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ABSTRACT Inkjet printing technology uses the low-cost direct deposition manufacturing technique
for printing and is applicable in various fields including optics, ceramics, three-dimensional printing in
biomedicine, and conductive circuitry. This study reviews the classifications and applications of inkjet
printing technologies, with a focus on recent publications. The different design approaches, applications,
and research progress of several inkjet printing techniques are reviewed. Among them, the piezoelectric
inkjet printing technology is the main focus owing to its reliability and handling of a diverse range of inks. A
piezo-driven inkjet printhead is activated by applying a voltage waveform to a piezoelectric membrane. The
waveform ensures the formation of the designed droplet and a stable jet. A survey of various driving-voltage
waveforms is conducted, which can serve as a reference to the research community that uses piezo-driven
inkjet printheads. The challenges of printing quality, stability, and speed and their solutions as published
in recent studies are reviewed. Technologies for producing high-viscosity inkjets are explored, and the
applications of inkjet printing technology in textile, displays, and wearable devices are discussed.

INDEX TERMS Inkjet printing technology, printhead, piezoelectric inkjet printing, satellite droplet, voltage
waveform.

I. INTRODUCTION
Inkjet printing technology has applications in the fields
of bioengineering [1], three-dimensional (3D) printing of
microstructures [2], flexible and textile electronics [3], and
micromechanical and microfluidic devices [4]. In 1858,
William Thomson and Abbe Nollet invented an inkjet-like
recording device with a continuous inkjet head [5], which
paved the way for inkjet printheads. This technology was
further matured by the introduction of the equations of
fluid motion, drop-on-demand (DoD) inkjet heads with the
squeeze, bend, push, and shear deformation modes using a
piezoelectric actuator, and DoD thermal inkjet (TIJ) print-
heads [6].

Inkjet printing technology can be classified into two
groups, continuous ink jet (CIJ) and DOD ink jet [6]. In a CIJ
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system, a stream of droplets is ejected continuously under an
applied electric field and a charging electrode. The uncharged
droplets are received by a catcher. In a DOD printing system,
the droplet can be ejected by a voltage waveform. Referenced
from [6] and further modified with information on the latest
printing technologies. Fig. 1 shows the classification of inkjet
printing technology.

Several methods including needle-based printing [7],
piezoelectric [8] and thermal [9] inkjet printing, elec-
trohydrodynamic (EHD) jet printing [10], laser-based
printing [11], aerosol jet printing (AJP) [12], surface acoustic-
waves (SAW) printing [13], acoustophoretic printing [14],
and drop impact printing [15] were demonstrated.

All these methods have their merits and demerits that make
it suitable for printing resolution, various materials and appli-
cations. For example piezoelectric, thermal, needle-based and
acoustophoretic printing are nozzle-based methods that are
prone to clogging when attempting to extend their use for
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printing the inks which can cause nozzle blockage. However,
piezoelectric inkjet printing is the most mature and reliable
technology [16]. The mechanical structure of a piezoelectric
inkjet printhead (PIP) has an ink chamber connected to the
ink cartridge through a narrow path called the restrictor or
throttle. On top of the ink chamber is a membrane composed
of a piezoelectric material sandwiched between two elec-
trodes. A nozzle supplies ink droplets to the outer substrate
by applying an electrical pulse to the piezo-driven membrane
on top of the ink chamber. This membrane pressurizes the
chamber, increasing the fluid velocity at the nozzle. The high
velocity of the fluid leads to droplet formation at the nozzle
exit [16]. The piezoelectric membrane, ink chamber, and noz-
zle are manufactured on wafers using microelectromechani-
cal systems (MEMS). These structures are combined using
an MEMS-based bonding technique to fabricate a printhead
device. The TIJ printhead consists of a resistor, a chamber and
a nozzle. An electrical pulse applied to the resistor heats the
fluid, forming a vapor bubble that pushes the fluid through the
nozzle, thus producing a droplet or a series of droplets [16].

Inkjet printing can be combined with 3D printing. High-
resolution insulating and conductive structures can be pro-
duced using the inkjet 3D printing process compared to
traditionally manufactured printed circuit boards (PCBs).
Inkjet printing based 3D printing has the ability to use mul-
tiple printheads in the same printing system which allows
multiple materials to be deposited. Inkjet 3D printing does
not need to be restricted to a specific area. The layer-by-layer
deposition process allows materials to be printed over a large
area. Inkjet printing technology becomes most suitable pro-
cess for 3D printing of PCBs when combined with deposition
of insulating and conductive materials.

Several studies have reviewed inkjet printing technologies.
Reference [17] reviewed variousmaterials and the application
of inkjet technology to print them. These technologies, rang-
ing from PIP to EHD printing, have various applications in
printing 2D or 3D materials at the micrometer and nanometer
scales [18], [19]. Reference [6] reviewed the history of PIP
dynamics, covering the topics of actuation, ink chamber and
nozzle acoustics, droplet formation, wetting, and air bubbles
[6]. Li et al. [8] reviewed various piezo-driven inkjet print-
head designs, along with their applications and challenges.
Kwon et al. [20] reviewed commercially available printheads,
ink supply systems, and inkjet printing technologies. Refer-
ence [21] explored microdroplet generation methods [21].

In this study, we focused on the classifications and applica-
tions of printing technologies. Focus is laid on the piezoelec-
tric inkjet printing technology, especially the various voltage
waveforms, the influence of voltage waveform on droplet for-
mation, and methods to optimize these waveforms. Research
articles that discussed the challenges related to the printing
quality, stability, and speed of piezo-driven printheads and
their solutions were articulated. Furthermore, high-viscosity
jet ink printing technologies were discussed. Finally, various
applications of different inkjet printing technologies in the
fields of digital textile printing (DTP), display pixel print-

FIGURE 1. Classification of printing technologies [6].

FIGURE 2. Classification of piezo-driven inkjet printheads. (a) squeeze
mode, (b) push mode, (c) shear mode, (d) bend mode. The figure was
referenced from reference [6].

ing, MEMS and wearable, stretchable, flexible devices were
reviewed.

II. TYPES OF INKJET PRINTING TECHNOLOGY
A. PIEZOELECTRIC INKJET PRINTING
In a PIP, the shape of the piezoelectric transducer changes
under an applied voltage. This generates a pressure pulse in
the ink chamber, resulting in the ejection of ink droplet from
the nozzle connected with the chamber. A PIP can be in the
squeeze, push, shear, or bend mode (Fig. 2). Most studies
have demonstrated the bend mode.

1) ACTUATION MECHANISMS AND EFFECT OF VOLTAGE
WAVEFORM
The actuator device has to be poled in order for the material
to be piezoelectric. Poling is done by applying DC volt-
age across the material. The PIP can be actuated by using
either the push–pull (Fig. 3-a) or pull–push mode (Fig. 3-b).
Generally, for these modes, a single trapezoidal pulse called
the standard voltage waveform is used, which is composed
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FIGURE 3. Schematic representation of (a) push–pull, (b) pull–push modes, and (c) classification of actuation mechanisms of a
piezoelectric inkjet printhead with the waveform optimization approaches.

of the rise, dwell, and fall times. At the rising edge of the
pull–push mode, the piezoelectric membrane bends upward
(z-axis), causing the ink chamber to expand and generate
a negative pressure. Meanwhile, the ink is sucked from the
nozzle and restrictor toward the center of the ink chamber.
The membrane is still bent upward along the z-axis during
the dwell time. At the falling edge, the membrane bends
toward the ink chamber, causing the chamber to contract
and generate a positive pressure. Thus, the droplet is ejected
from the nozzle exit. The push–pull mode works opposite
of the pull–push mode, i.e., the membrane is pushed toward

the ink chamber at the rising edge and bent upward in the
z-direction at the falling edge of the voltage waveform. Ref-
erences [22], [23] have studies the push–pull actuation mech-
anism [22], [23], in which the jet pressure and ink droplet
velocity are not affected by the change in the dwell time of
the voltage waveform [23]. However, this mode has a low
velocity. In the case of the pull–push mode, although the jet
pressure and droplet velocity fluctuate with the dwell time,
the velocity is high. Because printing applications require
high jet velocities, researchers have focused on the pull–push
actuation mechanism.
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TABLE 1. Various voltage waveforms and their effects on printhead performance.
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The ink chamber still undergoes pressure oscillations even
after the first ink droplet has been ejected under an applied
standard voltage waveform using the pull–push actuation
mechanism [24]. These undesired pressure oscillations decay
after several microseconds, cause variations in the proper-
ties of the subsequent ink drops, and form satellites, which
degrades the inkjet printhead performance. A voltage wave-
form with two trapezoidal pulses to suppress the undesired
pressure oscillations was formulated. Based on the polarity,
the voltage waveform was divided into two categories by
pulse type, unipolar [25], [26] and bipolar [27], [28]. In both
the cases, the first pulse was used for jetting an ink drop,
whereas the second one, with the same or opposite polarity,
was used to damp the undesired pressure oscillations.

Kwon and Kim [25] used the waveform with unipolar
pulses. They extracted the pressure wave information from
the ink chamber using piezoelectric self-sensing measure-
ment by measuring the piezo-current. The second pulse was
used to suppress the undesired pressure oscillations. They set
the magnitude of the second waveform to half that of the first
one, which cancelled out the undesired pressure oscillations.
The start time of the second waveform is highly sensitive to
oscillations in the unipolar voltage waveform. The undesired
pressure oscillations were suppressed with the optimal start
time of the second pulse of 18.8 µs; however, if the start
time were more or less than this threshold, then the jetting
performance would be poor, or even worse than the single
voltage waveform in the case of a decreased second pulse
start time. In addition to the suppression of undesired pressure
oscillations, the suppression of satellite droplet formation has
also been demonstrated by using a voltage waveform with
unipolar pulses [26]. The disadvantage of using this type of
waveform is that it takes longer to dampen the undesired
pressure oscillations than with the voltage waveform with
bipolar pulses [29]. Therefore, mostly voltage waveforms
with bipolar pulses have been used in the literature [27]–[30].

To obtain a better jet, the optimal parameters of the jet
pulse must be determined. The optimal parameter can be
defined as the highest possible velocity and sufficient volume
of an ink droplet for a specific voltage waveform parameter
at given amplitude. Generally, a voltage waveform with a
rise and fall time of less than 3 µs is sufficient for good
droplet ejection [31], however the dwell time must be con-
sidered. As the dwell time increases, the velocity and volume
of the ink droplet increases. Above the optimal dwell time,
it decreases drastically [32], [33]. This trend also applies to
the M-shaped, W-shaped, or other complex waveforms when
tuning their time parameters. Different approaches were pre-
sented for estimating the optimal dwell time of a voltage
waveform for achieving a higher droplet velocity and required
volume. Reference [31] used thewave propagation theory and
recommended an optimal dwell time of l/c [31], whereas [34]
recommended 2l/c, where l is the length of the tube and c
is the speed of sound in inks. However, no accurate optimal
dwell time exists in practice because l and c are likely to be
unknown and the fluid viscosity effect cannot be considered

without complicating the equation. Therefore, other method-
ologies, for e.g., numerical simulation [35], model based
[23], [29], [36]–[38], automatic tuning [39], and experimental
approaches [25], [40] have also been recommended. Table 2
lists the studies that used these approaches along with their
optimal waveforms parameters and optimization methods.
Table 1 presents the different voltage waveforms and their
effects on the printhead’s performance.

The efficient deposition of different types of inks on a sub-
strate is necessary in the inkjet industry for all applications.
Therefore, it is necessary to have a mechanism to control
droplet formation. The simplest method is to tune the voltage
waveform. In the case of a fluid with low viscosity, the ejec-
tion of the first droplet from the nozzle outlet is followed
by the formation of satellite droplets. High-velocity satellite
droplets can combine to form a main droplet during flight
to the desired spot on the substrate. However, low- velocity
satellite droplets have poor directionality and may land on
an arbitrary spot on the substrate, which reduces the print
quality. Multipulse waveforms are needed to prevent satellite
droplets and maintain the single primary droplet [41]–[46].
Shin et al. [41] applied a double waveform with two square
pulses (unipolar M-shaped) to the actuator, which effectively
ejected the single main droplet without forming satellites.
The trajectory of the satellite droplets can be improved by
tuning the separation time (t4) between two pulses [42], [43].
Reference [43] suppressed satellite droplets by tuning the
time interval (t2) of a unipolar W-shaped waveform [44].
Droplet with ligament is another challenge during printing,

especially in applications that use a moving substrate. In this
case, the ligaments will not merge with the main droplet.
This will in turn misshape the printed dot on the moving
substrate [47]. Moreover, the length of the ligament increases
as the applied voltage is increased. In the multidrop ejection
method, a multipulse input voltage waveform is applied to
the piezoelectric actuator. Applying different voltages to the
pulses and tuning the pulse voltage can eliminate ligaments
and satellites [47].

The quality of printing by inkjet technology has improved.
Long-term productivity would require small droplets ejected
at higher velocities. A dominant parameter, the droplet size
can be reduced by reducing the nozzle orifice diameter and
decreasing the pulse amplitude. However, a small orifice
can be clogged and requires expensive manufacturing tech-
niques. Moreover, decreasing the amplitude will decrease the
droplet velocity. Therefore, alternative methods to reduce the
droplet size must be researched. Reference [48] proposed
three square-wave bipolar W-shaped voltage pulses with
amplitudes of −46, 56, and −46 V, respectively. The method
successfully reduced the droplet volume. The droplet volume
can also be reduced by the M-shaped and bipolar wave-
forms; however, the W-shaped waveform has a higher per-
centage volume reduction effect than the two [42]. Fig. 3(c)
illustrates the classification of the actuation mechanisms of
a piezo-driven inkjet printhead and waveform optimization
methods.
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TABLE 2. Optimized voltage waveforms and their optimization methods.

2) MISCELLANEOUS STUDIES AND RECENT RESEARCH IN
PIEZOELECTRIC INKJET PRINTHEADS
Although piezoelectric inkjet printheads are commercial,
the printing quality and jet stability can be improved by
solving the nozzle clogging, the nonaxisymmetric effect, and
the entrainment of air bubbles in the ink channel.

The clogging of a nozzle strongly influences the inkjet
printhead performance in various applications. For example,
sieving, bridging, and aggregation of particles can block the
flow of fluid inmicrofluidic devices [51]. The unconventional
MEMS printhead process causes dirt particles composed of
Si or glass to remain in the ink channel. The interaction of
these remaining dirt particles with the oscillating meniscus,
or cavitation in the bulk ink, cause the entrainment of air
bubbles in the tube [52]. For example, the collision of silica
with the internal surfaces of a printhead can clog the noz-
zle [53]. Nozzle blockage can be minimized by tuning the
pH of silica sol [53]. Reference [53] visualized the growth,
translation, and interaction of the entrained air bubbles using
shortwave infrared imaging [54]. Nozzle blockage can also
be solved by ink recirculation. A recirculation system can
enhance the reliability of the jet and remove the entrapped air
bubbles [20].

Another issue with piezoelectric inkjet printheads is the
nonaxisymmetric effects, which degrade the stability and per-
formance of inkjet printhead. A nonaxisymmetric droplet can
prevent the capturing of satellite droplets as they diverge from
the trajectory of the main droplet. High-frequency jets can

reduce the nonaxisymmetry effects as it forces the successive
droplet to follow the first jetted asymmetrical droplet. The
causes and their solutions must be researched to improve the
printhead’s performance and stability. Nonaxisymmetry can
be caused by the misalignment of the printhead channel with
the nozzle plate, dust particles at the nozzle surface, wetted
nozzle plate, bubble trapped inside the nozzle, and unstable
asymmetrical surface modes at the meniscus interface by
a Rayleigh–Taylor-like mechanism [55]. Fig. 4 illustrates
various axisymmetric droplets [55]. Furthermore, jet stability
can be improved by cooling the ink [56].

Satellite droplets degrade the print quality and repro-
ducibility. These droplets are formed by the breakage of the
long ligament behind the main droplet. As mentioned earlier,
a method to suppress satellite droplets is to tune the voltage
waveform.Anothermethod is to add viscoelasticity to the ink.
Sen et al. [57] suppressed satellite droplets in water-based ink
by infusing polymers. The addition of polymers stabilizes the
ligament against the Rayleigh–Plateau instability. The liga-
ment was pushed toward the main droplet, producing a single
droplet without satellites [57]. Reference [56] suppressed
satellite droplets by cooling the ink [56].

Wettability of the nozzle’s inner wall and surface tension
of the ink are the two main factors affecting the quality
and speed of the droplet. The breakup time can be delayed
and the droplet velocity can be reduced by increasing the
contact angle of the ink with the nozzle inner wall. Mean-
while, the droplet can be broken up earlier and accelerated
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FIGURE 4. Different axisymmetric droplets [55]. (a) divergent droplet
trajectory, (b) satellites jetting away from the main droplet, (c) tail droplet
pushed toward the nozzle edge, (d) deflection of the droplet toward the
nozzle wall, and (e) asymmetry effect of the first axisymmetrical droplet
on the second droplet during high frequency jetting.

FIGURE 5. Three types of thermal inkjet printheads, (a) roof-shooter,
(b) side-shooter, (c) suspended heater. The figure was referenced
from [60].

by increasing the surface tension [58]. The printing quality
can be improved by selecting high-surface-tension inks and
modifying the nozzle inner wall to make it hydrophilic.

B. THERMAL INKJET PRINTING
The TIJ can be in the form of a roof-shooter, side-shooter,
or suspended heater [59]. In the first configuration, the heater
is placed behind the nozzle. In the second configuration,
it is placed adjacent to the nozzle. In the third configuration,
the heater is suspended within the ink chamber [59]. Most
industries manufacture and utilize the roof-shooter TIJ [60].
Fig. 5 illustrates the three forms of TIJ.

The major problem with the TIJ printhead is its short life-
time because of the electromigration of the heater, damage by
bubble cavitation, and thermal stress-induced cracks [9], [61].
The lifetime can be increased by increasing the thickness and
shape of the heater [9], [61], [62]. Another problem is koga-
tion [63], a phenomenon where ink particles are deposited on
the heater surface during the operation of the TIJ, affecting
the formation of bubble and droplet ejection. The addition of
anions to ink can prevent this phenomenon [64].

C. ELECTROHYDRODYNAMIC JET PRINTING
In EHD jet printing, ink is ejected from the nozzle exit by
a high applied electrical field between the nozzle and the
substrate. Depending on the electric field, the EHD printing
can be performed in the CIJ mode or DOD mode. The CIJ
mode requires a constant DC supply between the nozzle and
the substrate, whereas the DOD mode requires pulsed DC
voltage. The DOD mode has been a focus area because its jet
emissions can be controlled. Three different methodologies,

FIGURE 6. Electrohydrodynamic (EHD) jet printing systems with (a) AC,
(b) pulsed DC, and (c) single potential AC. The figure was referenced
from [67].

AC [65], pulsed DC [66], and single potential AC [67], shown
in Fig. 6, were demonstrated by studies related the DOD
mode under an applied electric field. In the case of AC or
pulsed DC, the electric potential is applied to the nozzle and
the substrate is grounded, whereas the AC voltage is applied
to the substrate and the nozzle is kept electrically floating in
the case of single potential AC.

Various materials have been successfully printed on dif-
ferent substrates using EHD [68]–[73]. However, issues such
as liquid wetting, particle–substrate interaction, and low
throughput persist [74], [75]. These challenges can be solved
by changing the electrode shape, hydrophobic coating of
the nozzle, and tuning the applied voltage and fluid flow
rate [74]. Wu et al. [76] demonstrated an EHD printing
system driven by a triboelectric nanogenerator (TENG). They
claimed that the TENG can protect the substrate against the
conventional high-voltage supply system. An array of nozzles
can be used to solve the problem of low throughput [77]–[79];
however, the electrostatic crosstalk between the neighbor-
ing nozzles degrades the printhead’s performance [80]–[82].
Several studies were conducted to suppress crosstalk. For
example, researchers attempted to increase the space between
nozzles. However, this can cause jet offset, especially in
electrospinning [83]–[85]. Zhang et al. [86] confirmed that
the linear arrangement of nozzles produced better uniformity
in the jetted materials than the toothed nozzle arrangement.

D. NEEDLE-BASED PRINTING
The key components of the needle-based printing system
are needle, seat, and nozzle (Fig. 7). Air pressure [7] or a
piezoelectric-stack actuator [87] can be used to move the
needle. The actuator exhibits rapid response and high effi-
ciency [88]. However, the piezo-stack actuator does not pro-
duce adequate output displacement for fluid jetting; therefore,
a displacement amplification mechanism, i.e., a mechani-
cal amplifier (e.g., a lever) was adopted for the needle and
actuator [89]. The two types of actuators are single [90]
and dual [91] piezo-stack actuators. The dual piezo-stack
actuator is used for high-viscosity and high-frequency jetting.
The quick response of the actuator accelerates the needle
movement [87], [92]. Droplets are ejected from the nozzle
exit by the motion of the needle toward the inside of the
seat. The output parameters associated with the motion of
the needle can be predicted through fluid flow simulations
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FIGURE 7. Needle-based dispenser system with (a) dual piezo-stack
actuator and (b) rhombic mechanical amplifier. The figure was referenced
from [102].

[93], [94] or modeling [95]–[99]. Phung and Kwon [7] used
the accelerometer to sense the needle motion. They also
investigated the effects of various parameters on the motion
and jetting behavior.

Various displacement amplification mechanisms were
demonstrated to enhance the printing performance. For
example, for the stress relaxation of a dual piezo-stack
actuator, [100] presented the jetting dispenser based on a
corner-filleted hinge attached to the actuator. The design was
further improved in terms of the stress reduction in the actua-
tor by introducing a cylindrical pivot and changing the shape
of the amplifier block [101]. Zhou et al. [102] demonstrated a
rhombic mechanical amplifier that exhibited a higher needle
stroke than traditional mechanical amplifiers. Furthermore,
the jetting performance can be enhanced by changing the
needle shape. For example, the jetting velocity was increased
by adding a side cap [103] and pin joint [104] to the needle.

E. AEROSOL JET PRINTING
AJP is a high-resolution direct-writing droplet-based tech-
nique that can print a variety of materials with viscosi-
ties ranging approximately from 1–2500 cP [105]. This
method was successfully applied in the fabrication of inter-
connects [106], sensors [107], [108], organic light emitting
diodes [109], supercapacitors [109], transistors [110], and
medical imaging devices [111]. AJP works on the principle
of the atomization of ink by ultrasonification or pneumatic
mechanism, which results in aerosol formation (suspension
of liquid particles in a gas carrier). The aerosol is then trans-
ferred to the deposition head by an inert gas stream (e.g.,
N2), after which it is ejected from the nozzle exit. Sheath
gas is added to the deposition head to further improve the
performance. In an ultrasonic atomizer, the atomization of
ink occurs from the generation of high-frequency pressure
waves by the piezoelectric ultrasonic transducer. In the case
of a pneumatic atomizer, an atomizer nozzle is placed in
an ink reservoir where a carrier gas with a high velocity is

FIGURE 8. Aerosol jet printing system with (a) ultrasonic atomizer and
(b) pneumatic atomizer. The figure was referenced from [12].

passed through the tip of the atomizer nozzle, atomizing the
ink. Fig. 8 illustrates an aerosol jet with both the atomization
methods. Both methods have their merits and demerits. Com-
pared with the pneumatic atomizer, the ultrasonic atomizer
produces uniform aerosol; however, it can only print very
high-viscous inks [112].

To achieve optimal aerosol-jet printing with improved
performance, the relevant parameters must be tuned includ-
ing sheath gas flow rate (SHGFR) and carrier gas flow
rate (CGFR), which are the two main parameters of
AJP that influence the quality of the printed line. The
printed line width decreases by increasing the focusing ratio
(SHGFR/CGFR) [113]. The ideal operating window for
deriving the optimal parameters has not yet been defined
owing to the complex structure of AJP and a lack of research
in this area. Trial-and-error strategies have been adopted to
achieve enhanced printing quality [113], [114]. However,
this approach is time consuming and inefficient. Modeling
approaches that are faster, more efficient than trial-and-error
methods, e.g., computational fluid dynamics model [105] and
knowledge transfer framework [115], were proposed to pre-
dict these parameters for printing performance enhancement.

F. LASER-ASSISTED PRINTING
Laser-assisted printing system is composed of a laser beam
and a special type of substrate called the donor substrate,
the top of which is coated with an absorbing layer and
the bottom side with an adhesive layer of ink, as shown
in Fig. 9 [116]. The laser beam energy cavitates the ink
layer, propelling the droplet to the collecting substrate [117].
Laser-assisted printing is a nozzle-less technique, and there-
fore, does not suffer from clogging. This technology is used
for direct writing [118] and DOD printing [119]. Various
materials, e.g., conductive inks [120], adhesives [121], and
biomaterials [122], were printed using this technology.

G. ACOUSTIC PRINTING
The application of acoustic waves to propel an ink droplet
is referred to as acoustic printing. The pioneering work of
Elrod et al. [123], Hadimioglu et al. [124] has led major
research work in the field of acoustic printing. Scientists
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FIGURE 9. Laser-assisted printing system. The figure was referenced
from [116].

are developing various acoustic droplet-ejection methods
[125], [126]. Acoustic printing is further categorized into
surface acoustic wave (SAW) and acoustophoretic printing.

1) SURFACE ACOUSTIC WAVE PRINTING
In SAW printing, the acoustic waves are generated at the sur-
face of the liquid to propel the droplet. Generally, in a SAW-
driven jet, interdigital transducers (IDTs) are patterned on a
piezoelectric substrate. The substrate contracts and expands
by applying radio frequency (RF) power to the IDTs, gen-
erating pressure waves of higher frequencies. The droplet is
ejected by the acoustic radiation force generated from the
SAW [127]. The IDTs can be connected on either side, which
will drive the liquid along the Rayleigh angle (θR), or on
opposite sides, which causes the droplet to be ejected on a
point perpendicular to the printing surface, if the opposite
sides have the same energy [128], [129]. Furthermore, a pair
of aligned IDTs can enhance the maximum jet speed and
minimum jet time [130]. A schematic of the SAW-propelled
jet with a pair of IDT electrodes is illustrated in Fig. 10.

Because the SAW-driven printing technique is nozzle-less,
it does not have the clogging-related demerits of nozzle-
based printing techniques. This is especially advantageous for
printing with bio-inks. However, most SAW-driven printing
devices do not allow flexible the tuning of the droplet size
using the same device. To solve this problem, [131] demon-
strated a pulsed SAW device to control the droplet size by
changing the pulse width. The droplet size and velocity can
also be controlled by changing the input RF power. Strong
capillary waves at the droplet surface overcome the capillary
stress and result in the atomization of the droplet as the RF
power is further increased [132].

2) ACOUSTOPHORETIC WAVE PRINTING
Reference [14] devised an acoustic nozzle-based printing
mechanism, especially to print with highly viscous liquids.
The mechanism uses three devices, actuator, acoustic cav-
ity, and nozzle. The actuator was connected at one end of
the acoustic cavity and activated by a driving ultrasonic

FIGURE 10. Schematic representation of surface acoustic wave printing
system. The figure was referenced from [127].

frequency of approximately 25 kHz. The ink was injected at a
constant flow rate into the nozzle inlet. The nozzle outlet was
adjusted inside a Fabry–Pérot (FP) resonator in the location
with themaximum acoustic pressure, as depicted in Fig. 11-a.
The acoustophoretic force is generated in the FP resonator to
detach the droplet flowing through a nozzle. Jetting occurs
when the acoustic (Fa) and gravitational forces (Fg) exceed
the capillary force (Fc), as shown in Fig. 11-b. For high
acoustophoretic fields, the accuracy of the droplet trajectory
decreases as the acoustic force increases. The droplet size can
be decreased by increasing the acoustic force. The acoustic
force can be calculated by integrating the radiation pressure
prad over the surface S of the sample, as follows [14],

Fa =
∫
S

prad
−→n dS (1)

where−→n is the normal component inward to S. The radiation
pressure prad has a direct relation with the root-mean-square
acoustic pressure and acoustic particle velocity, which can
be increased by applying a voltage to the actuator. In other
words, the droplet volume can be decreased by increasing the
voltage applied to the actuator.

Various materials with a wide range of Z number (the
inverse of the Ohnesorge number), including water, honey,
bio-inks, and liquid metals have been printed successfully.
Honey (viscosity: 25 000 cP) was printed on white choco-
late. A low viscosity (2 cP) metal ink composed of eutec-
tic gallium–indium (eGaIn) was also printed. These printed
materials are depicted in Fig. 11-c and 11-d, respectively.

H. DROP IMPACT PRINTING
Reference [15] proposed a DOD printing technique in which
they replaced the nozzle with a sieve and dispensed a single
satellite-free micrometer-sized droplet. The size of the jetted
droplet was proportional to the pore size. The droplet size can
be decreased by decreasing the pore opening. This technique
can print for Z values ranging from 3–200. The size can be
further improved in the case of printing highly viscous inks
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FIGURE 11. Schematic representation of (a) acoustophoretic printing
system, (b) acoustophoretic printing droplet detachment system, which
demonstrates droplet detachment when the acoustophoretic and
gravitational forces exceed the capillary force. (c) and (d) show the
printed droplets of honey on white chocolate and a metal ink composed
of eutectic gallium-indium (eGaIn), respectively. The figure was
referenced from [14].

FIGURE 12. Schematic of the mechanism of a drop impact printing
system. The figure was referenced from [15].

(Z < 3). Materials for biological and electronic applications
were printed using this technique. The printing mechanism is
illustrated in Fig. 12.

III. PRINTING TECHNOLOGIES FOR HIGH-VISCOSITY
INKS
Viscosity governs the droplet formation in the inkjet printing
process. The substrate’s surface condition has a weak effect
on the printed patterns of high-viscosity inks. A large force
is required to eject droplets of these inks from the nozzle
exit. In a piezo-driven inkjet printhead, high-viscosity inks

can be ejected by actuating the piezo-membrane using a
double bipolar voltage waveform instead of a single voltage
waveform [43]. Jackson et al. [133] demonstrated a technique
that used the XAAR 1003 recirculating inkjet printhead with
a shear-mode actuator to eject high-viscosity inks. Due to
the high fluid-recirculation rate, the printhead could eject ink
with a viscosity of up to 98 cP.

The piezo-driven inkjet printheads cannot jet the ink with
high viscosity; therefore, other approaches must be used, e.g.,
EHD [134], which was used for direct writing techniques
or droplet jetting [135]–[137]. In this technique, the ink
inside the printhead must be charged for better electrostatic
deflection, which requires it to be conductive. However, high-
viscosity inks have a lower conductivity, which leads to poor
electrostatic deflection [138]. Laser-based printing can also
be used to jet high-viscosity inks [11], [120], [121], [139].
Zhang et al. [139] performed direct writing of alginate solu-
tions of a viscosity 8279 cP. Therodorakos et al. [120] per-
formed droplet-based jetting of Ag nanoparticles with an
effective viscosity of 590 cP in a diethylene glycol monobutyl
ether solvent. Needle-based dispensers are another device to
produce high-viscosity ink jets. The motion of the needle
toward the nozzle in the ink chamber causes the droplets to
form a jet at the nozzle exit.

The literature contains various studies related to
needle-based dispensers for the jetting of high-viscosity
inks [94], [140]–[142]. The jetting of high-viscosity ink
can be improved by increasing the radius of the needle.
Lu et al. [141] achieved the jetting of a 58 000-cP adhe-
sive with a droplet volume of 0.6 µl, a needle radius
of 1.5 mm, and a nozzle orifice diameter of 0.1 mm. Aerosol
jet printing is a highly preferred method of direct writing.
AJP can print inks with a viscosity of 1–2500 cP [143].
Recently, Forestri et al. [14] presented an acoustophoretic
printing method for forming jets of droplets with very-high-
viscosity inks at the nozzle exit. The acoustophoretic printer
consisted of a Fabry–Pérot resonator and an acoustic source.
Most acoustic waves were reflected because of the mismatch
in the acoustic impedance at the fluid–air interface. Standing
waves are generated in the resonator. A spherical droplet is
ejected from the nozzle exit by the acoustophoretic force.
Various inks with viscosities ranging from 0.5–25 000 cP
were successfully printed using this approach.

Table 3 summarizes the methods to high-viscosity ink jets
by the technology (piezoelectric, EHD, needle-based, laser,
aerosol jet, and acoustophoretic printing). The table also lists
the high-viscosity jetted materials and their printing mech-
anisms. Among the methods, the acoustophoretic printing
mechanism was found to be the simplest, most accurate
for forming very-high-viscosity ink droplet jets. The use of
MEMS to manufacture acoustophoretic printers will enable
printing with high-frequency ink jets.

IV. APPLICATIONS OF INKJET PRINTING
The conventional semiconductor fabrication process consists
of several steps (from oxidation to photoresist removal) for
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TABLE 3. Summary of high-viscosity inks printing.

FIGURE 13. Fabrication steps of conventional semiconductor device
fabrication and inkjet printing method. The figure was adopted
from [144].

manufacturing a single device, whereas the inkjet printing
technique offers maskless lithography and involves fewer
steps [144]. The conventional process and inkjet printing
method are illustrated in Fig. 13. Various industries have been
researching the application and translation of inkjet printing
in manufacturing owing to its low cost, fewer steps involved,
and low material loss. Studies have explored its application
in printed electronics [145], chemical sensors [146], super-
capacitors [147], carbon nanotubes [148], pharmaceuticals
[149], [150], and conductivematerials [151]. The focus of this
section is the application of inkjet printing technology inDTP,
display pixel printing, MEMS, and wearable, flexible, and
stretchable devices. Table 4 summarizes the recent literature
on the applications of various printing techniques.

A. DIGITAL TEXTILE PRINTING
Inkjet printing technology, also referred to as digital print-
ing, is widely used in various applications, including textile
and graphic arts, that relied on conventional printing devices
including rollers and screen printers until recently. Textile

printing has grown rapidly with inkjet printing technology.
This technology produces less waste, and consumes 45% less
electricity and 35% less water compared with conventional
printing technologies [152].

As inkjet printing is a non-contact process, the jet-
ted droplets spread on contacting the substrate surface.
The spreading of droplets on the substrate will affect
the quality of the printed product [153]. The impact of
droplets on various substrate surfaces with phenomena such
as spreading, splashing, receding, and bouncing has been
demonstrated [154]–[157], [159]. The interaction of droplets
on textiles in DTP has drawn significant research interest.
The spreading and coalescing of droplets can affect the image
quality printed on fabrics [160]. Zhang et al. [161] demon-
strated the impact of aqueous glycerol droplets on hydropho-
bic and hydrophilic nylon textiles. The results demonstrated
that the droplet penetrated and formed liquid filaments
beneath the textile surface. They also concluded that the
spherical shape of the droplet on the textile does not change
when it interacts with porous substrates with a pore size from
100–300 µm in short time periods. Reference [162] analyzed
the penetration of droplets in polyester fabric pores with
and without an underlying substrate. The spreading ratio of
water–glycerol droplets on the substrate is different with and
without the underlying substrate because of the volume loss
of the liquid [162].

Environment, pretreatment, and posttreatment affect the
color and its performance. The process must be conducted
in a controlled environment to improve the efficiencies of
the printer. For example, reactive dyes require a humid envi-
ronment to develop a stronger bond with the fabric [163].
Acid and reactive dyes require streaming as posttreatment
for bonding with fibers [163]. Pretreatment is often required
to improve the DTP’s performance. Various pretreatment
agents and methods were demonstrated [164]–[167]. Refer-
ence [164] used commercially available pretreatment agents
(DP-300 & DP-302 from Lubrizol Corporation) and demon-
strated improved color intensity and gamut for pigment-based
ink by pretreating cotton and polyethylene terephthalate fab-
rics. They used chemical padding as a pretreatment method.
Kim et al. [165] used acrylic polymers as a pretreatment agent
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FIGURE 14. (a) Dye@copolymer (RR218@PSBV) printed on cotton
fabrics [169]. (b) inkjet-printed dye ink on polyster fabric [171].

to improve the color of nylon fabrics. Li et al. [166] improved
the color quality of a cotton/polyamide fabric substrate by
pretreating it with alpha olefin sulfonate and sodium algi-
nate. An et al. [168] improved the color performance by a
combined process that used the protease enzyme and sodium
alginate for wool fabric inkjet printing using reactive dyes.

Various studies have researched and developed materials
for inkjet printing for printing on fabrics. Song et al. [169]
synthesized RR218@PSBV by the absorption of RR218
(red dye 218) onto PSBV (poly (styrene-butyl acrylate-
vinylbenzyl trimethylammonium chloride) nanospheres and
inkjet-printed it on cotton fabric, as shown in Fig. 14-a.
The dye@copolymer nanosphere improved the color per-
formance, image quality, and material conservation [169].
In [170], two reactive red dyes, RR218 and reactive red
24:1 were inkjet-printed and the resulting droplets were
compared. RR218 had more stable droplets and a smaller
spread area (high resolution) than reactive red 24:1 [170].
Gao et al. [171] inkjet-printed dye-based inks on polyester
fabric and investigated the effect of viscosity, surface tension,
and fluidity on the sharpness of the printing pattern. Fig. 13-b
displays a sample polyester fabric printed with dye-based
inks. Various other studies were conducted to improve the
performance of DTP by printing dye or pigment-based inks
on different fabrics [172]–[176].

B. DISPLAY PIXEL PRINTING
Display technology has a ubiquitous effect in daily life. There
are various types of displays [177]. For example, organic light
emitting diode (OLED) has become a mainstream display
technology as it consumes less power, is flexible, has a high
contrast ratio, and is ultra-thin [178]. OLED is made of an
emissive layer (EML) sandwiched between two conductors.
A hole transport layer (HTL), hole injection layer (HIL),
electron transport (ETL), and electron injection layer (EIL)
can be added to enhance its efficiency [179]. Fig. 15-a dis-
plays the cross-sectional view of all the layers along with
the electrodes. A cross-sectional schematic of red, green, and
blue (RGB) pixel inkjet printing is illustrated in Fig. 15-b. The
applications of OLED include computer, laptop, automobile,
TV, and mobile phone displays. Several methods including
spin coating, transfer printing, lithography, evaporation, and
inkjet printing are used to deposit multilayer thin films of
OLED.

Inkjet printing offers a significant advantage in the field
of display electronics because it offers maskless lithog-
raphy, consumes less material, uses a simple fabrication
technique, and has larger substrate scalability. Therefore,
it has been adopted for the fabrication of OLED displays.
We focus on the latest studies on OLED fabrication using
inkjet printing. In [180], a 3-in blue OLED array was
inkjet-printed, resulting in improved uniformity of the sur-
face [180]. Yoon et al. [181] used an ink with various
solvents to print the emissive layer of the OLED. Thus,
they achieved a uniform film. Zhaobing et al. [182] inkjet-
printed an EML, HTL, and HIL for an OLED and achieved
uniformity. However, the device efficiency requires further
improvement. An image of the inkjet-printed green EML
layer is displayed in Fig. 15-c. Reference [183] inkjet-printed
a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS) HIL, with polyethylene glycol (PEG) for
improved efficiency and bending resistance of the OLED
device.

Another study printed a PEDOT:PSS (dissolved with iso-
propanol and ethylene glycol) HIL using a multi-nozzle
inkjet printing system [184]. They achieved uniform droplet
ejection by changing the solvent and tuning the printing
parameters. Amruth et al. [185] printed an EIL made of a
cesium carbonate film (with an alcohol-based solvent) for
a polymer OLED. The current efficiency and luminance
were enhanced compared to an OLED without the film.
Researchers printed micro-lenses for pixelated OLEDs to
enhance the out-coupling efficiency [186], [187]. Refer-
ence [189] printed 31-in [188] and 55-in [189] active matrix
OLED (AMOLED) displays, improving the performance of
the display technology.

Quantum dot light-emitting diode (QLED) is another
display that can be printed by inkjet technology. These
LEDs have long lifetime, low power consumption, high
contrast, wide color gamut, wide viewing angles, and high
refresh rate [190], [191]. Kim et al. [192] inkjet-printed an
octane-based QD ink for a green OLED. They tested various
mixtures of solvent with the octane-based QD ink and found
that the octane–cyclohexane mixture was the most stable.
Chen et al. [193] printed highly efficient red QLEDs using
a QD ink based on a mixture of n-tridecane and decalin
solvents. Quantum dots can also be used as color-conversion
layers in display technologies. Lin et al. [194] effectively
suppressed the blue residual light by inkjet-printing QD inks.
Hu et al. [195] fabricated a 6.6-in QLED display with a QD
layer printed to eliminate the blue residual emissions. They
demonstrated a reduction in the transmittance of the residual
blue light by increasing the thickness of the QD pixel layer.
Yang et al. proposed the application of a Bragg reflector
with an inkjet-printed QD pixel layer to further increase the
color conversion efficiency. The reflector was composed of a
multilayer of silicon oxide / titanium oxide.

Perovskite quantum dots (PQDs) have become a signifi-
cant area in display technology research owing to their dis-
tinct optical properties, including a tunable wavelength and
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FIGURE 15. Display technology with (a) cross-sectional view of the layers
of OLED display, (b) schematic cross-sectional view of inkjet red, green,
blue (RGB) pixel printing, and (c) inkjet-printed green emissive layer
(EML) [182].

narrow emission wavelength [196]. Shi et al. [197] inkjet-
printed PQD inks with water as a solvent. Yoo et al. [198]
printed with a perovskite ink on an ethyl cellulose film
and concluded that a (3-aminopropyl) trimethoxysilane
(APTES)-coated red perovskite ink had improved drying
stability. Other studies reported improvement in color [199]
and brightness [200] by inkjet-printing with PQD inks with
various solvents.

C. MEMS DEVICES PRINTING
Inkjet printing is also considered a versatile technique in the
manufacturing of MEMS devices because it is environmen-
tally friendly, produces less waste, is maskless, and offers
rapid and multimaterials deposition [201].

1) PHOTOLITHOGRAPHY
In photolithography, a photoresist material can be applied
using various coating techniques. These coating techniques
still has flaws, among which photoresist material wastage
is one [202]. Inkjet printing can be used to deposit
the photoresist materials to overcome this problem [203].
Bietsch et al. [204] deposited alkanethiolate monolayers and
DNA oligonucleotides on Au films using inkjet printing.
Fukushima et al. [205] inkjet-printed acrylic resin on Al.
Qu et al. [206] used the EHD technique to print photore-
sist lines; the line width was controlled by the voltage sup-
plied to the substrate and nozzle. Bernasconi et al. [207]
inkjet-printed SU-8-2005, an epoxy-based photoresist mate-
rial. This material cannot be printed in it pristine form by
commercially available piezoelectric inkjet printheads owing
to its higher viscosity. To decrease the viscosity, the mate-
rial was diluted with cyclopentanone (CP), tetrahydrofuran
(THF), and N-methyl-1-pyrrolidone (NMP). The jetting of
SU-8-CP and SU-8-NMPwas found to be stable, whereas that
of SU-8-THF was not because of the partial blockage of the
nozzle [207]. The authors claimed that the partial blockage
was due to the lower boiling point of THF, i.e., it evaporates,
leaving partially solidified SU-8 at the nozzle’s meniscus.
This can cause a misdirected jet.

Micro-lenses and micro-lens arrays play a vital role in var-
ious applications, including optical communications, optical
storage devices, wavefront sensing, and biomedical instru-
ments. Inkjet printing is widely used in micro-lens and
micro-lens array fabrication. Compared with photolithogra-
phy, inkjet printing can deposit various materials at precise
locations on any substrate for the fabrication of micro-
lenses [209]–[215].

2) ETCHING
Inkjet printing can be used to remove the small areas
with predeposited films. The advantage of inkjet etching
is minimal material wastage. The dielectrics of SiO and
Si3N4 were inkjet-etched by ejecting an NH4F solution
onto a polyacrylic acid film, which produces HF [216].
Another interesting application of inkjet printing is poly-
mer etching. Microstructures with varying shapes (concave
to convex) can be prepared on top of polymer surfaces
[217], [218]. Microstructures with microgrooves, microw-
ells, and hexagonal holes were also fabricated using inkjet
etching. The dimensions of these microstructures can be
controlled by tuning the jetted droplet volume, modifying the
polymer–solvent interaction, substrate temperature, and pro-
cessing
parameters [219].

In addition, inkjet printing has been used to fabricate thin-
film transistors (TFTs) [220]. For example, Kim et al. [221]
fabricated a TFT by inkjet-etching Ag. Etchant (a mixture of
ferric nitride and deionized water) was impinged on the sur-
face of Ag by etching Ag films with a thickness of 20–80 nm,
which generated a source–drain electrode. Li et al. [222]
fabricated a TFT array wholly by inkjet printing pure Cytop
solvent on a Cytop layer.

3) DEPOSITION
Direct material deposition is the most common application of
inkjet printing in the fabrication of MEMS devices. A vari-
ety of different materials, including conductive, insulator,
sacrificial, piezoelectric, and two-dimensional (2D) materi-
als, can be deposited [223]. Piezoelectric materials play a
vital role in the manufacturing of MEMS sensors, actua-
tors, energy storage devices, transformers, and transducers.
Various studies were published on the direct deposition of
piezoelectric materials by inkjet printing. Kuscer et al. [224]
deposited lead zirconate titanate (PZT) thick films onto
a platinized alumina substrate by inkjet printing. Ink was
formed by dispersing PZT particles in a water–glycerol mix-
ture. However, they observed a few defects in the deposited
film [224]. Subsequently, they synthesized defect-free struc-
tures by adding polybenzoxazole (PbO) to the aqueous
ink [225]. Godard et al. [226], [227] deposited a thin-film
PZT onto a platinized silicon substrate. Pabst et al. [228]
demonstrated all-inkjet-printed of micropump actuator.
Zheng et al. [229], [230] fabricated 3Dmicrostructures of ice
by impinging water droplets onto an existing ice structure,
after which the droplets immediately froze.
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FIGURE 16. (a) All-inkjet-printed MEMS electrostatic drive motor.
(b) inkjet-printed layer of resin to electrically isolate Au and Ag
electrodes [232].

The application of signal path to the MEMS devices is per-
formed by electrical conductors. The various inkjet-printed
conductive inks, their electrical characterization and appli-
cations, and historical background were reviewed by [151].
Godard et al. [231] printed Ag as the top electrode on a thin-
film PZT layer. In [228], both the top and bottom electrodes
of Ag in a piezoelectric micropump actuator were deposited
by inkjet printing.

Reference [232] fabricated entire MEMS electrostatic
drive motor was fabricated by inkjet printing (Fig. 16).
They used Au and Ag nanoparticle inks to fabricate
the motor structure. The insulator (polyketone resin) was
inkjet-printed to electrically isolate the Au and Ag electrode
wires. Delekta et al. [233] presented a fully inkjet-printed
graphene-based microsupercapacitor, in which the electrodes
were made of graphene, and the electrolyte nanographene
oxide. Kaneto et al. [234] demonstrated an MEMS capacitive
sensor for humidity. The sensor was fabricated by combining
transfer and inkjet printing. Graphene oxide (GO) nanoparti-
cles were deposited by printing them on Au electrodes, which
was prefabricated on a PET substrate by screen printing. This
bilayered GO/Au thin film exhibited higher Young’s modulus
than the Au thin film.

4) MEMS PACKAGING
Optical and electrical interconnects and adhesives for seal-
ing and bonding in MEMS packaging can be printed by
inkjet printing [235]. In the 3D packaging of MEMS devices,
through-silicon via (TSV) is mostly used as an intercon-
nect structure for signal transmission. Studies were pub-
lished regarding the conductive plating and filling of vias
by inkjet printing. Khorramdel and Mäntysalo [236], [237]
demonstrated the inkjet-printing of an Ag-nanoparticle ink
for the partial filling of a TSV. Quack et al. [238] devel-
oped ink-jetted Au-filled TSV arrays. Yang et al. [239]
deposited Ag and filled a via at a lower processing tem-
perature and electrical resistivity, and further enhanced its
electrical performance [240].

Khorramdel et al. [241] stated that the partial metalliza-
tion of a TSV by inkjet printing was not sufficiently mature
for volume production. Therefore, they used an alternate
approach that involved filling a hollow metallized TSV with
a dielectric polymer and depositing an Ag ink as an under-

FIGURE 17. Cross-sectional images of inkjet-printed (a) dielectric
polymer, and (b) UBM layer of silver ink [241].

FIGURE 18. All-inkjet-printed multilayer electrical device
(a) cross-sectional view, (b) topmost inkjet-printed silver layer of the
intersection, (c) bottommost inkjet-printed silver layer of the intersection,
and (d) all-inkjet-printed device. The figure was referenced from [255].

FIGURE 19. Inkjet-printed (a) proximity sensor [256], (b) temperature
sensor array [259], and (c) temperature sensor attached to the human
skin [261].

bump metallization (UBM) pad, as shown in Fig. 17. Both
the dielectric polymer and metallic ink were inkjet-printed.
Solder balls of SnAgCu-based inks were also impinged
on top of the UBM pads. Two commercialized printheads,
i.e., piezoelectric and EHD, were used for printing metals
and polymers [241]. Roshanghias et al. [242] inkjet-printed
redistribution layers (RDLs) and ametal route used to connect
the MEMS microphone pads to application-specific inte-
grated circuits (ASICs) and fan-out the signals via solder
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TABLE 4. Summary of recently published studies on applications of inkjet printing techniques.
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TABLE 4. (Continued.) Summary of recently published studies on applications of inkjet printing techniques.

balls. In another study, they inkjet-printed the RDLs of
Ag-ink nanoparticles for the fan-out packaging of capacitive
micromachined ultrasound transducers [243]. Other studies
have demonstrated the synthesis of adhesives by inkjet print-
ing [244], [245].

D. WEARABLE, FLEXIBLE, AND STRETCHABLE DEVICES
Wearable, flexible, and stretchable (WFS) devices have
achieved remarkable progress in smart devices and health-
care modality [246], [247]. These devices can be directly
mounted on the human skin or attached to fabrics. Novel
device fabrication approaches are required to achieve, and
retain, high performance. Inkjet printing has various appli-
cations in fabricating WFS devices and circuits due to its
low cost, material wastage, fewer steps, maskless working,
and precise deposition of small droplets on the substrate
surface [248], [249]. Inks consisting of dielectric, conductors,
and semiconductors can be printed on fabrics and skin by
inkjet printing. For example, Ag nanowires and nanopar-
ticles were printed for flexible and stretchable electronics
[250]–[254]. Mikkonen et al. [255] demonstrated an all-
inkjet-printed electrical circuit device (Fig. 18). Both the
conductive (Ag nanoparticles) and dielectric (polydimethyl-
siloxane (PDMS)) materials were jetted by inkjet printing.
PDMSwas used as a dielectric between the conductive tracks
[255]. Wang et al. [256] developed an all-inkjet-printed flex-
ible proximity sensor (Fig. 19-a). Both ZnO and web-shaped
top electrodes (Ag nanoparticles) were jetted on a flexible Al
sheet used as a bottom electrode. Another all-inkjet-printed
wearable device for electronic textiles (e-textiles) applica-
tions was proposed in [257]. They printed a graphene–Ag
composite ink on a piece of cotton fabric.

The human body temperature provides information about
health status. Wearable temperature sensors are used to mea-
sure this temperature. Inkjet printing can be used to devise
wearable temperature sensors. Kuzubasoglu et al. [258]
jetted an aqueous carbon nanotube (CNT) conduc-
tive ink to fabricate a wearable temperature sensor.
Vuorinen et al. [259] demonstrated a temperature sensor by
printing graphene/Poly (3,4-ethylenedioxythiophene):poly
(styrenesulfonate) (PEDOT:PSS) ink on a skin-conformable
polyurethane substrate. Fig. 19-b displays the photograph of
the sensor printed on a subject’s finger. Reference [261] used
CNT/PEDOT:PSS composite ink to fabricate a temperature
sensor [260].Wang et al. [261] presented an all-inkjet-printed

PEDOT-PSS-based temperature sensor with PEDOT:PSS
as the sensing layer, fluorinated polymer (CYTOP) as the
passivation layer, and Ag nanoparticles as the electrode.
High stability in humidity was achieved for the sensor by
introducing CYTOP as the passivation layer (Fig. 19-c).

In addition, inkjet printing was used to fabricate respiratory
rate stretchable and wearable sensor [262], [263], piezoelec-
tric devices [264], [265], piezoresistive devices [266], [267],
and bio-impedance sensors for electrical impedance tomogra-
phy imaging [268]. Electronic circuits for WFS devices were
also printed by inkjet printing [269]–[272].

V. CONCLUSION
Inkjet printing technology is used in various industries from
textiles and display technology to biomedicine owing to
its simple process, shorter process time, and low material
consumption with digital control and non-contact printing
method. It is necessary to develop and mature different print-
ing methods for printing variety of inks to manufacture multi-
functional devices. We discussed the types of inkjet printing
technologies and their applications, namely PIP, TIJ, EHD,
needle-based printing, AJP, laser-assisted printing, acoustic
printing, and drop impact printing. Due to the nozzle-less
nature of laser-assisted, acoustic and drop impact printing
technologies, they do not have the clogging-related demer-
its. The advantage of needle-based, AJP and EHD printing
methods is that it can print high viscosity inks. Despite
the piezoelectric inkjet printing technology, all other tech-
niques are still on developing stage and many features of
these technologies need to be matured to make it suitable
for commercial applications. Among the discussed printing
technologies, the piezoelectric thin-film-driven inkjet print-
ing technique is matured and employs a diverse range of
inks. Lower printing cost, easy optimization of the printing
conditions and faster printing speed of the piezoelectrinc
printing method makes it advantageous compared to other
printing technologies. By easy optimization, we mean the
droplet size and speed can be optimized easily by only tuning
the driving voltage waveform. Recently, this technology has
been used in flexible electronic devices, DTP, and display
technology because it allows for the controlling of droplet
jetting, volume, and velocity through voltage waveforms. The
conventional inkjet printhead cannot form ink jets greater
than 10 cP. Although studies have attempted to heat the ink
and reduce its viscosity by producing jets from the printhead,
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this approach is not compatible with very high-viscosity inks.
Therefore, this review analyzed the inkjet printing techniques
for dispensing high-viscosity inks. EHD, aerosol jet, and
acoustophoretic printing are used to print high-viscosity inks
in direct writing and DOD. The applications of inkjet printing
in digital textile, display pixel, MEMS device, and wearable,
flexible, and stretchable device printing were discussed, and
the application principle and method were analyzed. The
recent, most promising application fields are DTP, which
is environmentally friendly and can be directly printed on
fabric, OLED and quantum dot display technologies, and
flexible electronics. This review emphasizes the effective
inkjet printing technologies for researchers studying the field
or working in relevant applications.

In the case of piezoelectric inkjet printheads, designs with
ink-recircualtion are needed to improve their performance.
Developing new printing technologies, especially for printing
high viscosity inks, are the need in future perspective. MEMS
technology can further leads the printing devices to reduced
footprint. The acoustophoretic printing device can further be
improved in terms of high frequency jetting if it is manufac-
tured using MEMS technology.
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