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ABSTRACT This paper addresses a novel fuzzy-based distributed behavioural control with the
wall-following strategy for robot swarm navigation in arbitrary-shaped environments. Instead of avoiding
large-sized obstacles during the swarm navigation, the proposed fully distributed control enables the robot
swarm to transform from aggregation configuration to one-chain configuration and follow the obstacle
boundary to overcome it. The wall-following strategy and one-chain configuration empower the swarm
navigation to avoid local minima caused by obstacles and connectivity maintenance without dealing with
the alignment control of swarm behaviours. The fuzzy-logic control is applied to calculate the parameters
of the distributed control strategies. The proposed method is examined and evaluated in both simulation and
real experiments.

INDEX TERMS Fuzzy-logic control, distributed behavioural control, robot swarm navigation, wall-
following strategy, configuration transformation, arbitrary-shaped environments, local minima.

I. INTRODUCTION
A swarm of mobile robots can be deployed in several real-
world applications, e.g., medical operations, surveillance and
monitoring, and search and rescue, thanks to its systematic
scalability and applicable flexibility [1], [2]. Swarm robotics
focuses on studying collective behaviours emerging from the
interactions among robots and between robots and the envi-
ronment [1]. Hence, designing a robot controller for emergent
collective behaviours is well recognized as the primary objec-
tive in the field of swarm robotics.

Passing through an unstructured and unknown environ-
ment is still considered as a critical challenge for swarm
navigation due to some key issues. Firstly, local minima
often occur when a robot swarm navigates through large
obstacles in convex and concave shapes. As a result, a robot
could easily get trapped in a loop [3] where its control is in
equilibrium, leading to motion disorientation. Secondly, con-
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nectivity maintenance is a critical requirement for collective
behaviours [4]–[6], however, it leads to the limitation of the
robot mobility which is also seen as another kind of local
minima [7]. Specifically, when the link quality drops below
a desired threshold, robot is required to either stop or move
closer to its neighbor until the quality returns to an accept-
able level. In other word, the more connectivities, the higher
mobility restriction [8]. Local minimum problems of this type
often appear when disturbances affect signal strength mea-
surements and when robots move in an anti-flocking fash-
ion. Lastly, as swarm movement is defined as cohesive and
aligned motion of individuals along a common direction, how
to get an ordered motion to reach the destination is another
important issue of the robot swarm navigation. Each robot
is capable of obtaining three types of information: relative
distance, bearing and relative orientation of its neighbours.
The relative distance and bearing are required for the cohe-
sion control and avoid-collision control while the relative
orientation is needed for the alignment control, also known
as heading synchronization. Robots can easily measure the
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relative distance and bearing by using simple sensors such
as infra-red, sonar [9], [10]. However, the relative orienta-
tion measurement requires a high cost of communication to
constantly update the heading of neighbouring robots and
elaborate sensing capabilities, e.g. digital compass, commu-
nication module, which are not always available on simple
robotic platforms. Alternatively, non-alignment control can
be applied to achieve the ordered motion control without
estimating relative orientation, but the collective motion in
this control type is achieved only if most or all robots are
informed about the goal direction [11].

This paper considers the cooperative navigation of a robot
swarm to pass through the unknown environments with
large-sized obstacles in both convex and non-convex forms.
We propose a comprehensive strategy in which the robot
swarm moves in aggregation configuration in obstacle-free
environments while moving in one-chain configurationwhen
it encounters large obstacles. The aggregation and one-chain
configuration are transformed back and forth by two tran-
sition modes, named aggregation to wall-following (A2W)
and wall-following to aggregation (W2A). The swarm per-
forms wall-following strategy inspired from Bug 2 algo-
rithm [12] while they are in one-chain configuration in
order to overcome large-sized obstacles. By using one-chain
configuration, an optimal configuration without redundant
connectivities, the robot swarm could stably avoid the obsta-
cle using only the wall-following strategy without requiring
complicated alignment techniques. Therefore, our approach
focuses on developing a fully distributed control that possibly
eliminates the local minima created by obstacles and con-
nectivity maintenance constraints. In addition, a fuzzy-logic
scheme automatically tunes control parameters and helps the
proposed control adapt to the changing environment.

The contributions of this paper are claimed as follows:

• We proposed a novel fully distributed control with
wall-following strategy for robot swarm navigation only
based on the relative distance and bearing measure-
ments of robots themselves without communication.
Two swarm configurations and four synthesized con-
trollers are designed to allow the robot swarm to flexibly
pass through unknown environment consisting of large-
sized obstacles.

• We proposed the one-chain configuration with wall-
following strategy which solves all three critical issues
of swarm navigation as mentioned above. Because the
one-chain configuration is optimal in terms of con-
nectivity links connecting robots [8], it minimizes the
restriction on each robot’s motion caused by connectiv-
ity maintenance leading to no local minima created by
connectivity maintenance. In addition, when the robot
swarm navigates using the boundary of large obstacles
in one-chain configuration, it eliminates local minima
caused by obstacle’s shapes and achieves the ordered
motion with only local sensing and without alignment
control.

This paper is organized as follows: we discuss related
works in section II. Section III presents the preliminaries of
robot modelling, control parameter fuzzy units, and connec-
tivity maintenance [8]. The fuzzy-based behavioural control
architecture for swarm navigation is presented in section IV.
Simulations and real experiments are demonstrated and dis-
cussed in section V. Finally, we draw conclusions and final
remarks in section VI.

II. RELATED WORKS
If the mobile robots have prior knowledge of the obsta-
cle’s shape in an environment, they can plan a path to
avoid it. Otherwise, moving along the boundary of the
obstacle becomes a reasonable strategy to pass the obsta-
cle [13]. From that point of view, the research on issues
of the robot swarm movement can be divided into two cat-
egories: (1) the collective motion with obstacle avoidance
strategies and (2) the collective motion with wall-following
strategies.

In the first category, the flocking algorithm is applied to
maintain the ordered motion and safe distance among robots
while they move from a source to a destination. Obstacle
avoidance algorithms based on potential functions are added
for robot swarms to avoid small-sized obstacles [4], [11]. The
ordered motion can be performed by either alignment con-
trol, which requires the neighbouring robots’ relative orienta-
tion [11] or non-alignment control using the leader-followers
model [4]. The alignment control facilitates motion direction
synchronization, but it requires more complex sensing mech-
anisms to determine the neighbours’ relative orientation.
Non-alignment control, on the other hand, may cause head-
ing disorientation among robots, resulting in anti-flocking
situations. Furthermore, if only using the flocking algorithm,
the robot swarm could face issues such as not being able to
deal with large-sized obstacles, not being able to transform
the swarm configuration to pass narrow passages in the envi-
ronment, and being split into sub-groups leading to member
loss as mentioned in [4] if the connectivity maintenance is not
considered.

In the second category, instead of avoiding obstacles,
robot swarms overcome the obstacle by following its bound-
ary. Wall-following strategies mainly focused on single
robot navigation, while very few are found in multi-robot
systems with challenges in cooperation and interaction
between robots [14]–[18]. The swarm configuration in these
wall-following strategies can be categorized into three types:
one-chain [16]–[18], formation [15], flexible configuration
as the rolling motion in the vortex pattern [14]. In [14],
as the swarm centre velocity fell, the effect of the move-
to-goal action reduced and the robot swarm switched from
flocking behaviour to rolling motion behaviour. The rolling
motion behaviour in the vortex pattern would help the swarm
follow the boundary and escape the local minimum problem
caused by the u-shape obstacle. In [15], the robot swarm used
communication to determine the presence of large obstacles,
then activated the wall-following strategy to synchronize the
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TABLE 1. Differences between the proposed approach and existing works.

moving direction and keep the robots’ formation. If more than
M robots (M is predefined) in the front line of the formation
detect the obstacle, the obstacle is considered as large-size
obstacle. In [16], the authors developed a swarm of four
robots moving in formations using communication. Robots
moved sequentially in a row using the wall-following strategy
when there was no space for robots to stand side-by-side.
Robots also communicated to achieve consensus actions such
as stop, delay, left-turn, right-turn, move-forward. In [17],
the wall-following control of multi-robot systems was con-
sidered in the scenario of walls formed in polygon shapes
with convex and non-convex corners. A predefined leader
robot performed the wall-following strategy, and follower
robots followed the leader by tracking it as a moving tar-
get. If a follower was about to collide with the obstacle,
the obstacle-avoidance behaviour overrode the behaviour of
leader-following. In addition, the control strategy only used
local sensing information, which is the relative distance and

bearing measured by infrared sensors. The developed con-
troller was tested with two robots. In [18], the robot swarm
moved from a source to destination in a formation with
leader-follower flocking control. If the formation encoun-
tered obstacles that prevent the robots from maintaining their
formation, it was transformed into a line formation to perform
the wall-following strategy. This situation was identified in
two cases: the leader suddenly received a huge repulsive
force from both sides of the forward direction, or one of
the robots in the boundary of the formation received a huge
repulsive force from one direction. Reinforcement learning
was adopted to implement the robot behavioural selection
from a set of behaviours, including goal approaching, obsta-
cle avoidance, collision avoidance, wall-following move-
ment through predicting the robot’s abilities during motion.
In these few existing studies, most of them are not distributed
control and require communication for configuration transi-
tion and configuration maintenance [14]–[16], [18], excepts
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FIGURE 1. Sensing zones of tactile sensor (TS) and long-range
sensor (LRS) of robot i . (The sensing zone of TS locates inside the sensing
zone of LRS).

for [17] that only considers the wall-following control with-
out configuration transition.

Table 1 summarizes the differences between our pro-
posed approach and the existing works on robotic swarms
using the wall-following strategy. To the best of our knowl-
edge, our comprehensive solution is the first fully distributed
control with wall-following strategy for swarm navigation
in unknown-obstacle environments. It allows to transform
the swarm configuration from aggregation to one-chain and
vice versa without communication. The proposed control
ensures the connectivity maintenance of the robot swarm
and solves local minimum problems derived from both
the large-sized obstacle and the connectivity maintenance.
In addition, the fuzzy-logic scheme for automatic tuning of
the control parameters helps the robot swarm adapt to the
changing environment.

III. PRELIMINARIES
A. ROBOT MODELING
The robot swarm consists of N differential drive mobile
robots in two dimensional (2D) space. Because the
current-technology sensor could not meet the requirements
for close-range wall following (within 5cm) as explained
in [19], [20], we assume that we have a tactile sensor (TS)
as a proximity sensor on robot i. This sensor has proximity
sensing radius of rS and is responsible for precisely detecting
object boundary in proximity for wall-following. In addition,
robot i also has a long-range sensor (LRS) for detecting object
within a longer sensing range rL , rS � rL . Both sensors
are modeled by the shape of discs Fig. 1. Let i(xi, yi) be
the robot i’s position in 2D space. Robots within rL distance
towards robot i are considered as neighbour robots of robot i.
Ni denotes a set of neighbours of robot i.

B. CONTROL PARAMETER FUZZY UNITS
The concept of fuzzy logic was introduced by Zadeh [21] and
has become a means of treating uncertain and imprecise sen-
sor’s information using linguistic rules. In this paper, fuzzy
logic is used to design five control parameters for five dif-
ferent individual behaviours (including move-along-the-wall,

TABLE 2. Rule base for change of α and β (using readings of TS).

TABLE 3. Rule base for change of γ , ν and τ (using readings of LRS).

wall-push, wall-pull, cohesion, separation). Each control
parameter fuzzy unit has four steps as follows:
• First, the fuzzification step maps tactile sensor and
long-range sensor readings to corresponding sensor
partitions using input membership functions (MFs) as
in Fig. 1. The TS sensing area is divided into more
partitions than the LRS in order to increase the con-
trol resolution at the short distance. The relative dis-
tance dTSi,wp and bearing θTSi readings of TS are mapped
into corresponding sensor partitions using input MFs
in Fig. 2(a)&(b). Similarly, dLRSi,j and θLRSi of LRS are
mapped using input MFs in Fig. 2(c) and (d). Fuzzy
antecedent variable of dTSi,wp and d

LRS
i,j are evaluated with

the fuzzy sub-sets of Near, Med (Medium), Far, whereas
θTSi and θLRSi are evaluated with the fuzzy sub-sets of
FL (Front Left), L (Left), B (Back), R (Right), FR (Front
Right) as shown in Fig. 2.

• Then, a set of if-then rules are designed as in Table 2
and 3 to define the relationships between input and
output membership functions. The output variables
α, β, γ, ν, τ subject to Z (Zero), S (Small), M (Medium),
B (Big), VB (Very Big) singleton membership functions
shown in Fig. 3.

• The fuzzy inference step calculates the degree of ful-
fillment (DOF) for each rule and the output member-
ship functions are truncated at DOF level. This study
uses Mamdani fuzzy inference system, rule connection
‘‘and’’ method, ‘‘min’’ for the ‘‘and’’ method. The final
output membership function is the synthesis of all the
individual output membership functions using OR oper-
ator.

• In the last step, the ‘‘Center of Area’’method is used for
defuzzification translating the linguistic value to crisp
values.

C. CONNECTIVITY MAINTENANCE
Connectivity maintenance based on mobility constraint in [8]
is applied for every robot i as the bounded condition that guar-
antees the integrity preservation of the robot swarm without
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FIGURE 2. Input membership function plots: (a) For distance deviation of TS. (b) For angular deviation of TS. (c) For distance deviation of LRS. (d) For
angular deviation of LRS.

FIGURE 3. Output membership function plots: (a) For control parameters α and β. (b) For control parameter γ . (c) For
control parameters ν and τ .

loss of members and the information exchange among neigh-
bour robots. The information exchanged is not used as the
input for our proposed controller; instead, it will be used
to establish an intelligent sensor network in our future pub-
lication. When robot i tends to lose connectivity with its
critical neighbours N c

i , its mobility constraint is activated to
adjust its maximum velocity (Vimax = 1i/TC ) through the
normalization of its run-step1i (1i ≤ εi/2), where TC is the
control period and εi = min

j∈N c
i

(rL−rij) ≤ ε. ε and εi are critical

tolerance andminimum tolerance of robot i, respectively. As a
result, connectivities are always maintained.

D. SWARM CONFIGURATIONS
Swarm configurations are emerging while robots are coop-
erating and interacting with the environment. We categorize
swarm configurations into two primary morphologies:

• One-chain configuration: the swarm configuration is
considered one-chain if no robot has more than two
nearest neighbours. That is, a robot i has only one or
two direct connectivities with its neighbours (similar
to Definition 5 in [8]). One-chain configuration results
from the minimization process of redundant connectiv-
ities, turning complex connectivity topologies into the
minimal form and removing local minima caused by
connectivity maintenance constraints.

• Aggregation configuration: the swarm configuration is
considered as aggregation if any robot in the swarm has
more than two nearest neighbours; that is, a robot i has
more than two direct connectivities with its neighbours.

IV. FUZZY-BASED DISTRIBUTED BEHAVIOURAL
CONTROL
The core concept of our paper is to design a control for a robot
swarm to reach a given target point or a set of target points in

unknown environments with large-sized obstacles. To do so,
a fuzzy-based wall following method is designed including
two main elements: control parameter fuzzy units (described
in section III-B) and synthesized controllers as in Fig. 4.

We used different synthesized controllers to generate dif-
ferent desired swarm behaviours: wall-following strategy
(WF), aggregation strategy, aggregation-to-wall-following
mode (A2W) and wall-following-to aggregation mode
(W2A). Synthesized controllers are the combination of fol-
lowing individual behaviours: move-along-the-wall, wall-
push, wall-pull, cohesion, separation, move-to-goal, random-
walk and move-to-wall. The switching algorithm 1 helps
a robot switch among synthesized controllers in order for
the robot swarm to transform into one-chain configuration
to avoid local minima caused by competing potentials and
connectivity constraints.

A. WALL-FOLLOWING STRATEGY
Thewall-following strategy is considered as a novel approach
enabling the robot swarm to pass large obstacles by fol-
lowing its boundary. This strategy is synthesized by wall-
pushing −→v wps

i , wall-pulling −→v wpl
i and move-along-the-wall

−→v matw
i behaviours. This strategy is activated when the dis-

tance between robot i and boundary of an obstacle is within
the tactile sensing range, rS and the obstacle blocks the line
of sight (LoS) connecting robot i and its given target point.

−−→
VWF =

−→v matw
i +

−→v wps
i +

−→v wpl
i (1)

1) MOVE-ALONG-THE-WALL BEHAVIOUR
This behaviour drives robot i along the boundary of the
obstacle and maintains a constant distance with its closest
neighbor robot in the front. Assume W is the set of finite
points on the boundary and the coordinate of the closest point
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FIGURE 4. Fuzzy-based distributed behavioural control diagram.

Algorithm 1: The Switching Algorithm
Input: wpTS ,wpLRS
Output:

−→
Vi

1 if ∃wpTS then
2

−→
Vi =

−−→
VWF =

−→v matw
i +

−→v wps
i +

−→v wpl
i ;

3 else if @wpLRS then
4

−→
Vi =

−→
V A =

−→v c
i +
−→v s

i +
−→v mtg

i ;

5 else if ∃wpLRS then
6 if Robot i does not have LoS with the given target

point then
7

−→
Vi =

−→
V A2W =

−→v mtw
i +

−→v c
i +
−→v s

i ;

8 else
9

−→
Vi =

−→
V W2A =

−→v rw
i +
−→v c

i +
−→v s

i +
−→v mtg

i ;

detected by the tactile sensor of robot i is wpTS (xTSwp, y
TS
wp)

(wpTS ∈ W ), we have:

−→v matw
i = γ

[
−(yTSwp − yi)
(xTSwp − xi)

]
(2)

γ fuzzy unit is used to calculate the control parameter γ
for this behaviour. γ is determined for the input antecedent
variables dLRSi,j and θLRSi using rules in Table 3, and subjects
to ouput MFs in Fig. 3 (b). dLRSi,j and θLRSi are the relative
distance and angle towards the closest neighbouring robot j
in the front, respectively.

2) WALL-PUSHING BEHAVIOUR
This behaviour makes robot i not to collide with the wall
while performing wall-following strategy.

−→v wps
i = β

[
(xi − xTSwp)
(yi − yTSwp)

]
(3)

The control parameterβ of this behaviour is computed byβ
fuzzy unit. β is determined for the input antecedent variables
dTSi,wp and θTSi using rules in Table 2, and subjects to ouput
MFs in Fig. 3 (a). dTSi,wp and θTSi are the relative distance
and angle towards the closest point on the boundary of the
obstacle wpTS , respectively.

3) WALL-PULLING BEHAVIOUR
Together with the wall-pushing behaviour, a wall-pulling
behaviour ensures robot i to maintain a certain distance to
the wall when performing the wall-following strategy.

−→v wpl
i = α

[
(xTSwp − xi)
(yTSwp − yi)

]
(4)

The control parameter α is calculated by α fuzzy unit. α
is determined for the input antecedent variables dTSi,wp and θ

TS
i

using rules in Table 2, and subjects to ouput MFs in Fig. 3 (a).

B. AGGREGATION STRATEGY
Beside the wall-following strategy, the aggregation strategy
is designed to guide the robot swarm to navigate toward
its target in an obstacle-free environment. This strategy is
synthesized by cohesion −→v c

i , separation
−→v s

i and move-to-
goal −→v mtg

i behaviours which are activated when the distance
between the robot and boundary of obstacles is outside the
LRS range (rL). The emergent behaviour of robot i is repre-
sented by:

−→
V A =

−→v c
i +
−→v s

i +
−→v mtg

i (5)

1) COHESION BEHAVIOUR
This behaviour is considered as the attraction force applied
for robot i and j to get closer if j ∈ Ni \N near

i , where N near
i is

a set of robot i’s neighbours in the LRS-near sensing area.

−→v c
i =

∑
jεNi\N near

i

νij

[
(xj − xi)
(yj − yi)

]
(6)

where νij is the control parameter corresponding to robot i
and its neighbouring robot j ∈ Ni \ N near

i .
The control parameter νij is governed by ν fuzzy unit. νij is

determined for the input antecedent variables dLRSi,j and θLRSi
using rules in Table 3, and subjects to ouput MFs in Fig. 3
(c). dLRSi,j and θLRSi are the relative distance and angle towards
neighbouring robots j ∈ Ni, respectively.

2) SEPARATION BEHAVIOUR
In oppose to the cohesion behaviour, this behaviour drives a
robot away from nearby robot j to avoid collision, j ∈ Ni \
N far
i , where N far

i is a set of robot i’s neighbors in LRS-far
sensing area.

−→v s
i =

∑
jεNi\N

far
i

τij

[
(xi − xj)
(yi − yj)

]
(7)

where τij is the control parameter corresponding to robot i and
its neighbouring robot j ∈ Ni \ N

far
i .
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τ fuzzy unit is used to calculate the control parameter τij
for this behaviour. τij is determined for the input antecedent
variables dLRSi,j and θLRSi using rules in Table 3, and subjects
to ouput MFs in Fig. 3 (c).

3) MOVE-TO-GOAL BEHAVIOUR
This behaviour is the driven factor making robot i achieve its
target by pushing it toward the goal position g(xg, yg).

−→v mtg
i =

[
(xg − xi)
(yg − yi)

]
(8)

C. TRANSITION MODES
The wall-following and aggregation strategies are synthe-
sized controllers which enable swarm navigation in one-chain
and aggregation configurations, respectively. However, these
strategies are only effective if the robot swarm has been in
such swarm configurations. Therefore, to ensure successful
transition between two configurations, two synthesized con-
trollers of the transition modes are created.

1) AGGREGATION TO WALL-FOLLOWING (A2W MODE)
The purpose of this mode is to force the transition from aggre-
gation to one-chain configuration. Move-to-wall behaviour
(−→v mtw

i ) is created to drive robot i closer to boundary of
obstacles until the wall-following strategy is activated.

−→v mtw
i =

[
(xLRSwp − xi)
(yLRSwp − yi)

]
(9)

where the coordinate of the closest point on the obsta-
cle’s boundary detected by the LRS of robot i is
wpLRS (xLRSwp , y

LRS
wp ), where wpLRS ∈ W and rS <

‖wpLRS−i‖ ≤ rL .
This transition mode consists of three individual

behaviours: cohesion −→v c
i , separation

−→v s
i and move-to-wall

−→v mtw
i . As a result, the aggregation configuration gradually

transforms into one-chain configuration while performing
collision avoidance. This transition mode is activated when
LRS of robot i detects an obstacle blocking the LoS and
deactivatedwhen the wall-following strategy is activated. The
behaviour vector for robot i in A2W mode is given by:

−→
V A2W =

−→v mtw
i +

−→v c
i +
−→v s

i (10)

2) WALL-FOLLOWING TO AGGREGATION (W2A MODE)
In oppose to A2W mode, this transition mode is created
to ensure the transition from one-chain to aggregation con-
figuration. Random-walk behaviour −→v rw

i is activated when
robots exit the obstacle’s boundary. This behaviour creates
chaos for aggregation configuration to form and is defined
as a perpendicular vector connecting two neighbour robots
(j, k ∈ Ni).

−→v rw
i =

[
±(yk − yj)
∓(xk − xj)

]
(11)

where the sign± is determined by probability 50% of select-
ing + or −.

FIGURE 5. Two synthesized controllers are used to overcome local
minima.

The W2A mode is activated when the robot i’s LRS still
observes the obstacle which does not block the LoS and
deactivated when there is no obstacle within rL . The further
the swarm moves away from the obstacle, the more number
of robots turn into aggregation configuration. The behaviour
vector for robot i is given by:

−→
V W2A =

−→v rw
i +
−→v c

i +
−→v s

i +
−→v mtg

i (12)

D. A LOCAL MINIMA-FREE APPROACH
Local minima, which is always a problem for robot navi-
gation, happens when the sum of the attractive force and
repulsive force is equal to zero. Specifically, researchers
in [3], [22] pointed out that local minimum problems appear
in environments with large and concave obstacles, and narrow
channels. Moreover, in robot swarm navigation, we must add
the collision avoidance among robots, thus the system is more
prone to local minima.

In our proposed method, there are two states that the robots
could fall into local minima caused by competing forces:
1) when the robots approach the obstacle, and 2) when the
robots contour the obstacle’s boundary. Local minima in
these two states could be avoided by using two proposed
synthesized controllers: aggregation-to-wall-following mode
and wall-following strategy.

In wall-following strategy, while the wall-pushing and
wall-pulling vectors are collinear and in opposite direction,
the move-along-the-wall vector is in perpendicular direction
with the above two vectors. Therefore, the sum of those
vectors is not equal to zero and the robot always keepsmoving
unless the robot has to wait for its frontal robots to avoid
collision.

In aggregation-to-wall-following mode, the sum of all vec-
tors could easily be zero and the robot motion stops. However,
this stop motion is designed for a robot to avoid collision
with frontal robots. For example, when robot i gets too close
to robot j as in Fig. 5, the magnitude of separation vector
outweighs cohesion vectors and equals to move-to-wall vec-
tor. Despite the sum of vectors is zero, the situation is not
considered as local minima of motion. Robot j will keep
moving closer to the obstacle or along the wall, making room
for robot i to approach the wall because the frontal robot j is
either in A2W mode or WF strategy.

V. EXPERIMENT RESULTS AND DISCUSSION
In this section, we present the results of a simulation and a
real experiment in an environment consisting of both convex
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FIGURE 6. A simulation of the swarm of 15 robots passing three large obstacles.

FIGURE 7. Correlation of number of robots and entropy metric in
simulation.

and non-convex obstacles and evaluate the performance of the
proposed control system.

A. EXPERIMENT SETUP
In the simulation and real experiment, we used differential-
drive mobile robots which are identical and in round shapes
with a diameter of 10 cm. The TS range was set at 5cm and the
LRS range was set at 70 cm. The critical tolerance ε and the
control periodTC are set at 0.06m and 0.1 s respectively; thus,
the maximum speed Vmax of each robot is 0.3 m/s calculated
using the equation in section III-C. The mission of the swarm
is to reach a given target point or a set of target points.

The simulation with 15 robots was implemented in the
scenario 22 m × 9 m containing one large convex obstacle
and two large concave obstacles arranged randomly in order
to prevent the swarm from reaching its destination Fig. 6. The
real experiment was carried out with six robots in the arena
of 4m × 3m with one concave large obstacle as illustrated
in Fig. 8. A motion-tracking system was used to reduce the
difficulties of representing sensors and connectivity of the
robots. At the initial stage, all the robots were in the aggrega-
tion strategy and they could not observe such obstacles.

B. ENTROPY
To evaluate the efficiency in transforming between two
swarm configurations, we measured the positional disorder
of the swarm using entropy. A drop in entropy value indicates

an aggregation, while an increase shows that the swarm is
transforming toward a more scattered configuration. It is
calculated by finding clusters within the swarm. Robot i and
robot j are considered to be in the same cluster if ‖j−i‖ ≤ h,
where i and j denote the position vectors of robot i and robot
j respectively. Shannon’s information entropy H of a cluster
is defined as:

H (h) =
M∑
z=1

pz log2 pz (13)

where pz is the proportion of the individuals in the zth cluster
and M is the number of clusters.

Entropy values are integrated over a range from 0 to∞ of
h to find the total entropy S:

S =
∫
∞

0
H (h)dh (14)

C. RESULTS AND DISCUSSION
In the simulation,1 we examined how the distributed control
guided a robot swarm to navigate through convex and con-
cave obstacles. Initially, all the robots were in the aggrega-
tion configuration as in Fig. 6(A). They did not observe any
obstacle and used the aggregation strategy (Eq. 5) to navigate
toward the goal. As the robot came closer to the goal and
detected obstacle 1 (Fig.6(a)) obstructing the LoS using LRS,
it switched to aggregation-to-wall following mode (Eq. 10).
As a result, the robot came closer to the obstacle and even-
tually the obstacle was within the TS sensing range. When
the robots detected obstacles using TS, the wall-following
strategy (Eq. 1) was activated to guide the robot swarm
to move along the obstacle boundary to get to the other
side of the obstacle. The wall-following-to-aggregation mode
(Eq. 12) was activated when the robot started exiting the
obstacle boundary (Fig. 6(C)) to create chaos for aggregation
configuration to form. Finally, the robot switched back to the
aggregation strategy when it no longer observed the obstacle
within the LRS range. Similarly, when the robots encountered

1Simulation: https://youtu.be/L75EBAfDrVM
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obstacles 2 and 3, an appropriate synthesized controller was
selected by each robot using algorithm 1; the swarm con-
figurations were transformed from aggregation to one-chain
configurations and vice versa through the transition modes.
In addition, all the control parameters of each strategy or
mode are automatically tuned by using our control parameter
fuzzy units described in section III-B.
To evaluate the effectiveness of synthesized controllers in

swarm configuration transformation, we analyzed the corre-
lation of the number of robots in different modes and the
entropy value in Fig. 7. To give readers a better understanding
of Fig. 7, we examined a snapshot at time-step 2500th of this
combined chart. At step 2500th, when the robot swarm was
approaching the obstacles, there were 4 robots in aggregation
strategy (grey bar), 4 robots in aggregation-to-wall-following
mode (orange bar) and 7 robots in wall-following strategy
(cyan bar). To overcome obstacles, all robots had to consec-
utively operate in aggregation-to-wall-following mode, wall-
following strategy, and wall-following-to-aggregation mode.
Considering the obstacle 1 in Fig.6.a, when the robot swarm
approached and then followed the obstacle’s boundary as
in Fig.6(B), robots gradually switched into A2W mode and
then WF strategy. As the number of robots in WF strategy
increased from 0 to 15, the entropy also increases from 0.05
to 1 (see the first peak of entropy in Fig. 7). This increase in
entropy value indicates the swarm was transforming toward
a scattered configuration, and eventually, the one-chain con-
figuration. On the other hand, when the swarm was leaving
the obstacle, the majority gradually switched to W2A mode
and then aggregation strategy as depicted in Fig.6(C). As a
result, the entropy decreased from 1 back to 0.05; which
indicates the robots were aggregating into a more cohesive
configuration. The same pattern could be observed when the
robot swarm encountered obstacles 2 and 3, which show
the adaptability of our approach to different environments.
In addition, while researchers in [14]–[18] allowed robots
to communicate for controller synchronization or behaviour
switching, Fig. 7 shows that multi synthesized controllers
or states coexisted and independent at each time step. This
confirmed the fully distributed attribute of our control.

We witnessed that the robot swarm successfully navigated
toward the desired destinationwithout dealingwith localmin-
ima caused by obstacles and connectivity maintenance thanks
to the distributed control shown in Fig. 4. Because each
robot followed the boundary of obstacles in WF strategy and
eventually formed a one-chain configuration, the robot swarm
could overcome any local minima caused by obstacle of any
shapes. Moreover, a one-chain configuration with minimum
number of connectivities is formed during WF strategy, e.g.
only 14 connectivities in Fig. 6(G), helping the robot swarm
avoid any local minima caused by connectivity constraints
while avoiding obstacles without experiencing member loss.

We also conducted a real experiment2 with a swarm of six
mobile robots passing a concave obstacle as shown in Fig. 8.

2Real experiment: https://youtu.be/NLSUcJrdHdk

FIGURE 8. Snapshots of the swarm of six real robots passing a concave
obstacle.

Similar to simulation, the swarm was successfully trans-
formed from the aggregation to one-chain configurationwhen
following the obstacle boundary and switched back to the
aggregation when they pass over the obstacle. In contrast,
when we applied a simple flocking algorithm which only has
three basic behaviour: alignment, separation and cohesion to
overcome large-sized obstacles, the swarm failed to overcome
all three obstacles.

VI. CONCLUSION
In this paper, we addressed the fuzzy-based distributed
behavioural control with the wall-following strategy.
We demonstrated that the novel distributed control enabled
the robot swarm to navigate through arbitrary-shaped envi-
ronments by switching back and forth between two swarm
configurations using different synthesized controllers. Using
the one-chain configuration and wall-following strategy,
we proved that no local minima caused by either obstacles
or connectivity maintenance appeared during the swarm
navigation in both the simulation and the real experiment.
Moreover, each synthesized controller’s control parameters
are automatically tuned by using our control parameter fuzzy
units. In the future, we aim to examine aspects of layered
wall-following strategy and active tactile-based swarming
behaviours.
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