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ABSTRACT While soft robotics is an emerging frontier of the robotics field, accurate modeling of
large deformations for soft hyperelastic materials remains a challenge. Herein, we build on the exist-
ing open-source Multiphysics Object Oriented Simulation Environment (MOOSE) to accurately model
neo-Hookean hyperelastic materials under user-defined loads and large strains. Excellent agreement between
the simulated and theoretical results is obtained for simple geometries. Next, we show that our application
can accurately model and predict the response of a real soft pneumatic actuator. To conclude, we demonstrate
that the open-source nature of our simulation environment enables direct control over simulation parameters,
allowing users to tailor the accuracy, convergence, and speed of their simulations.

INDEX TERMS Finite element analysis, open-source software, soft robotics, solid modeling, systems
simulation.

I. INTRODUCTION
In recent years, developments in the field of soft robotics
have greatly enhanced the scope of work that robots can
perform. As a result of their functionally infinite degrees
of freedom, inherently compliant nature, and high power-
to-weight ratios, soft robots are now seeing use in the areas of
manipulation, human-robot interaction, and minimally inva-
sive surgery [1]–[3]. Despite these recent advances, there
remain several factors inhibiting the wider adoption and use
of soft robots. One such factor is the need for specialized
software to perform modeling and simulation on these highly
nonlinear multiphysics systems (often requiring the simula-
tion of solid, contact, and fluid mechanics, as well as system
dynamics). Traditional robots are readily modeled as rigid
bodies using analytic methods, or numerically using efficient
and widely available Computer Aided Design (CAD), Finite
Element Method (FEM), and simulation softwares [4], [5].
These tools allow traditional robots to be designed and tested
in virtual environments, greatly reducing the time, expertise,
and cost required for development. In contrast, tools capable
of simulating soft robots are often expensive, inaccurate,
or have limited feature sets.
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Some effort has been made to simulate soft robots
using analytic constant-curvature methods [6], [7] or as
hyper-redundant kinematic chains [8]. Other analytical mod-
els have been developed for specific purposes such as
trajectorymatching [9]. However, despite being computation-
ally efficient, these methods can only model simple loading
conditions and are often inaccurate under large deforma-
tions or external loading. Others have used novel data-driven
approaches to develop models of soft robots [10]. These
methods are powerful tools for analysis of systems, but they
are often black-box input output mappings, or are domain
specific (e.g. control). As a result, these approaches lack the
utility of an accurate general purpose model.

More robust attempts to model soft robots make use of
FEM software packages. Work on FEM in soft robotics often
tries to predict and optimize the design of soft actuators,
as seen in [11]. More specifically, work has already been
done using COMSOL-Multiphysics to model the nonlinear
nature of soft sensors [12]. ANSYS was used to model
hyperelastic material responses and additional soft sensors
[13] and explore and optimize a variety of actuator param-
eters [14]. ANSYS was also used to further characterize the
responses of soft actuators, including frictional self-contact
in [15]. ABAQUS has also been used to model the com-
plex electro-mechanical behavior of hyperelastic soft sensors
[16], to analyze multi-material fiber-reinforced pneumatic
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actuators [17] and to assist in the automatic design and
modeling of soft actuators [18]. In addition to these works,
a comprehensive review of the current state of soft robotic
modeling is given in [19]. COMSOL, ANSYS, and ABAQUS
are all powerful simulation platforms that are capable of accu-
rately modeling soft robots. However, they are closed-source
commercial softwares. Thus, users of these platforms are
unable to implement their own features or changes easily
and the degree of control end users have over the simulation
is limited. In addition, these software solutions come with
costly licensing fees which inhibit broader access.

Another common modeling platform is the SOFA frame-
work and its soft robotics plugin, which was created with the
express purpose of modeling soft robots. Furthermore, SOFA
is open-source and free to use, allowing a broad audience to
use and customize the framework to implement useful fea-
tures. However, while a powerful tool for soft robotic simula-
tion, SOFA’s soft robotics plugin has several drawbacks, one
of which is that it employs non-linear geometricmodels under
a linear elasticity assumption [20]. Thus, while hyperelastic
models have been implemented in SOFA, they are usually
used to model robots undergoing large displacements, but
small deformations [21]–[23]. This limits the ability of the
system to accurately model highly deformed configurations,
which are commonplace for soft robotic systems.

In this paper, we present the development, implementation,
and testing of an open-source soft robotics application that
enables hyperelastic modeling, resolving one of the major
issues presented in the SOFA framework. We achieved this
by building off of Idaho National Laboratory’s (INL) Multi-
physics Object Oriented Simulation Environment (MOOSE).
First, we will give an overview of the MOOSE framework
and the neo-Hookean hyperelastic model used in this paper.
Next, a comparison between the theoretical and simulated
results is presented to show the accuracy of the model in
simple loading conditions. After demonstrating the accuracy
of the approach, we show the capability of the framework
to predict the motion of a prototypical pneumatic actuator.
To conclude, the open-source nature of our application is
leveraged to demonstrate how changes to the time stepping
scheme, time integration scheme, preconditioner, solver, and
model parameters allow the user to enhance the convergence,
computational cost, and accuracy of their simulations. The
source code for this project is available at: https://github.com/
Z-Laboratory/Kraken.

II. METHODS
A. MOOSE ARCHITECTURE
To simulate soft robots, a FEM software with two primary
characteristics is required. Firstly, the FEM software needs
to offer a high degree of customization so that users can
readily implement and change models, features, and param-
eters. Secondly, the software needs to be able to cope with
multiphysics simulations that would potentially include solid

mechanics, dynamics, fluid dynamics, contact mechanics,
or any combination thereof.

Given these requirements, the MOOSE framework devel-
oped and actively maintained by INL was selected as the
most suitable option for the base software. MOOSE is a
modular FEM system making use of variable coupling for
multiphysics simulation, and allows users to create custom
kernels, materials, and applications with ease [24].

MOOSE’s Tensor Mechanics module already contains
some of the machinery required to run FEM simulations of
soft robots. As shown in Figure 1A, within this module strains
are computed from displacement data, then multiplied by
an elasticity tensor. This procedure produces a stress tensor,
which can then be used to calculate displacements. The pro-
cess is iterated until a solution within a user defined margin
of error is obtained.

Within the original MOOSE algorithm, stress is calculated
using linear elasticity, which linearly relates the stress and
strain of a material with a static elasticity tensor. However,
under large deformations like those routinely experienced
by soft robots, linear stress-strain relationships no longer
hold. To address this problem, materials undergoing large
elastic deformations follow nonlinear constitutive models
to describe the stress-strain relationships. These constitutive
models are usually referred to as strain energy density func-
tions and are usually written as a function of the first three
invariants of the left Cauchy-Green deformation tensor (the
square of local displacement due to deformation) [25], [26].

Figure 1B shows our implementation of these strain energy
density functions in MOOSE. The gradient of the displace-
ment variables is used to calculate a deformation gradient
(a linear mapping between a line element in the unreformed
configuration to a line element in the deformed configura-
tion). The deformation gradient is then used to compute the
left Cauchy-Green deformation tensor, which is in turn subse-
quently used to compute the stresses. This process is repeated
iteratively until the simulation falls below a user-specified
margin of error. This new architecture does not implement the
linear elasticity tensor, allowing stresses to be directly com-
puted from displacements and nonlinear stress-strain behav-
iors to be modeled.

B. NEO-HOOKEAN MODEL
In this work, the simplest and most popular hyperelastic
constitutive law, the neo-Hookean model, is implemented.
The strain energy is modeled as W = C1(I1 − 3) for incom-
pressible materials [27], where W is the strain energy density,
C1 is a material constant proportional the shear modulus µ,
and I1 is the first invariant (or trace) of the left Cauchy-Green
deformation tensor [28].

Taking the derivative of the strain energy density function
with respect to the deformation gradient, multiplying by the
transpose of the deformation gradient FT and then dividing
by J (the determinant of F and a measure of the local change

139628 VOLUME 9, 2021



K. Wandke, Y Z: MOOSE-Based Finite Element Hyperelastic Modeling for Soft Robot Simulations

FIGURE 1. Comparison between the built-in elastic modeling architecture in MOOSE and the neo-Hookean hyperelastic modeling architecture
implemented in MOOSE. (A) The built-in elastic modeling architecture uses a static elasticity tensor to establish a linear stress-strain relationship.
(B) The neo-Hookean hyperelastic modeling architecture computes the Cauchy deformation tensor and then uses a nonlinear neo-Hookean
constitutive law to determine stresses.

in volume) yields the stresses on the material:

σ =
1
J
∂W
∂F

FT (1)

For incompressible neo-Hookean materials, this yields the
following equation for the stresses [27]:

σ = 2D1(J − 1)I + 2C1B (2)

where D1 functions as a Lagrange multiplier used to enforce
incompressibility, I is an identity matrix, and B is the left
Cauchy-Green deformation tensor.

Eq. (2) was implemented into a custom material in
MOOSE that overrode the default linear stress-strain consti-
tutive equation. MOOSE was then directed to skip the calcu-
lation of the strain to improve computation time, as the stress
could now be directly computed from the displacements and
their respective gradients.

Thus, when a user supplies the constants C1 and D1,
the model, built on top of the MOOSE framework will be
able to compute the neo-Hookean response of a material with
those material properties under large deformations. How-
ever, it should be noted that the model is not perfect, and
as strains keep increasing our hyperelastic model fails to
account for the potential changes in the material parameters
under extremely large deformations [29]. Further work will
likely include more sophisticated material models such as the
Mooney-Rivlin or Ogden models [25], [26], [30], [31].

III. SIMPLE LOADING CONDITIONS
Throughout the validation procedure, we used material con-
stants for Dragonskin 20, which could be obtained from a
database of soft material properties [32]. Using the database,
we found that the best value of C1 for our simulations was
0.0822 MPa. This best value was obtained by computing
the strain range of our experimental tests and using the
database to generate best-fit neo-Hookean parameters for

Dragonskin 20 over that strain range of 0-110%. To improve
the model’s convergence, we implemented a load stepping
procedure where the external pressure boundary condition
was set to be 0.5 × t × 0.0822 MPa. To enforce incom-
pressability, we used a value of D1 that best matched other
silicone rubber’s bulk modulus, two orders of magnitude
greater than C1, or 8.22 MPa. However, given the inex-
act nature of this approximation, a wide variety of values
were tested, without significant impact on the accuracy of
results.

A. INCOMPRESSIBLE UNIAXIAL EXTENSION
Once the stress equation, Eq. (2) was implemented in
MOOSE, it was important to test how well simulations pro-
duced by these equations matched the theoretical results.
The first test that was performed was a comparison of
the numerical load-strain curves generated by simulations
to the theoretical ones. In both simulated and theoretical
cases, the incompressible equations were implemented on
a (100mm × 10mm × 10mm) beam undergoing uniaxial
extension.

Prior to obtaining the numerical data, a theoretical
stress-strain curve needed to be established. The first step
was to rewrite Eq. (2) to give a stress-strain curve for uni-
axial extension. Fortunately, these calculations have already
been performed [27], [28], and it has been shown that a
neo-Hookean material will undergo uniaxial displacement
according to the following equation:

σ = C1(λ2 −
1
λ
) (3)

where λ is the strech ratio, the deformed length divided by the
original length. To convert this equation into a stress-strain
curve, for every time step in the simulated results, a λ value
was calculated. Subsequently, the pressure and the load can
be calculated as shown in Figure 2A.
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FIGURE 2. Collection of 1-D incompressible uniaxial extension results.
(A) Plot demonstrating theoretical and modeled load-strain data.
(B) Simulation results prior to loading. (C) Simulation results at 100mm of
displacement. (D) Simulation results at the conclusion of the simulation
with 192 mm of displacement.

After obtaining theoretical results, the next step was to
set up a simulation to evaluate the application’s accuracy.
In order to obtain data for a wide range of stresses, a single
transient solve was run where the external pressure created by
the boundary conditions on the end of the sample increased
linearly with time as seen in Figure 2B-D.

Figure 2A demonstrates the agreement between the the-
oretical and numerical results for the 1-D deformation of
incompressible neo-Hookean materials. It also shows the
results of our simulation using a linear elastic material as
well. It does appear that the hyperelastic simulation slightly
underestimates the load that should be required for a sample
to reach a desired deformation. The simulation underesti-
mates the stress by a maximum of 10.8 kPa with an average
underestimation of 7.8 kPa. Additionally we can see that the
simulation of the linearly elastic material fails to converge at a
much lower strain, and substantially underestimates the stress
at higher strains.

B. INCOMPRESSIBLE BIAXIAL EXTENSION
After verifying that the incompressible neo-Hookean model
implemented in MOOSE could accurately simulate uniaxial
extensions, it was important to verify that the model was
also accurate for more complex loading conditions. An obvi-
ous next step was an equibiaxial extension. In this test,

FIGURE 3. Collection of 2-D compressible equibiaxial extension results.
(A) Plot demonstrating theoretical and modeled load-strain data, with
strain calculated in one of the in-plane directions. (B) Simulation results
prior to loading. (C) Simulation results at the conclusion of the simulation
with a maximum displacement of 129mm.

a (100mm × 10mm × 100mm) flat plate was modeled to be
fixed on two adjacent edges, with a pressure that increased
linearly with time applied to the opposite edges. The sample
was then pulled equally in both the x and z directions as
shown in Figure 3B-C.

This specific loading condition was also selected because
theoretical results are straightforward to derive. In this case,
the theoretical result is:

σ = C1(λ2 −
1
λ4

) (4)

The process described in the uniaxial extension section
was repeated with the new theoretical equation, as well as
a new mesh geometry and boundary conditions. As shown
in Figure 3A, in this test we again see that the simulation
follows the theoretical curve quite well, obtaining amaximum
underestimation of 7.0 kPa and an average error of 4.1 kPa.
This test again indicates that our method is capable of accu-
rately reproducing the theoretical results for incompressible
neo-Hookean materials under several loading configurations.
However, the linearly elastic material again fails to converge
at a lower maximum strain, and substantially overestimates
the stress at larger strains.
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FIGURE 4. Collection of cylindrical actuator extension results. (A) Plot of
modeled and experimental pressure-displacement data. (B) Simulation
results prior to loading. (C) Simulation results at 65 mm elongation.
(D) Simulation results at maximum elongation for simulation
convergence, 130 mm.

IV. SIMULATION AND TESTING OF A SOFT
PNEUMATIC ACTUATOR
After performing the previous tests and validations, it was
established that the numerical method agreed with the the-
oretical results. Here, we will simulate a prototypical pneu-
matic actuator and compare against a real-world physical
system.

One of the most commonly used components in soft robots
is a cylindrical actuator [33]. These pneumatic actuators have
four main advantages: radial symmetry, actuation in one
direction, homogeneous material properties, and a lack of
self-contact. Taken together, these factors suggest that this
type of actuator is a good representative system to test and
does not require the implementation of a contact mechanics
physics engine in the simulation.

As a reminder, both the simulated and experimental tests
were performed with Dragonskin 20, with C1 = 0.0822 MPa
and D1 = 8.22 MPa.With these parameters, we were able to
run a simulation with the internal cavity pressure increasing
linearly with time, p = t × 0.0822 × 0.5 MPa as shown
in Figure 4B-D. This parameterization allowed for an inter-
nal pressure-displacement graph to be produced as shown
in Figure 4A.

After this, the next step was to obtain experimental data
from the real system. We designed and manufactured a

FIGURE 5. Diagram and photos of empirical testing process. (A) diagram
of the experimental setup. (B) Soft actuator in relaxed state. (C) Soft
actuator in intermediate state. (D) Soft actuator at maximum elongation.

physical system as shown in the diagram displayed Figure 5A
and the photos shown in Figure 5B-D. The physical actuator
was laid flat on a table and connected to a pressure mea-
surement device as well as a pressure source. By opening a
valve connected to the pressure source, the internal pressure
of the system increased, and the actuator elongated. An image
of the displacement was captured against a textured back-
ground, allowing for extension to be calculated as seen in
Figure 5C-D. To mitigate friction, the bottom of the actuator
was placed on friction-reducing pads.

This setup allowed for a pressure-elongation curve to be
obtained for our experimental data. When the experimental
data and the simulation data were plotted on the same chart,
it was clear that there was agreement between the results at
lower strains, but at higher strains the simulation underesti-
mated the pressure (maximum error of 6.2 kPa, average error
of 1.4 kPa). One possible explanation for this discrepancy is
that the neo-Hookean hyperelastic model does not perfectly
describe the material’s response at large deformations. Addi-
tionally, the simulation using linear elasticity was unable to
converge to solutions at far lower strains than the hyperelastic
model. Nevertheless, the model we implement in MOOSE is
extremely useful to realistically simulate the deformation of
soft robots.

V. ANALYSIS OF SIMULATION PARAMETERS
After demonstrating the agreement between the simu-
lated and real world experimental results, it was impor-
tant to further improve the simulation platform. To do
this, the open-source nature of MOOSE was leveraged.
While other FEM packages such as ABAQUS, ANSYS,
and COMSOL can all model hyperelastic materials, these
packages are closed-source and limit the amount of direct
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TABLE 1. Comparison of Simulation Parameters.

control users have over the simulation environment. While
the simplicity afforded by these packages is usually beneficial
to users, in the case of more exotic and extreme simulations
such as soft robotics, an open-source package offers several
clear advantages. First, an open-source software can be more
easily integrated into other simulation, control, or data anal-
ysis packages as users have the ability to directly control the
types of inputs and outputs generated. Secondly, open-source
packages are usually free, making them attractive to a wide
range of users who would be unable or unwilling to pay for
simulation software. Next, open-source softwares allow users
to directly control the simulation parameters, a useful quality
for complex simulations such as those often performed in the
soft robotics community. A final potential advantage of an
open-source framework is that they can often be tailored to
specific use cases, and thus can run far more efficiently than
more general-purpose softwares.

While all of these factors contribute to the attractive-
ness of an open-source soft robotic simulation environment,
in this section of the paper we intend to more thoroughly
investigate the advantage that direct control over simulation
parameters can afford end users. We intend to more fully
explore both the advantages of integrationwith other software
packages and well as potential gains in efficiency in future
works.

The purpose of investigating a variety of simulation param-
eters is twofold. First, this section seeks to demonstrate
that by using an open-source software, users have enor-
mous control over the simulation’s behavior, and can alter
its performance to meet their needs. Second, this section
will provide end users of our software with an understand-
ing of how different simulation parameters can impact the
convergence, accuracy, and computational cost of their sim-
ulations. Throughout the analysis five types of different
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simulation parameters are investigated. These parameters are:
the preconditioner used in the Jacobian-Free-Newton-Krylov
method, the time-stepping scheme, the time integration
scheme, the solving parameters, and the model parameters.
These different parameters were selected based off of the sig-
nificant impact that they had on the quality of the simulation.
To assess the performance of changes to the simulation, three
factors were considered: the time it took for the simulation to
run (in seconds), howmuch strain the uniaxial rod could expe-
rience prior to the model failing to converge (percentage),
and the average error between the simulated and theoretical
results (percentage).

All tests were performed in a manner similar to
the uniaxial extension test in section III on an Intel
Xenon E5-2698 V4 2.2Ghz CPU. The maximum inter-
nal simulation time was set to 30 seconds, rather
than 10, which corresponded to a strain of about
500%. Furthermore, the baseline test was run with the
following parameters: Preconditioner=Hypre-BoomerAMG
Timestepper=ConstantDT=0.1 Timeintegrator=ImplicitEuler,
Linear Iteration=20, Nonlinear Iterations=10, Threads=10,
Volumetric Penalty=0.2e8 Error Tolerance=1.0e-4, Scal-
ing=Allowed, Rotations=Small, Mesh Displacement=True.
The results can be found in Table 1 above.

From these results we can draw several useful conclu-
sions. Firstly, we can see from Tests 2-10 that the choice of
preconditioner has a dramatic impact on both the model’s
convergence and speed. While the default preconditioner
(Hypre-BoomerAMG) is recommended for most users, it can
be seen that using a direct preconditioner (the LU family of
preconditioners) allows for far better convergence as well as
vastly improved speed.

Tests 11-15 show that implementing an adaptive
time-stepping scheme can also reduce computational cost,
and that a poor choice of initial time-step can increase the
cost dramatically. Tests 16-21 show that time integration
schemes that are supposed to be more accurate (4th order
RK methods) are far more computationally costly and can
have reduced accuracy in some cases. Furthermore, explicit
time integrators can improve model convergence and speed
without sacrificing accuracy.

Tests 22-25 show increasing the number of linear and
nonlinear solver iterations for each time step will increase
the cost, convergence, and accuracy of the simulation. The
exception is increasing the number of nonlinear iterations.
This reduces the number of failed time-steps, meaning that
increasing this value can lead to decreases in computational
cost. Tests 26-28 show that by increasing the number of
threads that the process uses, computational time can be
decreased. Interestingly, the parallelization is not perfect, and
increasing the number of threads comes at a cost to model
convergence and accuracy.

Tests 29 and 30 show that by increasing the maximum
allowable error, the simulation can run much faster, without
sacrificing much accuracy. Meanwhile stricter error tolerance
will decrease model convergence. Test 31 shows that it is far

better to use the incompressible version of the neo-Hookean
equations as compressible versions performed worse in each
performance metric. Tests 32 and 33 show that decreasing
the volumetric penalty term can dramatically improve com-
putation time and convergence, but at significant cost to
accuracy. Lastly, tests 34-36 show that it is important to use
the displaced mesh, automatic scaling, and small rotation
parameters for simple tests where large displacements are to
be expected.

In summary, the amount of control an open-source sim-
ulation platform gives its users allows them to tailor their
simulations to closely fit their needs. This feature is not
present in many other FEM software packages used for
soft robotic simulation, giving this MOOSE-based system a
unique advantage over them.

VI. CONCLUSION
In conclusion, this paper outlines a simulationmethod, imple-
mented in MOOSE, for simulating soft robots using the
neo-Hookean hyperelastic model. The ability to accurately
predict andmodel the hyperelastic properties of soft materials
within an open-source framework greatly enhances the ability
of the soft robotics community to develop robots with spe-
cific performance characteristics in mind. Validation was per-
formed by comparing numerical results to the theoretical ones
for both uniaxial and biaxial extension loading conditions.
Next, MOOSE was used to simulate a soft actuator and the
results were compared with the deformation of a real-world
soft pneumatic actuator. In all the tests, the model displayed
good tracking of the desired result. Finally, a comparison of a
wide range of simulation parameters was performed to show
how the degree of control over the simulation offered by an
open-source framework allows users to customize it to their
own needs.

This work of developing an open-source modeling plat-
form capable of predicting the motions of soft robots is
vital to the continued development of the field. To date,
no such open-source comprehensive platform exists that is
capable of implementing hyperelastic multiphysics simula-
tions. Our work will allow researchers to explore a large
number of soft robotic designs and controls quickly, and to
avoid the costly process of fabricating designs. Currently,
without prior knowledge of how designs will interact with
their environments, most work is done using a trial and
error approach. Overall, this simulation platform will help
mature and expand the technology of soft robots to expand
the domains in which robots are used.

VII. CODE
The code for this project is available on Github at:
https://github.com/Z-Laboratory/Kraken
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