9

[35], for the purpose of process mining had been stud-
ied and proposed by the authors’ research group, and
the WfMC (Workflow Management Coalition) has released

9XWELL stands for XML-based workflow execution logging mechanism
and language.

the standardized audit and log specification, BPAF10 [36].
In recent, IEEE has released a standard tag-based language,
XES,11 which aims at providing the designers of informa-
tion systems with a unified and extensible methodology for
capturing systems’ behaviors by means of event logs and
event streams. As the format of the process work-item event
structure, we can use the ‘‘IEEE XES Schema’’ describing
the structure of an XES event log/stream and the ‘‘XES
extension’’ describing the structure of an extension of such a
log/stream. Note that all the formal concepts and algorithms
devised in the paper are assumed that the format of the
process enactment event logs is the IEEE XES standardized
format. We simply define the XML schema with the essential
attributes as the processwork-item event structure, as follows:

• The EVENT attribute is used to specify an event identi-
fier, which is assigned by the process enactment engine.

• The WORK-ITEM attribute of a process activity-level
event represents a work-item identifier that is uniquely
assigned by using those combined identifiers of
PACKAGE ID, PROCESS ID, ACTIVITY ID, and
INSTANCE ID.

• The PARTICIPANT attribute is used to specify the per-
former who is in charge of enacting the work-item.

• The TIMESTAMP attribute specifies the time stamp of
the event occurred.

• Finally, the STATE attribute represents the work-item’s
runtime state maintained by the engine. Whenever
the work-item’ state is changed, it is logged with

10BPAF stands for business process audit format.
11XES stands for extensible event stream, which is supported from

the extensible event stream working group of the IEEE standard
committee.,ieeeXES.
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the event-code of WMChanged WorkitemState.
It ought to be one of those states such as READY,
ASSIGNED, RESERVED, RUNNING, COMPLETED,
and CANCELLED.

2) PROCEDURAL COMPONENTS OF THE ρ-ALGORITHM
The overall algorithmic framework, as illustrated in Figure 7,
is a stepwise mining procedure with the functional compo-
nents to be used for discovering all the types of the prim-
itive process patterns and their enactment occurrences that
eventually build a discovered process model. The algorithmic
framework is supported by a series of stepwise transformation
algorithms for discovering an enacted process model from a
dataset of process enactment event logs. The first transforma-
tion algorithm is to discover the enacted work-cases from the
dataset, each of which is modeled by a temporal work-case
model. At the same time, it is necessary to count the number
of occurrences of each temporal work-case in the dataset.
The second transformation algorithm, which is just right
the ρ-Algorithm, is to discover a process model, which is
formally modeled by using the structured information control
net methodology and the number of occurrences of the tem-
poral work-cases. In terms of discovering the process model,
the ρ-Algorithm is able to deal with any combinational num-
ber of AND/OR/LOOP process patterns in the structured
information control net methodology. The figure shows an
exemplary case of the discovered process model represented
by a structured information control net consisting of two
Exclusive-OR (disjunctive) process patterns.

a: GROUPS OF TEMPORALLY ORDERED
ADJACENT-ACTIVITY PAIRS
From now on, the first step of the ρ-Algorithm in the algo-
rithmic framework is to develop an algorithm that is able
to mine a group of temporally ordered adjacent-activities
pairs from a temporal work-case and its formal work-case
model corresponding to each of the process instance event
traces. Also, each of the temporal work-cases is formally
represented by one of the work-case model types formalized
in the previous section. Figure 8 depicts a conceptual pro-
cedure of the STEP-1 algorithm of the ρ-Algorithm, which
is related with a single process instance event trace (PET1).
That is, a temporal work-case represents an ordered enact-
ment sequence of work-activity event logs, each of which is
formed with its work-activity identifier and its time-stamp
extracted from its corresponding process enactment event
log. The extracted temporal work-case (TWC1) is used for
formally defining its work-case model (TWCM1), fromwhich
the STEP-1 algorithm is able to mine a group (AAG1) of
temporally ordered adjacent-activity pairs belonging to a cor-
responding process instance event trace (PET1). Each of the
adjacent-activity pairs is formally represented according to
the formal definition of Definition 9. Finally, Algorithm 1
in the next page algorithmically describes the pseudo-codes
of the STEP-1 of the ρ-Algorithm.

Definition 9: Group of Adjacent-Activity Pairs. Let
AAGT (c), s, b, o ∈ T , be a group of all the pairs of
adjacent-activities in a work-case model of the process
instance, c, where AAGT (c) = (aaT p1, . . . , aaT pm). Each
adjacent-activity pair, aaT p, is defined in to be (αa, αs),∀α ∈
A in PET, where αa and αs are adjacent, {αs ∈ ωTo (αa)∧αa ∈
ωTi (αs)}, each other, in a work-case model. There are three
types of adjacent-activity pair according to the time-stamp
type:

• ScheduledTime Adjacent-Activity Pair (T = s)
{aasp = (aa, as) | aa.c = c ∧ as.c = c ∧ aa.e =
‘ScheduledTime‘ ∧ as.e = ‘ScheduledTime‘ ∧ aa.t ≤
as.t ∧ a < s ∧ 1 ≤ a, s ≤ n}

• StartedTime Adjacent-Activity Pair (T = b)
{aabp = (aa, as) | aa.c = c ∧ as.c = c ∧ aa.e =
‘StartedTime‘∧as.e = ‘StartedTime‘∧aa.t ≤ as.t∧a <
s ∧ 1 ≤ a, s ≤ n}

• CompletedTime Adjacent-Activity Pair (T = o)
{aaop = (aa, as) | aa.c = c ∧ as.c = c ∧ aa.e =
‘CompletedTime‘ ∧ as.e = ‘CompletedTime‘ ∧ aa.t ≤
as.t ∧ a < s ∧ 1 ≤ a, s ≤ n}

As you can read, Algorithm 1 needs a dataset of the pro-
cess enactment event logs as inputs. Assume that the dataset
is formatted in the IEEE XES (extensible event stream) for-
mat [17], the schema structure of which has a hierarchical
inclusion relationship among Log, Trace and Event classes.
Accordingly, the Log class is containing the Trace class of
the process instance event traces in an XML tag form of
(< trace > · · · < /trace >), and the Trace class contains
the Event class of the process enactment event logs in an
XML tag form of (< event > · · · < /event >). The STEP-1
algorithm is to conceptually extract a process instance event
log (PET1) from the XES-formatted dataset, and to con-
ceptually fragmentize a temporal work-case model into a
fragment-group of temporally ordered adjacent-activity pairs.
At the same time, the implemented STEP-1 algorithm can
extract practically an XES-formatted process instance event
trace, and fragmentize the tagged trace into a fragment-group
of event-level adjacent-activity pairs. As you can see in
Figure 8, the conceptual procedure illustrates the detailed
internal transformations of the Algorithm 1, which is a con-
ceptual mining procedure eventually being connected to the
STEP-2 algorithm.

b: WEIGHTED ADJACENT-ACTIVITY SET AND WEIGHTED
PROCESS PATTERN GRAPH
The STEP-2 of the ρ-Algorithm is to build all the groups
of temporally ordered adjacent-activity pairs, each of which
corresponds to a process instance event trace. The eventual
output of this algorithm is a weighted adjacent-activity set
named as adjacencyList (β). This set is built from all the
groups of temporally ordered adjacent-activity pairs through
an internal transformation procedure. Especially, the concept
of weights on the edge and its activities of each pair implies
the number of occurrences of the corresponding pair and
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FIGURE 8. The conceptual procedure of the STEP-1 of the ρ-algorithm: from dataset to process enactment event traces
with adjacent-activity pair groups.

its activities. Also, the set is used to produce a weighted
process pattern graph with all the edges weights and their
activities weights through an internal transformation proce-
dure. The middle part of Figure 7 depicts the conceptual
procedure of the STEP-2 algorithm. Finally, Algorithm 2
algorithmically describes the pseudo-codes of the STEP-2 of
the ρ-Algorithm.

c: DISCOVERING STRUCTURED INFORMATION
CONTROL NET MODEL
The final step (STEP-3) of the ρ-Algorithm is to build a
structured information control net model from the weighted
process pattern graphmined from all the groups of temporally
ordered adjacent-activity pairs. The eventual goals of the
ρ-Algorithm are to discover a structured information control
net model as the process discovery aspect and to discover
proportions of the process patterns as the process knowledge
discovery aspect. Note that the structured information control
net model must be satisfied with the proper nesting as well as
the matched pairing properties in forming gateway activities
in each process pattern. The right-most part of Figure 7
depicts the conceptual procedure of the STEP-3 algorithm
that is able to completely transform from a weighted process
pattern graph as the outcome of the STEP-2 algorithm to
a structured information control net model on every branch
of the associated gateway activities. Finally, Algorithm 3
algorithmically describes the pseudo-codes of the STEP-3 of
the ρ-Algorithm.

Algorithm 3 performs two essential functions. One
(STEP-3.1) is a graphical visualization function [27], [37],
[38] to visualize the weighted process pattern graph in a
form of graphical viewer using the Graph Stream Library.
The other (STEP-3.2) is a visual transformation function to
transform the weighted process pattern graph into a graph-
ical viewer of the structured information control net model
formed by a certain combination of the four types of primitive
process patterns shown in Figure 5. As described in the previ-
ous subsection, the weighted process pattern graph is built by
performing the internal transformations from adjacencyList
(β). In terms of visualizing the weighted process patterns and

its information control nets, the Graph StreamLibrary is used.
The core part of the ρ-Algorithm is the STEP-3.2 function
that decides open-gateways and close-gateways of each pro-
cess patterns in the graph by using the concept of rho (ρ). That
is, the rho (ρ) function gives the number of occurrences of its
associated activity, and the principles of decision-makings are
followings:

• The Linear (Sequential) Process Pattern
− ρONLYONE_ParentNode==ρONLYONE_Child

Node
• The Disjunctive (Exclusive-OR) Process Pattern
− Open-gateway: ρParentNode > ρALL_ChildNodes
− Close-gateway: ρALL_ParentNodes < ρChildNode
• The Conjunctive Process (Parallel-AND) Pattern
− Open-gateway: ρParentNode == ρALL_ChildNodes
− Close-gateway: ρALL_ParentNodes == ρChildNode
• The Repetitive (Iterative-LOOP: DO-WHILE) Process
Pattern
− Open-gateway: ρParentNode < ρONE_ChildNode
− Close-gateway: ρParentNode > ρONE_ChildNode

C. SUMMARY ANALYSIS AND COMPLEXITY OF
THE ρ-ALGORITHM
The eventual goal of the algorithmic process mining frame-
work proposed in this paper is to discover a structural
information control net model being composed of a certain
combination of all the process patterns from a dataset of pro-
cess enactment event logs through deploying the ρ-Algorithm
with a series of concepts and their related algorithms like
STEP-1 (Algorithm 1), STEP-2 (Algorithm 2) and STEP-3
(Algorithm 3) algorithms. Until now, the paper has formally
described those conceptual and procedural formal definitions,
such as the group of temporally ordered adjacent-activity
pairs, the weighted adjacent-activity set, the weighted pro-
cess pattern graph and the structured information control net
model. Therefore, it is necessary to summarily show that
the major goals of the paper have been achieved by not
only discovering a structural information control net model
as one goal of the process mining aspect but also discov-
ering its occurrences on each of the process patterns as the
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Algorithm 1 STEP-1 of the ρ-Algorithm
Require: A Dataset of Process Enactment Event Logs in XES-Format, a.xes
Ensure: A List of Tagged Traces of XES Event Logs, ListXES
1: procedure STEP-1 of ρ-Main(a.xes) F Forming a list of process instance event traces
2: openfile a.xes;
3: while (!EOF in a.xes) do
4: Line← currentline;
5: if (currentline == ‘‘< trace >’’) then F Checking out the beginning trace-tag of a single process instance
6: startTrace← true;
7: else
8: if (currentline == ‘‘< event >’’) then F Checking out the beginning event-tag of a single work-item
9: startEvent← true;

10: endEvent← false;
11: else
12: if (currentline == ‘‘< /event >’’) then F Checking out the ending event-tag of the work-item
13: startEvent← false;
14: endEvent← true;
15: else
16: if (currentline == ‘‘< /trace >’’) then F Checking out the ending trace-tag of the process instance
17: startTrace← false;
18: ListXES.add(currentTrace); F Forming a single process instance event trace (PET)
19: currentTrace← ‘‘ ’’;
20: end if
21: end if
22: end if
23: end if
24: if (startTrace && startEvent) then
25: store all contents of the event to currentTrace; F Store all the information of activities, performers and

timestamp inside each event to currentTrace
26: end if
27: seek to the next line;
28: end while
29: closefile a.xes;
30: return ListXES; F Returning the formed list of all the process instance event traces
31: end procedure

other goal of the process-aware knowledge discovery aspect.
An operational example, the ρ-Algorithm is deployed on
the same exemplary dataset in Figure 2 and Figure 3 that
were used for proving the α-Algorithm and σ -Algorithm,
respectively. Figure 9 illustrates all the intermediary results
produced from the dataset (L) by applying all the subrou-
tines of the ρ-Algorithm, like the STEP-1, STEP-2 and the
STEP-3 algorithms. TheAlgorithm 1 extracts the 5 temporal
work-cases, each of which is corresponding to each of the
process instances, from the process enactment event logs
(L); the Algorithm 2 fragmentizes each temporal work-case
into a group of temporally ordered adjacent-activity pairs
and internally transforms all the groups into a weighted
adjacent-activity set; the Algorithm 3 algorithm finally dis-
covers a structured information control net model, ρ(L),
based upon the principles of decision-making type of the
process patterns and their open-gateways and close-gateways.
Through this operational example on the exemplary dataset,

we were able to manually verify that the ρ-Algorithm ought
to be theoretically correct and functionally reasonable.

Finally, the time complexity of the Algorithm 1 and the
Algorithm 2 in the ρ-Algorithm is O(N ×M ), respectively,
whereN is the number of temporal work-cases, which implies
the number of process instance event traces in a dataset
of process enactment event logs, and M is the number of
activities associated with the corresponding process model.
However, the time complexity of the Algorithm 3 in the
ρ-Algorithm is O(M ), where M is the number of activities
associated with the weighted process pattern graph discov-
ered from the underlying dataset. Consequently, in comparing
with these conventional process mining algorithms, the func-
tional merits and restrictions of the ρ-Algorithm proposed in
the paper, which also imply the functional goals of the ρ-
Algorithm, can be summarized as follows:
• The ρ-Algorithm is able to explicitly deal with discov-
ering not only the three types of the primitive process
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Algorithm 2 STEP-2 of the ρ-Algorithm
Require: A List of Tagged Traces of XES Event Logs, ListXES
Ensure: A Weighted Adjacent-Activity Set, adjacencyList (β)
Ensure: A Weighted Process Pattern Graph, G
1: procedure STEP-2 of ρ-Main(ListXES) F Fragmentizing a process enactment event trace into a set of temporally ordered

adjacent-activity pairs and building a weighted adjacent-activity set as well as its process pattern graph
2: initalize β and G to Null-value;
3: openfile ListXES;
4: for (∀ tracei ∈ ListXES) do F For each process enactment event trace
5: for (∀ eventj ∈ tracei) do F For each process enactment event in the trace
6: currentActivity = eventj.GetActivityName();
7: if (currentActivity /∈ β) then F Checking out the existence of the current activity in the weighted

adjacent-activity set
8: β.add(currentActivity); F Building the weighted adjacent-activity set
9: else

10: listOfVertex← β.add(currentActivity);
11: nextActivity← eventj+1.GetActivityName();
12: end if
13: if (nextActivity /∈ listOfVertex) then F Checking out the existence of the next activity as a node in the

weighted process pattern graph
14: listOfVertex.add(nextActivity); F Building the weighted process pattern graph
15: else
16: listOfVertex.update(nextActivity, +1);
17: end if
18: end for
19: end for
20: G = CreateGraph(listOfVertex, β);
21: closefile ListXES;
22: return β and G; F Returning the weighted adjacent-activity set and its process pattern graph
23: end procedure

patterns supported by the conventional algorithms but
also the most challenging type of the repetitive-LOOP
process pattern. In principle, its discovered model is in
a graphical form of structured information control net
that is satisfied with keeping the matched-pairing as
well as the proper-nesting properties in forming all the
primitive process patterns made up of the corresponding
structured information control net process model.

• The ρ-Algorithm is theoretically supported by the infor-
mation control net modeling methodology; its final out-
put model discovered is in a mathematical graph of
the information control net process model, even though
its input dataset is not originated from the information
control net process model.

• The ρ-Algorithm deals with discovering only the
DO-WHILE type of the repetitive-LOOP process pat-
terns, in principle.

• The next node(s) selection rule of the iterative-LOOP
CLOSE-gateway node in the discovered process model
is the same as the inclusive-OR OPEN-gateway node’s
selection rule.

• Finally, the discovered information control net pro-
cess model by the ρ-Algorithm may be unstructured
only if the original process model of the input dataset

is unstructured, and it may also be unreasonably and
improperly constructed only if the input dataset is
not a non-noise dataset without any types of control-
flow-related and timestamp-related noises.

IV. VALIDATING THE ρ-ALGORITHM
As the final stage of designing the algorithmic process mining
framework, it is necessary to validate the functional correct-
ness and feasibility of the ρ-Algorithm by implementing the
ρ-Algorithm and deploying onto a process enactment event
log dataset especially formatted in a form of the IEEE-XES12

standardized log format [17]. The authors’ group has success-
fully implemented a process mining system13 theoretically
supported by the ρ-Algorithm. By using the implemented
system, we carry out an experimental analysis on the syn-
thetic dataset of process enactment event logs, which was
released to the public by the 4TU.Centre for Research Data
[16] and named as the Large Bank Transaction Process

12In recent, IEEE has released a standard tag-based language, XES (XML
Event Stream), whose aim is to provide designers of information systems
with a unified and extensible methodology for capturing systems’ behaviors
by means of event logs and event streams.

13In this paper, we won’t describe the detailed implementation of the
SICN-oriented process mining system.
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Algorithm 3 STEP-3 of the ρ-Algorithm
Require: A Weighted Process Pattern Graph, G
Ensure: A Structured Information Control Net Graph, GSICN

1: procedure STEP-3 of ρ-Main( G ) FMining the structured information control net process model
2: openfile G;
3: G.removePhantomEdge(); F Removing the phantom edges on G
4: for ∀α ∈ G do F α is a member node of the node-set in G.
5: α.listEdgeOutGoing← G.getEdgeOutGoing(α);
6: if α.listEdgeOutGoing.size() > 1 then
7: Gopen← ProcessForTheOpenGate(G, α, α.listEdgeOutGoing); F Discovering the open-gateways in G
8: end if
9: α.listEdgeInComing← G.getEdgeInComing(α);
10: if α.listEdgeInComing.size() > 1 then
11: Gclose← ProcessForTheCloseGate(G, α, α.listEdgeInComing); F Discovering the close-gateways in G
12: end if
13: end for
14: GSICN ← ProcessForTheLoopGate(Gopen, Gclose); F Discovering the loop-gateways from Gopen and Gclose

15: closefileG;
16: return GSICN F Discovered a structured information control net process model, GSICN

17: end procedure

FIGURE 9. An operational verification on the exemplary dataset for discovering structured information control net process model by
the ρ-algorithm.

Dataset. This validation with an experimental analysis aims
at proving that the ρ-Algorithm is able to discover all the
four types of primitive process patterns [39] such as linear,
disjunctive, conjunctive and repetitive process patterns and
their occurrences.

A. IMPLEMENTATION OF THE ρ-ALGORITHM
For the sake of confirming the feasibility and the applicability
of the devised ρ-Algorithm, it ought to be implemented as a
specific and tangible process mining system supporting the
structured information control net modeling methodology.
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FIGURE 10. Functional components of the SICN-oriented process mining system implementing the ρ-algorithm.

Consequently, we have successfully implemented the
ρ-Algorithm, which is named as the SICN-oriented process
mining system and extended from the process mining system
[40] previously developed by the authors’ research group,
and the system’s dashboard with a list of core-functional
components are illustrated in Figure 10, on which the inline
and dashboard prompts are displaying the experimental pro-
cessing status like choosing the dataset file-name of the Large
Bank Transaction process dataset, inputting the event-trace
identifiers, clicking the functional operations to get the even-
tual discovery result of the SICN-oriented Large Bank Trans-
action process model, and so on. In this subsection, we briefly
introduce the functional descriptions of all the essential
components of the implemented ρ-Algorithm, as followings:
• Log analysis: This function is operated as the entrance
gate of the system. The raw input dataset, formed in
the different formats (e.g., XES, MXML, etc.), will be
read using this function. Depending on the different
input data types, the log analysis function analyzes their
structures and entities. It then stores the analyzed infor-
mation to the system’s memory and represents in two
different types of data formation: Table and Graph. The
key objective is to transform the raw event log data
into the efficient managing form of Table with traces,
events, and event’s properties. In the Table structure,
each row is assigned for an event’s properties in each
event-trace through the Trace ID and Event ID. There-
fore, a complete event-trace holds a temporal sequence

of associated events as each row of the Table through
the same Trace ID. In the Graph structure, each vertex
represents an event holding information with activity,
performer, timestamp, and other additional informa-
tion. An edge connecting two vertices represents the
directed transition between the associated two events.
The weights of vertex and edge represent the numbers
of occurrences that the events and their transitions were
operated, respectively.

• Data table analysis: This function analyzes data about
traces and events stored in the table after being imported
from the raw data. Each row in the table contains infor-
mation about event-operated time, information about the
activity, performer, and other related information. Dif-
ferent rows are differentiated by Trace ID and Event ID,
and hence we can perform different aspects of the data
aggregation functions. For example, we can summarize
how many times a specific activity occurred in a trace,
and howmany times it was operated by filtering the table
with the activity among different Trace IDs. Similarly,
we may produce some statistical information about a
specific performer from the input dataset, like howmany
times the performer was participated in the instances’
operations.

• Graph manipulating: This function is to manipulate the
elements on a graph. That is, the graph manipulation
operations are provided not only for adding, editing,
and deleting vertices and edges, but also for updating
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the weights of vertices and edges on a graph. Addition-
ally, this function also includes a series of operations
like searching and traversing graphs with breadth-first
search algorithm, spanning tree algorithm, binary search
tree algorithms, and so on. Using the graph manipulat-
ing function, moreover, we are able to visualize what-
ever actually happened during the discovery algorithm’s
operations and whichever different control-flow paths
identified from all the traces in the event log dataset.
This function’s main task is to support visualizing all the
graph-formed outcomes, such as the adjacent-activity
pair sets, the weighted process pattern graph, and the
information control net graph, to be produced through
the stepwise discovery operations being conducted with
the implemented system.

• Deliberate noises removing: In forming the weighted
process pattern graph as one of the implemented
system’s outcomes, we realize that there exist some
phantom edges among the activities involved in the
conjunctive transitions, which is named as deliberate
noises. This function is so for removing all the phantom
edges existing among the activities involved in a single
conjunctive (parallel-AND) transition group. The imple-
mented system executes this function on every group
of the conjunctive transitions and produces a weight
process pattern graph satisfying the completeness and
safeness requirements.

• ρ-Algorithm: This function is to implement the
ρ-Algorithm devised in the previous section and also
extended from the proportional process mining algo-
rithm proposed in [25]. The algorithm’s idea is to
discover all the disjunctive (exclusive-OR), conjunctive
(parallel-AND), and repetitive (iterative-LOOP) process
patterns from a dataset of process enactment event logs
by considering the occurrences of activities and their
control-transition relationships. This function is com-
pleted with the supports of the three steps of the algo-
rithms (STEP-1, STEP-2, and STEP-3 Algorithms) and
the graph manipulating and deliberate noises removing
functions as described above.

• Data filtering: In the historical event logs of the
business process management system, the implemented
ρ-Algorithm needs to analyze thousands of traces
enacted, hundreds of thousands of events operated, and
even a much larger number of the event properties’
values. Therefore, the data filtering function ought to
be a vital component in managing and manipulating the
huge-sized dataset in the most detailed and effective
way. This function allows the users to filter the input
dataset out onto tables or graphs according to the inten-
tioned criteria made by using such events, activities, per-
formers, and/or relevant information like timestamps.

• Graph visualizing: Graph visualization brings knowl-
edge of what occurred inside the log in an intuitive
manner. This function uses the Graphstream library
[41] for visualizing and analyzing the graph. By using

this library, not only we can generate, measure, visual-
ize all the graph-formed outcomes of the implemented
ρ-Algorithm, but also we can provide the users very
useful and easy ways of interactive user-interfaces.

• Data statistics: This function performs and calculates
data statistics based on the information managed on the
implemented ρ-Algorithm. By combining the Data table
analysis and Data filtering functions, we can perform
statistical measurements and generate reports related
with traces, events, activities, and the others inside the
historical event log dataset.

• Export XPDL, GraphViz, GraphML: The SICN-oriented
process mining system need to provide the exporting
function that transforms the discovered processes and
process models into any other different data formats
to be used in different scenarios. Currently, the users
can simply export the discovered SICN-oriented process
model to any one of the XPDL,GraphViz, andGraphML
formats.

B. DATASET OF THE PROCESS ENACTMENT EVENT LOGS
For carrying out the validation analysis of the ρ-Algorithm,
we chose a synthetic dataset from the 4TU Centre’s archive,
the name of which is 10000 − all − nonoise − 150MB.xes
[16], [39] containing 10,000 process instance event traces
and all the 113 activities are involved in the enactment of the
corresponding process model, which is named as Large Bank
Transaction Process Model and released in a graphical form
of the Petrinet-oriented process model. The following are the
description of the dataset posted in the 4TU Centre’s website:

− title: Large Bank Transaction Process
− creator: Munoz-Gama.J (Jorge)
− data accepted: 2014-08-21
− data published: 2014
− description: ‘‘Synthetic Bank Transaction Process Mod-

els: Petri net, Large, Stand-alone and SESE-aided
Decomposed Logs: Large, with and without noise,
two particular scenarios. Additional: Model diagram,
decomposition diagram, activity re-naming.’’

− keyword: Bank Transaction
− language: en
− publisher: Universitat Politecnica de Catalunya

(Barcelonatech)
− subject: 1503 - Business and Management
− in collection: Synthetic Event Logs

This dataset ought to be a typical dataset to usefully val-
idate the functional correctness of such a process mining
algorithm, because it is a synthetic as well as non-noise
dataset, and it is also built from enacting a large-enough
number of activities with 113 different activities, and their
enactment event histories embedding all the possible process
enactment sequences. Finally, the ultimate advantage of the
dataset is based upon the various and different control-flow
patterns with combining all the four types of primitive process
patterns. Therefore, by using this dataset we can effectively
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and efficiently verify and validate the functional correctness
and the operational performance of the ρ-Algorithm. For-
tunately for the experimental validation, the original pro-
cess model of the dataset is released in a graphical form
of the Petrinet-oriented process model with those names
of the involved activities. Figure 11 is illustrated with a
Petrinet-oriented graphical form of a process building block
and a table form listing the abbreviated and full names of
those 16 activities involved. Additionally, the formal ID of
each activity is listed in the table and these are arranged
for depicting the formal graph models to be produced by
the ρ-Algorithm. As you see, the process building block,
which is chosen for validating the functional correctness of
the disjunctive and conjunctive process pattern discovery,
is made up of two pairs of Exclusive-OR gateway nodes and
two pairs of Parallel-AND gateway nodes and these gateway
nodes are properly nested. And moreover, Figure 14 shows a
Petrinet-oriented graphical form of another process building
block that is projected from the Large Bank Transaction
processmodel and chosen for validating the repetitive process
pattern discovery functionality of the ρ-Algorithm. Note that
a Petrinet graph model is built from a group of rectangular
transitions and a group of circled places and the directed
edges connecting transitions and places; in a Petrinet-oriented
process model, transitions and places imply activities and
pre-/post-conditions (before/after enacting the activities),
respectively.

C. DISCOVERING THE DISJUNCTIVE (EXCLUSIVE-OR),
CONJUNCTIVE (PARALLEL-AND) AND REPETITIVE
(ITERATIVE-LOOP) PROCESS PATTERNS
This section deploys the implemented processmining system,
which is based upon all the algorithmic functions (STEP-1,
STEP-2 and STEP-3) of the ρ-Algorithm, onto the typical
dataset that is prepared in the previous section, and describes
its outcomes and artifacts that are produced from this valida-
tion and feasibility analysis. Fortunately, the provider of the
dataset released a supplementary file containing the graphi-
cal representation of the Petrinet-oriented process model as
the original process model of the Large Bank Transaction
process dataset, which ought to be very useful to check
up on verifying and validating the functional correctness of
the process mining algorithm and system proposed in this
paper. Accordingly, in this section we carry out two cases of
experimental analyses applying each step of the algorithmic
process mining framework and validating their experimental
outcomes by comparing this supplementary model with the
discovered SICN-oriented process model by the implemented
ρ-Algorithm. In other words, the first experimental analysis is
focusing on the discovery experiment of disjunctive and con-
junctive process patterns with a building block of the Sender
Authentification Subprocess Model introduced in Figure 11,
and the second experimental analysis is concentrating on
the discovery experiment of repetitive process pattern with
another building block of the Account Payment Processing
Subprocess Model shown in Figure 14.

FIGURE 11. The disjunctive and conjunctive process patterns discovery
target of the ρ-algorithm: a petrinet-oriented process model of the sender
authentication subprocess model.

1) MINING GROUPS OF ADJACENT-ACTIVITY PAIRS BY THE
STEP-1 ALGORITHM
From now on, the STEP-1 algorithm launches to mine all
the groups of temporally ordered adjacent-activity pairs from
all the event traces on the Large Bank Transaction process
dataset. We probably suppose that the dataset is recorded
by enacting the 10,000 process instances of the Large Bank
Transaction process model. In the previous section, we have
already defined a formal concept of the temporal work-case
model that is the formal representation of an event trace of
a process instance. From all the temporal work-case models,
the algorithmmined a large number of groups (10,000 AAGs)
of temporally ordered adjacent-activity pairs through a series
of the internal transformations of the STEP-1 algorithm.

2) MINING A WEIGHTED ADJACENT-ACTIVITY SET AND ITS
WEIGHTED PROCESS PATTERN GRAPH BY THE
STEP-2 ALGORITHM
The first internal transformation of the STEP-2 algorithm is
to build a weighted adjacent-activity set from all the groups
(10,000 AAGs) of temporally ordered adjacent-activity pairs.
This internal transformation algorithm fulfills integrating all
of the groups and regrouping same adjacent-activity pairs
with calculating their occurrences. To clearly validate this
algorithm, we also scrutinize every single-case in the out-
put and confirmed that the implemented ρ-Algorithm works
correctly. The second internal transformation of the STEP-2
algorithm is to build a weighted process pattern graph by
combining all the elements in the weighted adjacent-activity
set. The devised and implemented functions of this combin-
ing step are properly connecting the source-nodes and the
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FIGURE 12. The SICN-oriented sender authentification subprocess model successfully discovered from the dataset by the implemented ρ-algorithm.

destination-nodes in the weighted adjacent-activity set along
with the matched activity ID. Right after building the
weighted process pattern graph, it is necessary to eliminate all
the deliberate noises in the graph, which are naturally created
in forming the temporal work-cases and their models from all
the event traces.

Figure 12 and Figure 13 depict the situational experi-
ments with the discovered outcomes of the STEP-2 and the
STEP-3 algorithms in the ρ-Algorithm and the implemented
ρ-Algorithm, as well. The captured screens in the lefthand
side of Figure 12 and Figure 13 are the projected outcomes
of the STEP-2 algorithm of the implemented system, which
are the weighted process pattern graphs corresponding to
the building block of Figure 11 and the building block of
Figure 14, respectively. Moreover, the hand-made graph in
the leftmost of Figure 12 shows the weighted process pat-
tern graph and the occurrence numbers of activity nodes
and edges after removing the deliberate noises, which is
the eventual weighted process pattern graph generated by
the STEP-2 algorithm, and the hand-made graph-fragments
and activities’ total occurrences in the leftmost of Figure 13
represent the weighted adjacent-activity set with occurrences
generated by the STEP-2 algorithm and corresponding to the
subprocess model of Figure 14.

3) DISCOVERING A STRUCTURED INFORMATION CONTROL
NET BY THE STEP-3 ALGORITHM
The last step of the validation is to discover a structured
information control net from the weighted process pattern
graph with the STEP-3 algorithm. The captured screens in

the right-hand side of Figure 12 and Figure 13 display the
discovered structured information control nets generated by
the STEP-3 algorithm of the implemented system, which are
transformed from the weighted process pattern graphs corre-
sponding to Figure 11 and Figure 14, respectively. Finally,
both of the structured information control nets discovered
by the implemented system are neatly visualized by the
graph visualization software, GraphViz, as attached on the
rightmost part of Figure 12 and Figure 13, respectively.
The detailed decision-making procedure of the STEP-3 algo-
rithm is applied to the weighted process pattern graph with
activities’ enactment occurrences to finally discover all the
primitive process patterns and form a structured information
control net, as follows:
• Discovering the Disjunctive (Exclusive-OR) and Con-
junctive (Parallel-AND) Process Patterns: First of all,
on Figure 12we elucidate all the stepwise outcomes
on discovering the disjunctive and the conjunctive
process patterns in the Sender Authentification Sub-
process Model that is graphically represented in a
form of the Petrinet-oriented process model as shown
in Figure 11. Additionally, Figure 12 illustrates the
detailed outcomes of the decision-making principle
for disjunctive and conjunctive process patterns and
displays the final outcome of the SICN-oriented pro-
cess model and its GraphViz visualization. As you can
see, the implemented ρ-Algorithm operates perfectly the
decision-making principles of the open-gateways and
the close-gateways with the disjunctive and the conjunc-
tive process patterns. In the figure, the final outcome of
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FIGURE 13. The SICN-oriented account payment processing subprocess model successfully discovered from the dataset by the implemented ρ-algorithm.

FIGURE 14. The repetitive process pattern discovery target of the
ρ-algorithm: a petrinet-oriented process model of the account payment
processing subprocess model.

the SICN-oriented process model holds two disjunctive
pairs of open-gateway nodes and close-gateway nodes
and two conjunctive pairs of open-gateway nodes and
close-gateway nodes, and all of these disjunctive and
conjunctive pairs are in keeping the matched pairing
and proper nesting properties. Consequently, we can
clearly declare that the functional correctness of the
ρ-Algorithm and its implemented system in discovering
disjunctive and conjunctive process patterns is success-
fully verified as well as validated.

• Discovering the Repetitive (Iterative-LOOP) Process
Patterns: The second experimental analysis is done for
validating the functional correctness of the ρ-Algorithm
and its implemented system in terms of the dis-
covering perfectness of repetitive process patterns
with keeping the matched pairing and proper nesting
properties. In this second experimental analysis,
we use a specific Petrinet-oriented process model

of the Account Payment Processing Subprocess con-
taining a single iterative-LOOP construct and two
parallel-AND constructs, as shown in Figure 14.
On Figure 13, we illustrate all the outcomes of the
detailed decision-making procedure of the STEP-3 algo-
rithm and its eventual formation of the discovered
structured information control net containing a repetitive
pair of open-LOOP gateway and close-loop gateway
nodes and two conjunctive pairs of open-AND gate-
way and close-AND gateway nodes with keeping the
matched pairing and proper nesting properties. Addi-
tionally, we attach the GraphViz visualization of the
discovered one to the rightmost part of Figure 13.
As you can see, the discovered SICN-oriented process
model looks exactly like the structural formation of the
Petrinet-oriented processmodel of the Account Payment
Processing Subprocess, and it is also satisfied with the
structural requirement of the match pairing as well as
proper nesting properties. Through this experimental
analysis, we can conclude that he STEP-3 algorithm
and its implemented system work perfectly in terms
of discovering the repetitive (iterative-LOOP) process
patterns with keeping the structural properties.

D. SUMMARY ANALYSIS OF THE
ρ-ALGORITHM VALIDATION
These two cases of experimental analysis for validating
the ρ-Algorithm and its implemented system have been
successfully done as presented in the previous section.
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FIGURE 15. The enacted activities and their occurrences discovered from the process enactment event log dataset.

FIGURE 16. The discovery result of the weighted process pattern graph by the implemented ρ-algorithm.
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FIGURE 17. The GraphViz visualization form of the SICN-oriented process model discovered from the large bank transaction process
dataset.

In the first experimental analysis, we have proved that the
ρ-Algorithm is able to discover the disjunctive process pat-
tern type and the conjunctive process pattern type; in the sec-
ond experimental analysis, we have also confirmed that the
ρ-Algorithm can discover the repetitive process pattern type,
too; eventually, we have so corroborated that the ρ-Algorithm
works the discovery perfectness on all the primitive process
patterns with keeping the structural requirement of matched
pairing and proper nesting properties. Actually, we carried out
a single experiment on the synthetic dataset for validating the
STEP-1, STEP-2 and STEP-3 algorithms of the ρ-Algorithm.
Through this experiment, we found out, as shown in
Figure 15, that the dataset contains all the enactment event
histories recorded from enacting 10,000 process instances
of the Large Bank Transaction Process Model with the total
number of activities involved in the enactments is 113 differ-
ent activities, and that the largest number of activity enact-
ment occurrences is 18,458 times. Note that the titles of the
activities having the largest occurrences are RBPC (Receiver
Bank Profiling Checking Activity), REPC (Receiver External

Profiling Checking Activity), SRPP (Start Receiver Pre
Profiling Activity), RIBPC (Receiver Inter-Bank Profiling
Checking Activity) and FRPP (Finish Receiver Pre Profiling
Activity), and all of which are associated with the Receiver
Processing Subprocess Model of the Original Model of the
Large Bank Transaction Process Model.

Figure 16 displays two of the captured-screens from the
experimental results of the implemented ρ-Algorithm: one
is the weighted process pattern graph from the STEP-1 and
STEP-2 algorithms and the other is the structured informa-
tion control net from the STEP-3 algorithm. In addition,
in order to emphasize the functional correctness and per-
fectness of the proposed algorithm, we display the enlarged
building block with being indicated by three boxes, each of
which is marked with the corresponding primitive process
patterns. All of these graph models in the captured-screens
are in a visual expression of the ρ-Algorithm and mined
from all the 10,000 temporal work-cases (process instance
event traces) in the enactment event log dataset of the Large
Bank Transaction Process Model. Finally, Figure 17 is the
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GraphViz visualization form of the SICN-oriented process
model discovered from the IEEE XES-formatted synthetic
dataset, at last. Based upon these results of the experiment,
the ρ-Algorithm of the conceptual and theoretical approach
and its implemented process mining system proposed in the
paper ought to be reasonable and feasible in terms of their
deployments and applications in the real world.

V. CONCLUSION
So far, this paper has proposed the SICN-oriented process
mining framework and its related stepwise algorithms, such
as the STEP-1, STEP-2 and STEP-3 algorithms, under the
name of ρ-Algorithm. To validate the proposed algorithmic
framework, we successfully implemented all the stepwise
algorithms and carried out an experiment based upon the
IEEE XES-formatted synthetic dataset of process enact-
ment event logs recorded from simulating and enacting
the Large Bank Transaction Process Model. The theoretical
background of the proposed algorithmic framework stems
from the conceptual discovery approach dealing with the
SICN-oriented process patterns, such as linear, disjunc-
tive, conjunctive and repetitive process patterns, whereas
the implementable background of the proposed algorith-
mic framework is supported by a series of the procedural
mining functions being concretized as the Algorithm 1,
Algorithm 2 and Algorithm 3, which are the stepwise
algorithmic components of the ρ-Algorithm, for discover-
ing the structured information control nets from an IEEE
XES-formatted dataset of process enactment event logs.
Based upon these theoretical and algorithmic approaches,
the paper devised, implemented and developed these con-
cepts, algorithms and systems, respectively. By using the
implemented ρ-Algorithm, the paper carried out two cases
of experimental analysis to help for validating the discovery
perfectness of the ρ-Algorithm, effectively and efficiently,
and both cases of which are related with a specific subprocess
building block with the disjunctive and conjunctive process
pattern types as well as another subprocess building block
with the repetitive process pattern type chosen from the Large
Bank Transaction Process Model, respectively.

Summarily, the characteristics of the SICN-oriented pro-
cess mining framework proposed and implemented in the
paper are as followings: First, the proposed algorithmic
framework is able not only to discover the SICN-oriented
process patterns but also to mine the enactment occurrences
of the process patterns from an IEEE XES-formatted dataset
of process enactment event logs. Second, the proposed algo-
rithmic framework is theoretically supported by the infor-
mation control nets modeling methodology of workflow
and business process models. Third, the essential algo-
rithm of the proposed algorithmic framework is named as
ρ-Algorithm that is able to properly deal all the structural
process patterns, such as linear (sequential), conjunctive
(parallel-AND), disjunctive (exclusive-OR), and repetitive
(iterative-LOOP) process patterns, with keeping the structural
properties ofmatched-pairing and proper-nesting by using the

concept of ρ-function returning the enactment occurrences
of the associated activities. Fourth, the ρ-Algorithm is the
first SICN-oriented process mining framework successfully
developed and experimentally proved in the workflow and
business process management and mining literature. Fifth,
the ρ-Algorithm is also working the discovery perfectness on
such datasets recorded from the unstructured process models.
As the future work, we need to develop a kind of data prepro-
cessing techniques that are able to handle various types of
noises embedded in process enactment event log datasets.
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