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ABSTRACT The significant increase in the number of individuals with chronic ailments (including the
elderly and disabled) has dictated an urgent need for an innovative model for healthcare systems. The evolved
model will be more personalized and less reliant on traditional brick-and-mortar healthcare institutions
such as hospitals, nursing homes, and long-term healthcare centers. The smart healthcare system is a topic
of recently growing interest and has become increasingly required due to major developments in modern
technologies, especially artificial intelligence (AI) andmachine learning (ML). This paper is aimed to discuss
the current state-of-the-art smart healthcare systems highlighting major areas like wearable and smartphone
devices for health monitoring, machine learning for disease diagnosis, and the assistive frameworks,
including social robots developed for the ambient assisted living environment. Additionally, the paper
demonstrates software integration architectures that are very significant to create smart healthcare systems,
integrating seamlessly the benefit of data analytics and other tools of AI. The explained developed systems
focus on several facets: the contribution of each developed framework, the detailed working procedure,
the performance as outcomes, and the comparative merits and limitations. The current research challenges
with potential future directions are addressed to highlight the drawbacks of existing systems and the possible
methods to introduce novel frameworks, respectively. This review aims at providing comprehensive insights
into the recent developments of smart healthcare systems to equip experts to contribute to the field.

INDEX TERMS Smart healthcare, the Internet of Things, artificial intelligence, machine learning, ambient
assisted living, social robots, software integration architecture.

I. INTRODUCTION
With projections of 22% of the population reaching the age
60 or more by 2050 [1], people affected by chronic diseases
are growing along with health-related emergencies, there-
fore resulting in a higher pressure on the healthcare indus-
try [2], [3]. With a decline in the ratio between working-age
people, fewer professional healthcare workers for increased
demand. Besides, the cost of said health care, medications,
and medical devices continuously soar, making it harder to
cover such costs for the average citizen as the need for more
caregivers and healthcare facilities increases to with-stand
the increase in demand [4]. Combined, these conditions call
for cheaper, more inclusive, and better health care solutions.
A great candidate for such a situation is utilizing the recent
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advancements in smart and miniaturized sensors, commu-
nication technologies, and artificial intelligence to provide
technological solutions at an affordable price to the broadest
range of the population without sacrificing the quality of care.

The Internet of Things (IoT) [5]–[7] has been steadily
increasing in popularity over the past years. Due to the
advancements in communication technologies and data trans-
fer speed, the ability to transmit large amounts of data has
grown drastically. In addition, more robust and advanced
storage and processing capabilities provided by big data ana-
lytics [8], [9], and cloud technologies [10], [11] opened the
doors for new applications and markets for IoT in real-time
analytics and predictive modelling. As a result of the ear-
lier described advancements in combining smart sensors,
actuators, and data analytics in an IoT environment for
real-time and continuous healthcare brings great promise
to the healthcare industry. The field, called the Internet of
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Health Things (IoHT) [12], [13] or the Internet of Medical
Things (IoMT) [14], [15] offers the potential of transform-
ing the healthcare paradigm. The method which is pursued
in research and practice can be divided into several areas.
First, smart sensors are combined in the IoMT environ-
ment to continuously monitor health vitals using wearable
devices [16]–[21] and smartphone solutions such as those
proposed by [22]–[25]. After the data is collected using smart
sensors, machine learning techniques interpret and present
predictive analytics such as predicting illnesses [26]–[28].
In addition, other algorithms are used to keep track of
chronic conditions such as diabetes [29]–[31] and heart dis-
eases [32], [33] and detect abnormalities in the patient’s
health.

One of the main drivers for smart healthcare adoption is
the increasing ratio of older adults in societies worldwide.
Consequently, ambient assisted living focuses on creating
environments for older adults that integrate smart healthcare
techniques for better care without human intervention. Since
around 90% of older adults prefer staying in their own homes,
many solutions are based on smart home systems proposed
in [34]–[37]. User studies [36], [38], [39], however, uncover
the importance of including robotic agents capable of social
interactions with the user to provide both psychological and
physical assistance to older adults. Several studies tackle
using robotic agents for the care of older adults [39]–[41],
while others propose taking a step further by integrating such
robots in the ambient assisted living (AAL) environments
with other smart sensors [42]–[44]. Integrating various sen-
sors, actuators, and user interfaces requires rigorous work
on a scalable and personalization to different user needs.
Therefore, studies such as [42], [45], [46] attempt to formal-
ize different architecture to tackle this problem and create
integrated smart healthcare.

The concept of fog and edge computing plays a vital role in
smart healthcare by reducing the computing burden of cloud
servers and ensuring real-time healthcare services with the
fastest response time. Fog computing is heavily decentralized
and serves as a bridge between end devices and the cloud
for computing, storage, and networking. The fundamental
idea behind fog computing is to move data center tasks to
fog nodes located at the network’s edge. The fog devices
carry out the tasks located at the network’s edge and achieve
a high data transfer rate and low response time. The data
in traditional healthcare systems is analyzed in the cloud
server, which results in high latency and high bandwidth
requirements for large data. In the fog-enabled healthcare
framework, the data from the IoT devices is collected and pro-
cessed in the fog layer that minimizes the latency and ensures
real-time medical care [152]. Edge computing refers to the
installation of computing and storage resources at the point of
data is being acquired and analyzed. This framework includes
sensors for data collection and edge servers for secure real-
time data processing. Edge computing enables intelligent
and real-time healthcare services that address energy effi-
ciency and latency requirements through IoT devices and 6G

environments [153], [154]. The edge computing schemes
offer potential solutions to increase reliability and respon-
siveness in decentralized applications, including healthcare,
as mapping IoT devices and sensors and managing resources
are critical components for a smart healthcare platform [155].

With the rapid increase of IoT devices, huge amounts of
electronic health data are generated daily. It is necessary to
keep the data more secure. The integration of blockchain
and smart healthcare could mitigate the shortcomings of con-
ventional smart healthcare in data sharing, data security, and
privacy maintenance [133]. Blockchain technology works by
linking secure blocks of data together using an encrypted
data record. Here, the data is kept in synchronized database
systems recreated with no need for a centralized adminis-
trator. It provides effective data collecting while ensuring
system security because it is a distributed system dissemi-
nated across a network. Although several works have already
been done to ensure the security and privacy of the health
data, some of the most relevant architectures that are used for
ensuring the security of the medical data in smart healthcare
using blockchain technology are found from [156]–[158].
The authors of [156] proposed a framework in the health-
care environment that can share data securely using the con-
sortium blockchain through cryptographic primitives. The
data preservation scheme for electronic health data using
blockchain technology is discussed in [157], where crypto-
graphic techniques are implemented to obtain data privacy.
An architecture named BMPLS is developed in [158] for tele-
health systems to obtain multi-level location privacy through
order-preserving encryption techniques.

The goal of this paper is to explore the state-of-the-art
smart healthcare systems that highlight the significant areas
of research, including wearable and smartphone-based health
monitoring, machine learning for predictive analytics, and
assistive frameworks developed for assisted living environ-
ments, including social robots. The main contributions of the
paper can be summarized as follows:
• Provide a systemic review of state-of-the-art research
in smart medical devices, machine learning for disease
prediction, AAL, and software architectures.

• Compare approaches to each problem, highlight their
advantages and challenges, and present recommenda-
tions for improvement in future studies.

• Present a holistic overview of the smart healthcare field
to provide a complete view of how technologies in
different areas can be combined to accelerate smart
healthcare.

The overall workflow of the reviewed systems is shown
in Figure 1. In Figure 1, the comprehensive review of smart
healthcare systems is divided into three major areas: health
monitoring, disease diagnosis, and supportive devices in
AAL. Additionally, the software integration architectures are
described in this review. The healthmonitoring prototypes are
divided according to wearable devices or smartphones, men-
tioned in Section II. Three major diseases, like COVID-19,
heart disease, and diabetes detection frameworks based on
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machine learning algorithms, are demonstrated throughout
Section III. Section IV discusses the assistive prototypes in
AAL, the supportive tools in smart homes, and social robots.
The major directions in creating software architecture for
smart healthcare are discussed in section V. Section VI
presents an open discussion of the reviewed studies and
guidelines for areas of future work. Finally, section VII con-
cludes the study and summarizes the main key points.

II. HEALTHCARE MONITORING DEVICES IN IoT
The Internet of Things is a possible solution to relieve
the stress on healthcare infrastructures and has become a
prominent research issue in recent times [47]–[49]. Health
monitoring can be ensured through wearable sensors and
smartphone applications. A broad pipeline of a health moni-
toring system based onwearable devices is shown in Figure 2.
Various sensors collect data from patients and transfer it to
an edge/fog/cloud server for processing through Wi-Fi or
LoRa gateway. The health status of the patients is monitored
through physicians and their family members through several
user interface tools like web or mobile applications. In some
cases, emergency services are deployed to handle critical situ-
ations of the patients. The significant developments of health
monitoring through IoT are described in this section, digging
deeper into the details of implementation and technologies
utilized.

A. WEARABLE DEVICES FOR HEALTH MONITORING
Smart healthcare services using wearable sensors provide
an appropriate and cheaper alternative to the costly hospital
environment [16]–[19]. These systems enable medical pro-
fessionals to screen the significant symptoms of the patients,

evaluate the general health of the users, and detect abnormal-
ities remotely.

Recently, Islam et al. [20] developed a smart healthcare
system that monitored patients’ health using five sensors:
two sensors (heart rate sensor and body temperature sensor
(LM35)) for patient condition monitoring and three sensors
(room temperature sensor (DHT11), CO sensor (MQ-9), and
CO2 sensor (MQ-135)) for detection of the living environ-
ment condition. Here, the processing device is ESP32, and
Wi-Fi is used as communication media to transfer data from
the patient’s side to a web server. However, the developed
prototype is not adequately manufactured for application
purposes.

Afterward, the authors of [50] proposed a wearable remote
healthcare monitoring (RHM) framework that can monitor
the heart rate (HR), body temperature and detect falls. The
proposed scheme used NodeMCU as a processing device
and heartbeat sensor, body temperature sensor (LM35),
and accelerometer (MPU 6050) as sensing elements. The
ThingSpeak web service is used for data visualization to aid
physicians in monitoring the patients from remote locations
with a hand-held device as a prototype. In another study,
the authors of [51] demonstrated a healthcare monitoring
framework utilizing the concept of IoT and cloud computing.
The prototype used an HR sensor, Electrocardiogram (ECG),
SpO2, and body temperature sensors for monitoring the cor-
responding heart rate, ECG, oxygen saturation, and body tem-
perature of the patients, respectively. Two microcontrollers
(Arduino and NodeMCU) were utilized to collect data from
sensors and transfer data from edge devices to the cloud using
Wi-Fi. Blynk cloud service was used to monitor the patients’
health parameters from remote locations. However, the sys-
tem is not able to handle the emergencies of the patients.

FIGURE 1. The overall workflow of the reviewed systems of smart healthcare.
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FIGURE 2. A general pipeline of a health monitoring system based on wearable devices.

Chigozirim et al. [52] introduced a patient monitoring
prototype that allows the doctors to monitor the patient’s
status through the developed tool using IoT. In this system,
HR and body temperature are monitored through pulse and
body temperature sensors. ATmega328P microcontroller and
NodeMCU are used as edge devices, and the collected data
from sensors are transmitted to the internet through a Wi-Fi
connection. In addition, the doctors can check the patient’s
condition using Liquid Crystal Display (LCD). However, the
developed system has not been entirely fabricated for real-
time tests. In another research, Mohapatra et al. [53] demon-
strated a smart healthcare management framework in IoT and
cloud services to ensure the patient’s condition monitoring
from remote locations. The proposed scheme utilized HR and
temperature sensors to perceive the data from patients, and an
Arduino is used as an edge device connected to sensors and
used to transmit data to the cloud through Wi-Fi. The doctors
can easily connect with the cloud server through internet-
connected devices to check the patient status and suggest
proper medications in an emergency. However, no security
concerns are mentioned here for the transmitted data. Fur-
ther, Swaroop et al. [54] developed a framework for basic
symptoms monitoring in IoT environments. Multiple chan-
nels like Wi-Fi, messaging services, and mobile applications
ensure a reliable link between the sensors for data transmis-
sion. The hardware components utilized here are sensors to
measure blood pressure, heart rate, body temperature, and
Raspberry Pi 3. The prototype is developed in hand-held
form. However, the latency for the Wi-Fi communication
channel is comparatively high (125.95 seconds on average).
Afterward, Al-Khafajiy et al. [55] introduced a health moni-
toring framework based on wearable sensors for older people,
enabling patients to take healthcare facilities from their home
environment. The sensors used in this framework are pulse,
temperature, blood oxygen, and blood glucose sensors. All
the components are connected to Arduino UNO, and the col-
lected data are sent to the patient’s mobile application through
a Bluetooth module. Finally, the smartphone application is
used as a gateway to send the data to the cloud server. The
doctors can easily monitor the sensors data and patient
records through the developed monitoring platform. How-
ever, no data analytics tools are used for automated decisions.

In another work, Semwal et al. [56] presented a cost-
effective and portable healthcare platform to ensure essential

health services from remote locations. The sensory ele-
ments utilized in this system are ECG, pulse oximeter, body
temperature, and blood pressure (BP) sensors. ATmega328P
microcontroller and Bluetooth module are used for data
collection and transmission, respectively. LabVIEW tool is
utilized for data visualization in the cloud server. The pro-
posed prototype provides the offline accumulation of data
from various sensors in low network connectivity to be
updated to cloud accessibility. However, no security mea-
sures are taken into consideration in this system. Afterward,
Kumar et al. [57] introduced a smart healthcare monitoring
system where patients and doctors can interact through a
camera. The health parameters from input sensors (HR and
temperature sensor) are sent to the processing module (Rasp-
berry Pi) and displayed on LCD. The processed data are
transmitted to the web server using an internet connection that
assists physicians inmonitoring the patient status in real-time.
However, the developed system is linked to a limited number
of sensors which were not enough to monitor a patient’s
complete status. Furthermore, Wan et al. [21] presented a
wearable health monitoring framework that assists doctors in
monitoring the patients in real-time through an IoT network.
In this system, blood pressure, heartbeat, and body tempera-
ture sensors are used in the sensing node, and Arduino is used
as an edge device. All the collected data are transmitted via
Wi-Fi to the cloud server using the body area sensor network.
The physicians can monitor the patients through their own
devices like a laptop. However, the developed prototype did
not mention any solutions for emergency cases.

Table 1 summarizes the developed health monitoring sys-
tems considering some properties like the used sensors and
edge devices, the communication channel, the data visual-
ization tools for ensuring the real-time monitoring, and com-
ments of each developed system.

B. SMARTPHONE SOLUTIONS FOR HEALTH MONITORING
The growing penetration of mobile phones, integrated sen-
sors, and advanced communication technologies makes it
an appropriate infrastructure that allows continuous and vir-
tual monitoring of patients’ health. The built-in sensors in
smartphones for health monitoring are a camera, accelerom-
eter, gyroscope, proximity sensor, microphone, light sen-
sor, and Global Positioning System (GPS) [23]. The major
health parameters that can be monitored through smartphone
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sensors are heart rate and variability, blood pressure, oxygen
levels (SpO2), and respiratory rate. They are used to iden-
tify skin, eye, ear diseases. As almost all people are now
using a smartphone, it has become a great choice to research
smartphone applications that ensure portability and reduce
the additional cost of the developed systems [58]–[60]. The
systems that are designed for health monitoring using data
collected from smartphone sensors are discussed here.

Zhang et al. [24] proposed a framework for blood glucose
monitoring using PhotoPlethysmoGram (PPG) data in the
form of a video from a smartphone. The blood glucose
level is collected from patients through smartphones, and
the collected data is processed in the cloud. Lastly, the fea-
tures are extracted using Gaussian Fitting and classified into
normal, warning, and borderline based on blood glucose
range using machine learning algorithms. The accuracy for
blood glucose level estimation achieved from the developed
system is 81.49%, which can be deemed lower than needed
for a reliable glucose monitoring system. In another work,
Nemcovaa et al. [61] developed a framework for monitoring
the SpO2, BP, and heart rate utilizing a mobile phone. The
rear camera and microphone of a smartphone are used as
sensing elements in this system. The camera data is con-
verted to PPG and used for heart rate and oxygen saturation
estimation. At the same time, the blood pressure is esti-
mated from PPG and phonocardiogram (PCG) recorded by

the microphone. A smartphone application is developed to
determine the feasible position of the data collection device
for blood pressure estimation. However, the synchronization
between PPG and PCG signals is not handled, although
there are different time bases. Afterward, the authors of [62]
introduced a respiratory monitoring system using smartphone
sensors based on imaging and the Fourier transform tech-
nique. The skin surface video data is captured in the presence
of a flashlight using an embedded smartphone camera, and
Plethysmography data is collected using developed hardware.
The collected data is transferred to a PPG signal, and the
processed data is analyzed using the concept of the discrete
wavelet transform to estimate respiratory rate. The experi-
mental results depicted that the system obtained an accuracy
of 97.8% and an error of 2.2%. However, the system did not
consider temperature and skin colour as well as the condition
effect.

Recently, Tabei et al. [25] presented a framework for
monitoring blood pressure using smartphones’ cameras. The
data for the proposed scheme is collected from the user’s
finger index through a smartphone camera. Filtering and
peak detection techniques are used to minimize the motion
and noise from the collected PPG signals. The estimation of
blood pressure is done with the use of a linear regression
algorithm. It is revealed from the experimental results that
the system obtained mean absolute error, standard deviation,

TABLE 1. Summary of the smart health monitoring systems based on wearable devices.
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and correlation parameters of 2.10, 1.96, and 0.90, respec-
tively. However, the derivation of pulse transit time from two
sides of the arterial is not mentioned. In another research,
Dey et al. [63] proposed a cuff-less blood pressure mea-
surement system using a heart rate sensor embedded in a
smartphone. The sliding window technique is used to convert
the collected PPG signals to 15 s epochs. Approximately
233 features are derived from the raw signals from a PPG
pulse in the domain of time and frequency. Finally, the blood
pressure estimation is conducted using the Lasso regression
technique. A smartphone application is developed to monitor
psychological signals in real-time. The developed system
can calculate the 95% confidence interval of the BP of the
patient. However, the results do not satisfy the precision in
terms of standard value. Using the built-in accelerometer
and camera of a smartphone, Wang et al. [64] introduced a
blood pressure monitoring device named Seismo to interpret
the vibration generated by heartbeat and finger pulses. The
blood ejection time is measured from the seismocardiography
signal through the accelerometer, and the fingertip is used to
calculate the arrival time from PPG data using a camera mod-
ule. The embedded speaker synchronized the data from the
accelerometer and camera. The developed system obtained
a Pearson correlation coefficient between 0.20 and 0.77 for
the volunteers. However, the prototype is not able to monitor
blood pressure continuously.

Further, a heart rate monitoring framework based on pho-
toplethysmographic data from the smartphone is proposed
in [65]. The data is collected using PPG’s visible light
reflected mode using a built-in smartphone camera from
the user’s index fingertip. The data from smartphone stor-
age is transferred to the processing device using Bluetooth
communication. Among the three channels of the PPG sig-
nal, the red channel is utilized for heart rate estimation in
this system. The proposed scheme appraised an accuracy
of 99.7%, and the found absolute error is within the range
of 0.04–0.3 beats/min. However, the duration of the video
is relatively low. In another study, Lomaliza and Park [66]
developed a reliable and accurate system for HR monitoring
using the camera images of a mobile phone of the finger-
tip. In this system, the signal is extracted using the concept
of Region of Interest, and the noise from the raw data is
eliminated through the adaptive threshold method. The devel-
oped scheme is adopted in any level of smartphone. The
experimental finding depicted that the developed framework
estimated the heart rate in real-time, with less than a 5%
error rate. However, the proposed system ignores the effects
of different camera modules of other smartphones. Further-
more, Qayyum et al. [67] demonstrated a vital sign monitor-
ing system using video from a smartphone camera. In this
framework, the collected data is pre-processed to reduce the
noise from the raw signals using the colour distortion filter-
ing technique. The inter-beat interval is used to detect heart
rate variability, and the breathing rate (BR), heart rate, and
SpO2 are calculated from PPG signals. The developed system
obtained a mean absolute percentage error of 2.965 from the

experimental findings. However, no real-time prototype is
shown in this study.

Table 2 summarizes the developed health monitoring sys-
tems considering some properties like the monitored signs,
the used sensors, the smartphone model, the number of sub-
jects, the video length, sampling rate, and comments of each
developed system.

III. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
IN IoHT
The Internet of Health Things comprises various interlinked
devices that can share and handle data to enhance patient
health. It has become a fast-growing area with numerous
investments associated with the development and use of
IoT [68], [69]. Statistics from the McKinsey study depicts
that IoHT will have a financial impact of $11.1 trillion in a
year by 2025 [70]. Machine learning has become a significant
tool in the arsenal of artificial intelligence techniques used
in healthcare. It enables IoT devices with outstanding capa-
bilities for information inference, data analytics, and intelli-
gence. Machine learning has become a powerful and effective
solution for various IoHT technology contexts, from big-data
cloud computing to smart sensors [71]–[73]. An overall sys-
tem architecture for disease diagnosis using machine learning
algorithms in the IoHT environment is shown in Figure 3. The
used data in these frameworks are from benchmark datasets
or real-time sensor data sent to the fog/edge/cloud for pro-
cessing. Afterward, the data are preprocessed, and necessary
features are extracted to fit in the machine learning tech-
niques. Finally, the decision is transferred to the concerned
person to take proper action. The significant developments of
machine learning-based IoHT solutions are demonstrated in
this section. We have described some major disease solutions
using machine learning in the IoHT platform that are becom-
ing significant threats for human-being in recent times.

A. NOVEL CORONAVIRUS (COVID-19)
The novel coronavirus 19 has become a public health crisis
due to this virus’s communicable nature in recent times. This
is an ongoing pandemic, and all the sectors of the whole world
are fighting to recover from this ailment. The statistic shows
that approximately 98 million cases have already found, and
the death cases are about 2millionworldwide [74]. Numerous
works were conducted to reduce the severity of this disease
using modern technologies [75]–[77]. In the current section,
we describe the frameworks that used machine learning algo-
rithms to diagnose COVID-19 in IoT environments.

Very recently, Le et al. [26] developed IoT based system to
diagnose COVID-19 using the concept of convolution neural
network (CNN) and support vector machine (SVM). This
framework retrieves the data from the patients utilizing IoT
sensors and transfers it to cloud storage through 5G networks.
In addition, the CXR dataset [78] is utilized to conduct an
experiment. To reduce noises from the raw images, Gaussian
filtering is utilized. The depth-wise separable CNN extracted
the features from the pre-processed samples, and SVM
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categorized the extracted features to detect COVID-19. The
proposed system appraised an accuracy of 98.54% for binary
class and 99.06% for multiclass scenarios. However, no mon-
itoring system from the doctor’s end is developed here.
Afterward, Ramallo-González et al. [79] introduced an IoT
platform named CIoTVID for the detection of coronavirus.
The scheme includes various levels of sensorization, which
can handle and evaluate the data that assists in making a
decision. The data collection layer collects various symptoms
like voice signals, oxygen saturation, respiration rate from
the patients. Mel Frequency Cepstral Coefficients (MFCC)
transferred the raw voice signals to spectrogram as an image
format. CNN architecture extracted the features and classi-
fied them in this system. The use case analysis found that
the system appraised an accuracy of 66.67% in the testing
phase. However, the outcome is relatively low for real-time
use. In another research, Ahmed et al. [80] proposed a deep
learning-based framework to diagnose COVID-19 in an IoT
environment. A combined architecture like Faster-RCNN
with ResNet-101 is utilized to diagnose the coronavirus cases
from chest X-ray samples. The used data are retrieved from
various open-access data sources where the COVID-19 cases
are about 4000, and the negative cases are 7000. The data
from the medical sensors are directly sent to cloud storage
usingWi-Fi communication, where the proposed architecture

is trained and finally diagnoses the positive cases. The radiol-
ogist can monitor the outcome through the internet. It is evi-
dent from the experiments that the developed system obtained
an accuracy of 98%.However, no usability study ismentioned
in this system.

Otoom et al. [81] introduced a scheme using machine
learning techniques in an IoT environment to detect and
monitor coronavirus-infected patients. The real-time symp-
tom data from the patient’s end are retrieved utilizing IoT
devices and transferred to the cloud server for storage.
Benchmark data called COVID-19 Open Research Dataset
(CORD-19) [82] is being used for the analysis in addition to
real-time data.

The collected data are analyzed using machine learning
classifiers to detect coronavirus infections. Among the eight
classifiers, neural networks and k-nearest neighbors per-
formed the best, and the accuracy was 92.89%. The sys-
tem notified the medical experts of the suspected cases for
further clinical treatment. However, the performance of the
developed system is relatively low for practical uses. Fur-
ther, El-Rashidy et al. [83] demonstrated a deep learning
architecture based on end-to-end nature to diagnose and
monitor coronavirus-infected patients. In the proposed sys-
tem, the patients are monitored through wearable sensors
and smartphone app. A fog network is used to handle the

TABLE 2. Summary of the smart health monitoring systems based on smartphone.
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data storage and transmission issues, and a CNN architec-
ture with transfer learning diagnosed the COVID-19 patients
from X-ray samples. The experimental data is collected from
two publicly available datasets [78], [84], and wearable sen-
sors. It is found from the experiments that the developed
scheme obtained accuracy and specificity of 97.95% and
98.85%, respectively. The physicians monitored the patients
in real-time and guided the individuals properly. However,
energy consumption and storage issues are still a challenge
for this system. In another research, Karmore et al. [27] devel-
oped humanoid software for the diagnosis of coronavirus
in IoT networks that can identify whether an individual is
infected with this ailment or not. The robotic system used IR
sensors and a cameramodule for navigation, and the E-Health
sensor kit and chest X-ray scans were utilized for diagnosis.
The developed humanoid robot used NodeMCU, Raspberry
Pi, temperature sensor, ECG sensor as hardware components.
Three pre-trained architectures like InceptionV3, ResNet50,
and Inception ResNetV2 diagnosed positive cases fromX-ray
samples. The average accuracy found from the proposed
system is 97.95%. However, the security issues during the
data transfer are not depicted here.

Furthermore, Cacovean et al. [28] introduced an IoT-based
framework for COVID-19 detection where machine learning
techniques are utilized for diagnosis. The data from the par-
ticipants are collected using wearable devices like GPS, tem-
perature, and heart rate sensors. The retrieved data are sent to
the oracle cloud server for processing through the Bluetooth
module. Random Forest obtained the best outcome from the
experiments among the three classifiers, and the accuracy
value is 73%. The prediction outcomes are directly sent to
doctors and patients’ guardians to take further steps for proper
treatment. However, the system achieved comparatively low
performance. Afterward, Kumar et al. [85] presented a sys-
tem to monitor the COVID-19 patients using sensor and IoT
technology. The participants retrieve the real-time data using
IoT sensors and feed it into the Bayesian network for prepro-
cessing. The IoT devices are configured and accessible using
wireless sensors to send the data to the patient’s repository.
The data are trained with SVM and predict the coronavirus
cases from the test samples. The scheme appraised 87.23%
and 86% accuracy for recovery and prediction, respectively,
using SVM. In addition, the K-means algorithm estimated the
spread as well as recovery rate. However, the accuracy rate of
the system is not up to the mark.

Table 3 briefly discusses COVID-19 detection systems
highlighting features such as the datasets and techniques used
for detection, the accuracy as a performance metric, and
comments of each reviewed system in the IoHT environment.

B. HEART DISEASE
Heart disease has become a very crucial and acute ailment
for every aged people, especially for adults. An estimation
shows that heart disease is responsible for approximately
30% (18 million individual) deaths among all death cases
per year [86], [87]. Hence, the researchers focus on the
development decision support system in the smart healthcare
environment to reduce the severity of heart disease. The
significant developments of heart disease diagnosis using
machine learning in the IoT environment are demonstrated
here.

Recently, the author of [88] developed a patient monitor-
ing system for heart patients in an IoT environment where
the data from the patients are analyzed using a modified
Deep Learning Modified Neural Network (DLMNN). The
body-worn sensors collected data from the patients and
securely sent them to the cloud for further processing. In addi-
tion, the proposed system used the Hungarian heart disease
(HD) dataset [89]; benchmark data for heart disease classifi-
cation to detect the presence of abnormality.

An alert message is delivered to the doctors when any
abnormality is detected. However, the developed scheme
obtained comparatively low performance in the case of
a small data size. In another work, Ali et al. [29] pro-
posed a smart healthcare monitoring framework for heart
disease-infected patients using the concept of ensemble learn-
ing and feature fusion. The extracted features from sen-
sor data and patient history are merged through the feature
fusion technique in this system. The information gain method
eliminated the unnecessary and redundant features, selected
the most appropriate features responsible for the disease.
A semantic web rule language is introduced that recommends
the activities of the infected patients automatically. Lastly,
the LogitBoost technique, an ensemble learning classifier,
is used to predict heart disease and obtained an accuracy
of 98.5% from the experiments. However, the developed sys-
tem used traditional techniques for feature selection, reduc-
tion, and classification. Afterward, Deperlioglu et al. [30]
introduced a framework for heart disease diagnosis using an

FIGURE 3. An overall system architecture of machine learning-based framework for disease diagnosis in IoHT environment.
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autoencoder network in an IoHT environment. The developed
system comprises a cloud environment where beacons are
used for data sharing and a central system to synchronize
the cloud and devices’ communication and machine learn-
ing architecture. This system uses two heart sounds datasets
named PASCAL BTraining [90] and Physiobank-PhysioNet
A-Training [91]. The developed system obtained accuracy,
sensitivity, and specificity of 100% for the PASCAL dataset.
In addition, an accuracy of 96.03%, 91.91%, and 90.11%
are achieved for healthy heart sounds, extrasystole, and mur-
mur, respectively, from 479 real-time participants. However,
no voice command facility is available in this study to ensure
less physical interaction.

In another research, the authors of [31] presented a
machine learning-based heart disease diagnosis system in
the IoMT cloud environment using modified salp swarm
optimization (MSSO) and an adaptive neuro-fuzzy infer-
ence system (ANFIS). The data from the IoMT sensors and
UCI [89] and Framingham database [92] are used to diag-
nose the presence of heart disease. The MESO technique
optimized the dataset’s attributes to find the best features,
and the ANFIS trained the most appropriate features and
diagnosed the disease. The experimental results found that
the system achieved accuracy, AUC, and precision of 99.45%,
99%, and 96.54%, respectively, using the datasets, yet no
results are presented for real-time data. The authors of [93]
proposed an IoT-based system using Modified Deep Convo-
lutional Neural Network (MDCNN) to predict heart disease.
The data (BP and ECG) used for this study are collected
from smartwatches and heart monitor devices attached to
the patient’s body. In addition, some open-access databases
like UCI [89], Public Health, and Framingham [92] are also
used to train the network. In this framework, Long-range
(LoRa) communication protocols, LoRa cloud, and servers
are used to ensure the real-time monitoring of the patients.
The developed framework categorized the sensors’ data into

two classes (normal and abnormal) and obtained an accu-
racy of 98.2% from the experiments. However, no wear-
able prototype is mentioned here. Further, Tuli et al. [94]
developed a smart healthcare framework named HealthFog
to diagnose heart disease using ensemble learning in IoT and
Fog computing environments. To evaluate the performance
of the developed system with respect to energy consumption,
accuracy, latency, and execution time, FogBus (Fog-based
cloud environment) is utilized. The FogBus is comprised
of the worker node, the cloud data center, and the broker
node. The Bagging classifier categorized the data collected
from sensors and benchmark datasets [89] of heart disease.
The developed prototype achieved an accuracy of 89% from
the experiments for the test cases. As the machine learning
architecture is trained in each worker node of every fog node,
the time consumption becomes comparatively high.

In another study, Nguyen et al. [95] introduced a scheme
for diagnosing heart disease using machine learning in an
IoT environment. ECG devices collect the data from patients
and send them to cloud storage throughWi-Fi.Wavelet-based
Kernel Principal Component Analysis (wkPCA) technique
pre-processed the raw data and extracted the most relevant
classification features. The extracted features are fed into
a Backpropagation Neural Network (BNN) that diagnoses
the heart disease based on the input data. The developed
system achieved an accuracy of 98.03%. However, no noti-
fication system to alert physicians has been developed yet.
Furthermore, the authors of [96] demonstrated an IoT-based
framework to diagnose heart disease using cloud storage
and machine learning algorithms. The data is collected from
the human body using medical IoT sensors, and benchmark
datasets [97] from UCI are also used for the experiments. All
the data are stored in a cloud database, and machine learning
techniques are applied to the cloud database to predict the
presence of heart disease. Among four classifiers, J48 per-
formed the best and obtained accuracy, precision, recall,

TABLE 3. Summary of COVID-19 detection frameworks in IoHT environment.
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and F1-Score of 91.48%, 91.50%, 91.50%, and 91.50%,
respectively. However, no real-time study is illustrated in this
system.

Table 4 summarizes heart disease detection systems con-
sidering some features such as the used datasets, the used
algorithms for detection, the accuracy as an evaluation met-
ric, and comments of each developed system in the IoHT
environment.

C. DIABETES
Diabetes is another life-threatening disease for humankind
that results in many deaths per year. An estimation shows that
almost 463 million individuals had diabetes in 2019, and the
numbers are expected to grow to 578 million and 700 million
by 2030 and 2045, respectively [98]. As this ailment is ris-
ing rapidly, early diagnosis of diabetes is necessary for the
sake of people. Various studies are conducted to diagnose
diabetes early, utilizing artificial intelligence, IoT, and Big
data [99]–[101]. Theworks that have been developed recently
for diabetes detection are illustrated in this section.

In recent times, Rghioui et al. [32] developed a frame-
work to monitor and predict diabetic patients using machine
learning techniques in IoT networks. In this system, the glu-
cometer is connected to NodeMCU to record the data from
patients seamlessly. A vast amount of collected data are sent
to the cloud database using IoT platform and processed using
machine learning algorithms, and the decisions are sent to
doctors for further treatment. The dataset comprises five
features with 12612 records. Among the four algorithms,
Random Forest achieved an accuracy of 96.05% from the
experiments. In another research, Allugunti et al. [102] pro-
posed a diabetes prediction framework using the concept of
IoT and a decision tree to monitor the infected patients in
real-time. The data is collected from IoT sensors and contains
eight attributes and 15,000 realities. The best features from

the dataset are selected using the concept of entropy measure-
ment. The experimental outcomes show that the developed
framework obtained accuracy and an error rate of 96.43%
and 5.37%, respectively, in prediction. However, the detailed
data collection procedure is not mentioned here. Afterward,
Efat et al. [103] demonstrated a health monitoring system
focusing on diabetic patients that can monitor the level of
sugar, sleep time, food intake, and pulse rate. The patient’s
data is continuously sent to a neural network using wearable
sensors through Bluetooth, and the developed architecture
categorizes the data based on the severity of diabetes cases.
An alert message/call is sent to the patient’s guardians and
caregivers in an emergency. The developed scheme appraised
an accuracy of 84.29% from 25 diabetes patients’ data. Aweb
portal monitors the patients’ health status continuously. How-
ever, the performance is relatively low for practical use.

In another work, a diabetes monitoring and prediction
framework is proposed in [104] utilizing IoT and machine
learning techniques. The system used a blood glucose meter,
Arduino, and GSM modem as hardware components. The
experimental data are retrieved using the glucose meter using
an edge device like Arduino and processed in the microcon-
troller. The decision of the processed data is automatically
sent to mediators through a GSM modem. The author found
the Random Tree classifier to provide the highest accuracy
and lowest training time among the four used algorithms,
and the value is 97.87% and 0.03 seconds, respectively. How-
ever, the glucose sensor and Arduino could not be operated
at the same time. Further, Rghioui et al. [105] introduced an
intelligent framework for diabetes-infected patients monitor-
ing using machine learning architectures in IoT networks to
monitor physical activity, glucose level, and body tempera-
ture. A glucometer, temperature sensor, and motion sensor
are used for data collection purposes at the patient’s end. The
collected data are transferred to the database station using

TABLE 4. Summary of heart disease detection systems in IoHT environment.
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a smartphone through 5G networks. The patient’s records
are classified using six classification algorithms, and the
minimal sequential optimization (SMO) obtained the best
accuracy of 99.66%. Whenever any abnormality is found, a
notification text is sent to the doctors to take proper steps for
treatment. However, the latency is comparatively high in this
system. Afterward, Godi et al. [106] developed a healthcare
monitoring framework to diagnose and monitor disease using
machine learning modalities through IoT networks. Various
wearable devices are utilized to retrieve data from patients
from different scenarios like homes and hospitals. In addition,
a diabetes dataset from the Kaggle repository [107] is used for
experiments. Machine learning techniques classified the data
based on the presence of abnormality. Among four classifiers,
SVM achieved an accuracy of 80.51%, precision of 76%,
recall of 65%, and F1-Score of 70% for the positive diabetes
class. The predicted results are shared with the physicians,
mediators, and patients’ caregivers. However, the perfor-
mance is relatively low for real-time implementation.

To predict diabetes mellitus, the authors of [33] introduced
a novel framework using machine learning in the IoT envi-
ronment. The glucose sensors collected the blood sugar data
from the patients, normalized it into the proper format, and
transferred it to the storage device using Hypertext Transfer
Protocol (HTTP) and Message Queuing Telemetry Transport
(MQTT) protocol. The system also used a benchmark dataset
for the experiment. Two machine learning classifiers named
SVM andK-NN are used for diabetes prediction, where SVM
achieved accuracy and F1-Score of 90% and 89%, respec-
tively. However, real-time cases are not found there. Fur-
thermore, Kaur et al. [108] introduced a framework named
CI-DPF to predict diabetes in a cloud-based IoT environment.
The blood glucose level from the patients is collected using
smart sensors and sent to the cloud environment for storage
and further processing through IoT devices. The proposed
system also used benchmark data named Pima Indians Dia-
betes dataset [107] for the experiment. Ensemble learning
is used to diagnose diabetes from the patient’s records. The
decision tree and neural network ensemble obtained accuracy,
sensitivity, and specificity of 94.5%, 79.5%, and 83.12%,
respectively. However, real-life clinical tests have not been
conducted here.

Table 5 briefly discusses diabetes detection frameworks
highlighting properties such as the used datasets, the used
algorithms for detection, the accuracy as a performance met-
ric, and comments of each reviewed system in the IoHT
environment.

IV. AMBIENT ASSISTED LIVING
Ambient Assisted Living involves combining sensors and
actuators in an IoT environment to communicate and provide
enhanced lifestyle and human-independent care for older
adults. With 87% of older adults preferring living in their
own homes over senior homes [109], there are two target
environments for AAL; senior care homes and older adults’
private homes. We first go in-depth into the studies carried

out to define the needs of the seniors, then discuss the imple-
mentations both with and without a robotic social agent.

A. USER NEEDS STUDIES
Several studies are directed towards studying the needs of
older adults. Such requirements can be categorized into
physical assistance, emotional support, reminders, or social
support. Bedaf et al. [38] performed a user study with dif-
ferent stakeholders, including 11 formal caregivers, seven
informal caregivers, and ten older adults as part of the
ACCOMPANY project. After the users interacted with a
robotic system (Care-O-Bot 3) in a fetch-and-carry scenario
and a scenario where the robot reminded them to drink water,
the authored received several suggestions on the function-
alities they needed. As such, the authors concluded that a
social robot for elderly care needs to have advanced speech
interaction capabilities, fetch and carry various objects, detect
dangerous situations, alert the caregivers, and be adaptable to
individual user needs. Likewise, the HomeMate project [39]
defined fivemain scenarios that would benefit users the most:
fetch-and-carry, infotainment (music and movies), gaming
services, video chatting, and reminders for various events.

After implementing a physical prototype and its testing
with older adults, the authors emphasized the importance of
natural interaction, specifically through speech. Other stud-
ies, such as [110], highlight the importance of combining both
AAL sensor technologies with a robot for task achievement as
well as social companionship. Similar conclusionsweremade
in [111], where the authors highlighted how 50% of older
adults requested efficient speech interaction and added that
the inclusion of a robotic platform provides multiple benefits.
Syed et al. [36] highlight that movement should be monitored
for older adults, citing falls as one of the major causes of
death in the senior community. Other studies that highlighted
the needs of older adults include [37], [41], [112], [113]. The
requirements can be summarized as:

• Provide a natural means of interaction that require min-
imum to no learning by the older adult.

• Remind the users of medications, appointments, and
events.

• Provide infotainment services such as music, movies,
and cognitive games.

• Real-time monitoring of health vitals and detection of
emergencies.

• Include a robotic platform for task achievement as well
as social companionship.

In the remaining section, the implementation of various
platforms for AAL is discussed. First, we showcase research
done with IoMT environments without robotic agents, fol-
lowed by studies involving social robots as a central system
component.

B. SMART HOMES
Komai et al. [34] present a system to monitor the activity of
multiple seniors simultaneously based on Bluetooth Low.
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Energy (BLE)with a beacon in the user’s name card and the
Received Signal Strength Indicator (RSSI). Likewise, [114]
uses BLE and RSSI to create a low-cost indoor-localization
method to track and estimate users’ location. They propose
the method as a low-cost system to detect older adults’
activity and early signs of frailty using a Random Forest
classifier. Although both systems are proposed based on low-
cost solutions for indoor localization, they can only achieve
room accuracy.

Marques et al. [109] present an indoor environmental
monitoring system that measures room temperature, relative
humidity, CO, CO2, light detection, and transmitting the
messages through XBee through Zigbee networking proto-
col. The system proves to be a modular and cheap solution for
indoor air quality monitoring. The work is extended in [35],
where a robotic platform is integrated equipped with a gas
sensor to detect levels of liquefied petroleum gas (LPG),
isobutane, and propane, which can lead to explosions when
they reach specific levels. Based on the famous Turtlebot
platform, the robot can notify the user through the Facebook
social platform. The system provides a safe way for monitor-
ing gas levels but allows for little to no control by the user.
Diraco et al. [115] propose a sensory system based on radars
to monitor heart and respiration rates of older adults without
contact (from a distance), achieving 95% and 91% accuracy,
respectively. The authors also utilized the radar for fall detec-
tion, resulting in a sensitivity of 97% and specificity of 90%.
Nevertheless, ultra-wideband radio signals can measure a few
vital signs and need a more versatile system to integrate more
sensors.

The authors of [36] propose a framework for monitoring
physical activities and utilizing machine learning algorithms
for more accurate and faster predictions and decisions. They
build on the mHealth framework, initially proposed in [116]
to collect data from multiple sensors and combine them to
predict 12 different physical activities using a multinomial

Naïve Bayes classifier, achieving an accuracy of 97.1% on the
mHealth dataset. Although the framework sounds promising,
it is yet to be tested in a real-world environment.

A mobile application called InfoSage is offered by
Quintana et al. [22] to connect older adults to their formal
and informal caregivers, centred around the older adult as
the keystone user. The solution focuses on dementia patients
and offers a tracker and reminders for appointments and
medications. The system provides capabilities for exchanging
messages between family members (informal caregivers),
doctors, and older adults and share information. The authors
also perform several user studies on the acceptance and
usability of their platform.

Stavrotheodoros et al. [37] propose the IN LIFE plat-
form, a cloud-based solution that combines various sensors
focusing on personalization and easy installation for cog-
nitively impaired older adults. The system is capable of
monitoring user activities through unobtrusive sensors and
multilayered architecture. The system is comprised of 3 lay-
ers, a perception layer with the various sensors for data
collection, a gateway layer that combines the data and trans-
mits them to the final layer (cloud layer) using MQTT pro-
tocol. The cloud layer stores and analyzes the data. The
work is extended in [117] by establishing the system and
using motion sensors and door sensors to identify user
habits and a panic button for older adults when there is an
emergency.

The authors of [118] propose an ambient assisted living
system that utilizes fog computing. A system is put in place
that incorporates radar sensors to detect daily activities and
implements an algorithm to detect whether the patient is
suffering from a neurological disease attack, if they are idle,
or if no patient is detected. Utilizing the fog layer in the
system leads to minimal response delay and energy consump-
tion coupled with more bandwidth efficiency and overall
performance.

TABLE 5. Summary of diabetes detection frameworks in IoHT environment.
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Several of the proposed solutions provide promising solu-
tions for AAL, all aiming at better and healthier living.
Nevertheless, the area still requires much work, specifically
applying the proposed systems in real-world environments
for elaborate testing and user feedback.

C. SOCIAL ROBOTS
Previous studies did not harvest the power of robotics to
provide more functionalities for older adults. The following
discussion tackles studies that involve social robots, a sum-
mary of the most prominent works is provided in Table 6.
Portugal et al. offer SocialRobot in [40], a modular robotic
platform with independent layers. SocialRobot can adapt
to user’s preferences and includes human-robot interaction
(HRI), emotion and facial recognition, and speech interac-
tion. The robot is based on ROS (Robotic Operating Sys-
tem) and uses a sequential database (MySQL) to store data
for more personalized interactions, which the authors called
SoCoNet. The work was extended in [120] and [111]. The
authors studied the effect of including environmental context
on the decision process and tested SocialRobot in an elderly
care home for a week. Besides navigation and storing data
on its users, SocialRobot can also recognize faces and users’
emotions. After testing SocialRobot in an elderly care home
in the Netherlands, the authors concluded that considering the
current context improves the accuracy of predictions. They
also noted that although the robot was generally deemed
acceptable by the older adults, it should incorporate more
effective speech interaction and anthropomorphism (arms)
for better functionality, which it is not equipped with. Social-
Robot covers several requirements of the older adult commu-
nity. However, it has been shown that integrating social robots
in an IoT environment with sensors that track older adults
provides much greater promise. Moreover, the caregivers and
older adults requested functionalities such as playing music,
movies, games, and memory training activities.

The HomeMate project [39] conducted studies to define
older adults’ requirements for creating a robotic platform.
The HomeMate robot can play movies and music, link older
adults with their family members and friends through video
chat. Besides that, it was also able to communicate through
touch and voice interaction and schedule reminders for differ-
ent events, thus tackling the missing functionalities from the
SocialRobot project. However, the users still requested more
natural and intuitive speech interactions, possibly through
a more intelligent natural language understanding module.
Moreover, the robot was also missing a link to smart devices
for monitoring environmental conditions and users’ health.

While both HomeMate and SocialRobot tackled senior
home environments, Gross et al. proposed a robot companion
for private homes called Sympartner [41]. The companion
can provide reminders, health updates, daily routines, greet
visitors at the apartment door, detect and identify objects
and faces. Sympartner had autonomous navigation but did
not have a manipulator to carry objects. HRI was done
through a graphical user interface as well as through simple

speech commands. The robot was deployed with 20 partici-
pants in their private homes for five days each in Germany.
Although the overall feedback from the participants was posi-
tive, they requested speech understanding capabilities. More-
over, the robot was reported to have failed several times and
required remote teleoperation by the researchers, presenting
privacy concerns to its users.

The previous studies involved social robot implementa-
tions. However, none of themwere integrated into smart home
environments with other environmental and health monitor-
ing sensors. The idea of including robots in the AAL environ-
ment is recommended by [42], [43], [121].

This can be thought of as an Internet of Robotic Things
(IoRT) framework. Nasr et al. introduce a solution for AAL
environments with robotics in [42]. The platform connects
heterogeneous agents such as mobile robots, virtual assis-
tants, and mobile phones with smart sensors and wearables.
The system was designed with an emphasis on human-robot
interaction and intuitive speech interaction with its users.
The authors developed the platform with a MySQL database
for storing reminders, a mobile phone to utilize Google
Assistant’s speech-to-text functionality, a Fitbit Versa2 smart-
watch for HR monitoring, and a simulated robot in ROS
and Gazebo. Two different protocols for data sharing are
provided in the system, MQTT and Representational State
Transfer (REST) API, to allow all kinds of smart devices and
agents. The system is shown to respond to natural ways of giv-
ing commands and without the training of users. It provides
its users with control over the robotic system by sending nav-
igation commands and teleoperation through speech. Also,
the authors emphasize the idea of offering the same function-
ality across all devices through utilizing a common Natural
Language Understanding (NLU) and Dialogue Management
agent. While the system shows great promise in integrating
heterogeneous systems in a modular way, it still needs to be
tested in a real-world environment. It requires a functional
robot capable of at least autonomous navigation and moving
objects.

Do et al. propose a similar approach to the problem through
the robot-integrated smart home platform (RiSH) [43]. They
utilize a Pioneer 3-DX platform based on ROS and are
equipped with a microphone for acoustic detection. The robot
is linked to a network with body sensors, including an inertial
measurement unit (IMU), motion sensors, and a smartwatch
to obtain ECG, SpO2, and respiration rate readings and a
home sensor network which includes a passive infrared for
binary motion detection and microphones for acoustic data.
The authors present a system that is extensible and capable
of leveraging smart home sensing capabilities. Furthermore,
they conduct experiments with 12 older adults to detect
human trajectories down to a 0.2-meter accuracy and recog-
nize 37 different human activities and falls with accuracy up
to 88% and 80%, respectively.

Another study that follows the integration of robots for
AAL is provided by Loza-Matovelle et al. [44]. The system
is composed of a heterogeneous network of sensors both
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TABLE 6. Summary of the social robots implementations for care of older adults.

on a robotic platform and a bracelet that the user wears.
The bracelet can measure heart rate and body tempera-
ture, and angular acceleration and heading (gyroscope). The
accelerometer and gyroscope are used to detect falls of
the older adult and send warnings to the family members.
The robot is capable of localization and obstacle avoidance
but needs to be teleoperated. In addition, it is capable of
facial recognition to maintain contact with the user during
interaction and allows for video conferencingwith formal and
informal caregivers (telepresence). The user is provided with
the ability to interact with the robot and a hologram (called
the interactive pyramid) through speech and a chatbot. The
interactive pyramid’s speech interface updates the user on the
weather, time, reminders on medications and visits, as well
as health recommendations. In essence, the system is like the
works in [42], [43]. However, it uses teleoperating, which
creates a privacy risk and lower autonomy of the system, and
the system is yet to be tested in a more realistic environment.

Gomez-Donoso et al. [119] integrate a robotic system
into an AAL environment equipped with cameras to detect
dangerous situations. The authors found that the existing
system does not detect dangers such as objects on the floor,
knives (which change location), and dangers in occluded
areas. Therefore, they added a Pepper robot based on ROS
with an RGB-D camera to detect such dangers. The robot was
capable of ground plane detection and clustering of pixels to
find objects on the floor. Also, as the robot moves, it uses an

R-CNN to detect smaller sources of danger, such as electrical
outlets and knives. Pepper was also capable of autonomous
navigation and detection of people who had fallen. The robot
was linked to Wi-Fi and would send out an alarm whenever
the older adult was in danger. The authors tested the robot
in IoT environments covering residential areas, clinical areas
(nursing homes), and offices. The robot is shown to increase
the ability of the AAL to detect potentially harmful circum-
stances in different scenarios. Such a system is powerful but
would benefitwhen integratedwith other sensors thatmonitor
the user’s health vitals.

V. SOFTWARE INTEGRATION ARCHITECTURES
Global business processes in IoMT demand information to
be shared quickly and efficiently across many different soft-
ware, tasks, and applications. Having discussed the general
areas of research in IoMT, we find much common ground
in approaching and the architectures utilized. To unify the
approach and paving the road from research to implementing
the systems in real-time environments, various architectures
are provided in literature that attempts an inclusive solu-
tion for an IoMT environment that is modular and easily
extensible in its functionalities. However, each architecture is
tailored to a specific use case. This section gives an overview
of themost promising architectures and frameworks proposed
in this area and an in-depth analysis of their advantages and
shortcomings.
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Petrovic et al. [122] popped the following question: Why
recreate devices, sensors, and systems. At the same time,
we can use off-the-shelf solutions and augment their capa-
bilities to provide a far more functional system. There-
fore, the authors use commercial off-the-shelf (COTS) smart
devices (COTS component) and combine them through an
Interactivity component that provides an interface to retrieve
data from the COTS devices and performs pre-processing
stages. This layer can also detect some patterns and issue
warnings in danger to a patient’s health. The third and last
component of the system is the cloud component which
synchronizes the COTS devices and takes care of big data
analytics.While this solution offers faster solutions and lower
costs, it is mentioned as an idea, and no validation is provided.

Both [123] and [36] design a very similar architecture to
approach the integration of IoMT. In [123], the authors devel-
oped an integrated medical platform for RHM. The platform
is multi-layered to enable easy integration and expandability.
The first layer, the perception layer, combines all the sensors
that collect data about the patient and their surrounding envi-
ronment that could affect the patient’s health. The next layer is
the network and gateway layer, which transfers the data from
the perception layer and processes it. The last layer stores and
integrates the data received from various sensors and makes
informed decisions. The authors showcased the architecture
using sensors to measure multiple vitals, including heart
rate and body temperature and environmental data like light
intensity, humidity, and temperature. They also utilized the
system for fall detection. The system is promising but does
not present a means of interacting with users. It also presents
a great resemblance to the architecture used in [36], which
augmented it with the mHealth dataset and a user interface
for caregivers (in the application layer), yet not its primary
users; patients.

Most architectures in literature highly depend on cloud
infrastructure for storage and analytics. Other architectures
include Hadoop Map Reduce techniques to process vast
amounts of data in parallel. Although utilizing the cloud
provides virtually unlimited space and computational power,
a side effect is the time delay in transferring data. This led
researchers to use faster communication, analysis, and tempo-
rary storage within the user’s local network to promote amore
effective response to dangerous situations with minimum to
zero delays. The devices that provide these functionalities are
referred to as fog devices. The name comes from the real-life
fog to resemble its proximity to the ground (environment)
instead of the cloud. One of the first research works in that
area was presented by Vora et al. [118]. The system imple-
mented is used for the detection of activities of daily living
based on a radar sensor. The authors highlight further advan-
tages in using fog devices for IoHT. It increases bandwidth,
lowers data transfer latency, and offers a complementary
decrease in energy consumption and data overload compared
to cloud computing.

Loza-Matovelle et al. [44] propose an architecture that
focuses on integrating robotics and HRI methods. The system

combines a network of heterogeneous sensors and actuators
in a decentralized manner that decouples the functionalities
of various agents. It is made of two servers that commu-
nicate together. A local (ROS-based) server oversees task
achievement while a server for web services integrates with
interactionswith the users. All communications in this system
use the MQTT protocol. The system is implemented with
different sensors, a robotic platform, and a hologram for
user interaction, thus showcasing its functionality. While the
system shows great promise of integrating various kinds of
agents and modularity, it will need a ROS network integration
for each new agent, which is not useful for non-robotic agents.
Therefore, further breakdown of the local server can prove
more practical, as shown in other works discussed here.

Nasr [42] provides a framework that focuses on modu-
larity and scalability and integrates heterogeneous agents,
sensors, robots, and HRI devices for AAL scenarios. In [124],
the framework is deployed in two scenarios (RHM andAAL),
using the same building blocks and combining both a cloud
and a fog layer. The framework is divided into three indepen-
dent layers, namely:

• Device Layer: Includes smart sensors in the environment
or on the user’s body, robotic agents, and agents used
for user interaction such as mobile phones, virtual assis-
tants, or gesture control devices. This layer covers all
kinds of objects that can interact with the real world and
users.

• IoT Fog Layer: Decentralized computing and storage
device(s) that receive the data from the device layer,
preprocess it, and sends required data to the cloud. Fog
devices reside in the local network of their users.

• Cloud Layer: Central hub for large data storage and
analytics. It allows easily expanding the capacity of the
system for processing and prediction models.

The authors argue that the proposed division of layers and
clearly defined communication protocols and methods allow
the framework to be flexible enough to fit into different use
cases and personalize each user according to their needs. Two
prototypes are created using the framework with different
agents and capabilities, but the prototypes still need user
testing and feedback in real-world scenarios.

Similarly, a multi-layer architecture made of a device layer,
fog computing layer, and a cloud layer is presented in [46].
The device and fog layer house the physical devices in the
environment and the fog devices, respectively. The cloud
layer separates the data and devices from the application and
manages the data, contains the rule and data analytics engine.
The architecture is implemented in an AAL environment
with real-time monitoring of HR and an indoor positioning
system. The communication was done through the MQTT
protocol. The data is stored using a Redis database in the fog
layer and MongoDB in the cloud.

Feria et al. [45] created an architecture of 3 separate layers.
The remote portable device layer combines all the sensing and
action devices in the physical world and allows data collection
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and manipulation of the environment. In their implemen-
tation, the devices in this layer contain either a sensor or
an actuator, microcontroller, and a communication module,
BLE. The second layer receives data from the remote portable
device layer and coordinates the devices through adding,
removing, or applying changes to devices. The collected data
is also manipulated and temporarily saved before being sent
to the next layer, and time-sensitive reactions are made at
this layer. Therefore, it can be thought of as a fog layer
like that proposed in [42], [46], and [118]. The final layer
is called the web service application layer. It reorganizes the
data to be presented to the users in different forms of user
interfaces. The architecture utilizes BLE for communication
with devices and JSON and RESTful API for communication
with the web service layer. The system is presented to the
user as a service-oriented architecture, where the users can
interact and control the devices and functionalities in the form
of services. The system, however, was not tested in a real-
world environment or implemented as a prototype.

VI. DISCUSSIONS, CHALLENGES, AND FUTURE
DIRECTIONS
This section describes the open discussions of the reviewed
frameworks and the challenges available in existing systems.
In addition, the potential future research directions are high-
lighted to demonstrate the scope for further study.

A. OPEN DISCUSSIONS
In this review, we have described smart healthcare frame-
works highlighting areas such as health monitoring sys-
tems based on wearable devices and smartphones, disease
detection using machine learning, utilizing IoMT and social
robots for AAL, and software integration architectures used
to develop such assistive frameworks.

The summary of the health monitoring systems based
on wearable devices and smartphones is illustrated
in Tables 1 and 2. From Table 1, it is evident that almost
all the systems can measure the heartbeat and body tem-
perature of the patients, which shows the importance of
these vitals. Additionally, some of the developed frame-
works [54]–[56]. Furthermore, [21] measure blood pressure
along with the heartbeat and body temperature. The com-
monly used edge device is NodeMCU in most cases; some
of the schemes [51], [52], [53] used two devices as edge
computing device. Almost all the systems used Wi-Fi for
data transfer; only the systems introduced in [55] and [56]
utilized Bluetooth for data communication. ThingsPeak and
web applications are very common for data visualization
that assists physicians in monitoring the patients. Further,
Adafruit and LabVIEW are used in [53] and [56] for data
visualization. A common negative aspect among the surveyed
studies is that the frameworks are not adequately manufac-
tured for clinical uses. From Table 2, it is found that most
of the reviewed systems monitored a single sign for the
patients except the frameworks developed in [61] and [67].
The camera module (rear and front) is used in most cases

as a sensing element; only the schemes introduced in [61]
and [64] utilized a microphone and accelerometer for data
perception. The different iPhone and Samsung brand smart-
phones are used for the experiment, although the prototype
presented in [64] did not mention any smartphone model.
The highest number of participants (205 people) are found
in [63], and the lowest number (5 individuals) is in [66]. The
maximum and minimum video duration of the collected data
is about 15 min and 10 seconds for [63], [66], respectively.
A data sampling rate of 30 Hz is utilized almost in all cases.
No security concerns are handled in most smartphone-based
health monitoring systems.

The summary of the machine learning-based disease diag-
nosis (COVID-19, heart disease, and diabetes) in the IoHT
environment is shown in Tables 3, 4, and 5. It is observed
from Table 3 that the reviewed systems utilized both the
benchmark and real-time sensor data, as the amount of data
for COVID-19 cases is relatively small. Most of the systems
used CNN or variants of CNN as a classification algorithm;
conventional machine learning technique is also used in
some cases [81], [28], [85]. The highest and lowest accu-
racy of 99.06% and 66.67% are found from [26] and [79].
Almost all the systems are not practically used in the target
environment. It is shown from Table 4 that some common
benchmark datasets like Hungarian and Cleveland databases,
along with real-time sensor data, are used for the experi-
ments. The highest accuracy of 99.45% is achieved from [31]
using the MSSO-ANFIS classification technique, and the
minimum value of 89% as an accuracy measure is obtained
from [94] using bagging ensemble learning. No wearable
prototypes are developed in almost all heart disease diagnosis
systems. In diabetes detection, only a popular benchmark
dataset (Pima Indians Diabetes dataset) is used in [108], and
the other frameworks utilize real-time data collected from
targeted individuals. Traditional machine learning techniques
are applied to develop support systems for diabetes patients.
The accuracy values 99.66% and 80.51% are appraised
from [105], and [106] are treated as maximum and minimum.
The clinical trials of the developed frameworks are absent
from the study.

Ambient assisted living has taken a huge portion of
researchers’ interest in healthcare frameworks and IoT. The
review presented here divided the efforts in the field into
two portions. First, smart home environments utilize sensors
and actuators to assist older adults in living longer, health-
ier lives while reducing the need for specialized healthcare
professionals and its associated cost. Researchers focus on
methods to track older adults’ motion and identify their
activities in their home environments. The systems developed
in [34], [114] utilized BLE and RSSI to develop a low-cost
localization system and deployed machine learning models
for activity recognition [36]. Moreover, unobtrusive sensors
have been of increasing importance over recent years. The
primary motivation is to present solutions that would require
minimal effort from older adults to incorporate into their daily
lives. To that end, [37], [115], [117], [118] propose solutions
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FIGURE 4. Generalized architecture in IoMT - 1.

that depend on radar, motion sensors, and door sensors to
identify the senior’s location, activity and detect dangerous
situations such as falls. Finally, approaches that involve more
dependency on user interaction, cloud computing, and storage
for better predictive analysis are presented in [22], [37], [118],
and [125].

These studies are all presented as work-alone systems
and do not attempt to capture the full capabilities that IoT
offers to this sector. For example, several studies propose
utilizing robotic systems to provide social companionship,
assistance in activities of daily living, and natural interac-
tion with the provided home systems. Table 6 summarizes
the approaches to develop social robots in recent literature.
A main component of the provided robots is their abil-
ity to autonomously navigate the indoor environment and
assist older adults without human interference. Other capa-
bilities requested by various stakeholders include fetch and
carry facial recognition and video chatting for telepresence.
Researchers developed robots to act as the sole agent for the
care of older adults [39]–[41]. Although this brings users per-
sonalization, it fails to capture the power of fully integrated
smart sensors. To that end, [42]–[44], [119] integrate existing
commercial robotic agents into IoT environments. The main
system behind the robotic systems was ROS, and the main
communication protocols utilized were REST and MQTT.
The sensors linked to these robotic systems included smart-
watches/bracelets and cameras. A fallback of the proposed
systems is the lack of real-world validation and extensive test-
ing. Such testing is needed with user feedback to showcase
its applicability beyond research and improve the design and
functionalities in a user-based approach.

The presented review also highlights the most recent
suggestions for software architectures for smart healthcare.
The main factor that combines the proposed systems is
modularity and multi-layered architecture. The proposed

architectures can be summarized to a generic framework as
shown in Figure 4, comprised of the main users, a device
layer, a cloud layer, and user interaction devices. A percep-
tion layer or device layer is utilized to combine the sensory
data from multiple sources and stream it to the rest of the
system for processing. Such a layer is utilized in most recent
literature. The collected data is then processed in either a
local device or in the cloud. Fog computing is proposed to
accelerate response to real-time data and serve as temporary
storage [42], [45], [46], [118]. Furthermore, researchers pro-
pose a link to the cloud for greater computational and storage
power and enhanced scalability. This leads to the second
approach, which combines both a fog layer and a cloud layer,
as shown in Figure 5. Several discussed studies have used the
fog layer to provide real-time analytics and faster response to
dangerous situations. The modularization of smart healthcare
is essential, as shown in several studies explored in this paper.
However, this emphasizes standardizing communication pro-
tocols between the layers, especially between the devices and
the device or perception layer.

Several studies opted to create their sensors to conform
to their proposed architectures, thus decreasing the potential
benefit. Conforming to commercial off-the-shelf sensors and
reaping the benefits of the wide-spread spectrum of sen-
sors for remote healthcare is crucial, which led studies such
as [42], [122] to provide a direct link to incorporate these
systems. A major fallback in most software architectures
is their abstract nature. Developing market-ready software
architectures goes beyond linking the layers and transmitting
data. Other aspects such as security and privacy need to be
addressed heavily to enable a commercial smart healthcare
framework. Such aspects are usually addressed independently
from the framework. The authors see a vital need to include
them in the software architecture design to enable a complete
framework for smart healthcare.

B. CHALLENGES AND FURTHER RESEARCH DIRECTIONS
Although several assistive frameworks have been developed
using modern technologies to ensure smart healthcare, some
challenges need to be addressed to ensure a scalable, secure,
easily accessible, and efficient healthcare system. The main
challenges, along with the potential future research direc-
tions, are demonstrated here.

The major challenge for implementing smart healthcare
using wearable devices, including smartphones, is integrating
the data from different sensors. The various sensors generate
several data types. It is important to convert the signals from
heterogeneous sensors attached to patients to a meaning-
ful format for health monitoring applications. Several data
fusion techniques [126]–[128] for integrating information
derived from multi-sensory devices can be investigated as a
means of providing streamlined signals for improving relia-
bility and minimizing the bandwidth required for communi-
cation with the cloud layer as future work. Further, a hybrid
body-sensor network architecture based on multi-sensor data
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FIGURE 5. Generalized architecture in IoMT - 2.

fusion approaches will be investigated based on the work
of [129]–[131].

Another key issue relating to the healthcare system based
on wearable devices is the security and privacy of patients’
responsive health records. The security issue has become a
widespread and continuous challenge for wearable devices
in IoT environments because of the increasing complexity of
the data and the progressive network attacks. In the future,
more secure and privacy-preserving frameworks using differ-
ent security ensuring protocols like Blockchain [132]–[134]
are recommended that can provide secure data communi-
cation among the users (patients and their families, medi-
cal experts, and caregivers). Low power consumption and
energy efficiency are very significant for smart healthcare
systems based on wearable devices and smartphones, espe-
cially for long-term patient monitoring. These issues can be
handled by using low power equipment [135], long-life bat-
teries [136], and energy harvesting techniques [137], [138] in
future research. Another way to increase the battery’s lifetime
is the sensors ‘sleep’ and ‘wake-up’ properties employed to
ensure the desired goal.

Along with the previous challenges, smartphone-based
health monitoring systems face some noise as the col-
lected data from smartphone cameras are in image/video
format. Generally, the noise in the data delivers misinfor-
mation to the users. Some major developments for health-
care applications are needed that are capable of handling
noisy environments [139], [140], or some noise-free solu-
tions [141] as future works. The developed prototypes should
be maintained like low-cost, easy-to-use, and compatible
platforms to increase the acceptance rate. More research
and development activities can be ensured for developing

assistive devices for smart healthcare considering the user
needs.

Machine learning-based disease diagnosis systems also
suffer from various unique challenges that need to be resolved
to develop efficient and accurate frameworks for disease
detection in IoHT environments.

Remote patient monitoring raises several real-world chal-
lenges, such as what to do with missing or incomplete data.
Loss of electric power may cause the loss of some data being
collected. In the worst case, a natural catastrophe such as
an earthquake or weather-related event may cause data loss
before archiving it at a central cloud location. This would be
particularly problematic for patients with serious illnesses at
home. Also challenging is whenmultiple patients have severe
conditions that require assistance beyond what healthcare
teams can respond to quickly. There will need to be ways
to have a way to send those requests to another healthcare
provider. Wearable devices may also fail, and so there may
be incomplete and inconsistent data. We will need ways to
deal with missing data, such as those proposed by Kaur and
colleagues [150], [151].

Another challenge is to fit machine learning and deep
learning algorithms with a small amount of data. To resolve
the issues related to data shortage, optimized learning algo-
rithms [142], end-to-end architecture [143], and synthetic
data generation using generative adversarial networks [144]
are highly recommended for future studies. Furthermore,
there are several unnecessary features in the dataset for
detecting heart disease responsible for occurring the dis-
ease, and these features often degrade the performance of
the developed systems. In this scenario, the use of some
optimization and feature selection algorithms such as genetic
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FIGURE 6. Venn diagram of discussed studies grouped into focus areas (machine learning, remote health
monitoring, and ambient assisted living).

algorithm [145], particle swarm optimization [146], principal
component analysis [147], etc., would be a potential solution
to improve the performance of the detection procedure in
future research. Furthermore, most of the studies depicted
that the diabetes detection systems used data from the glucose
sensors to achieve their goal. Hence, the proper design of
sensors with long life would be an excellent approach for
diabetes monitoring and detection. The design of lightweight
machine learning frameworks [148], [149] would be bet-
ter suited in the embedded devices to ensure smart health-
care systems in the future study. Overall, it is found from
the reviewed systems that the developed prototypes are not
entirely manufactured for practical uses. In some cases,
no clinical tests have been conducted yet. Most of the systems
represented their results considering the laboratory environ-
ment. Addressing these issues considering human health con-
ditions will lead to potential research directions in the future.

AAL is a crucial application for smart healthcare, owing
to its benefits in improved and 24-hour monitoring of health
and cost reductions on both the older adults and the health-
care system. Nevertheless, there are some challenges left to
tackle. First, a user-based approach is required with feed-
back from older adults and redesign of the system accord-
ingly. The aging society has special needs that are tough
to identify without real-life tests and formal user studies.

Moreover, using robotic agents and their integration into a
smart environment is important for physical assistance and
social presence. Usability and acceptability of smart health-
care systems by older adults is linked to enabling independent
living in their own home [36], [43], [109], [111], person-
alization [36], [37], and the intuitiveness of user-interface
as highlighted in [39], [41], [42], [111]. As a result, it is
important to directly tackle these three aspects in designing
AAL systems and follow user-based testing and improvement
with older adults in future studies.

To summarize the applications of IoHT in RHM and AAL
and howML is integrated into previous works, Figure 6 sum-
marizes most of the implemented works reviewed in this
paper. The figure also shows how these fields intersect in
many studies. More studies tackle them together than inde-
pendently, which highlights how interdependent they are.
This also emphasizes that a real IoHT system that would pro-
vide themost benefit needs to be designedwith a combination
of these sectors in mind.

Software architectures meant for smart healthcare have
been improving and following the same direction of modular-
ization and scalability. Recent studies highlighted the need for
providing means of integrating COTS and therefore standard-
izing communication technologies and protocols. Such proto-
cols need to enable multiple user interfaces to accommodate
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different users and applications. Moreover, both fog devices
and cloud integration are needed for real-time response and
the power of the cloud for big data analysis, storage, and scal-
ability. Finally, security and privacy concerns are of utmost
importance when it comes to health-related data. Conse-
quently, these aspects need to be part of the design of the
smart healthcare frameworks at an early stage, utilizing the
most recent advancements in Blockchain technologies and
allowing access to data appropriate to users in question.

VII. CONCLUSION
Smart healthcare provides a secure, effective, and easily
deployable health monitoring system that can ensure qual-
ity healthcare services at a fraction of the cost currently
incurred by hospitals or assisted living centers. In this review,
we briefly discussed the state-of-the-art wearable devices and
smartphones for basic signs monitoring, machine learning
for three significant diseases (COVID-19, heart disease, and
diabetes) diagnosis, and the frameworks developed to aid the
adults in ambient assisted living. The software integration
frameworks that are very substantial to develop smart health-
care are demonstrated in a nutshell in this review. We have
reviewed the advantages and shortcomings of a wide range
of systems. In addition, we discussed the major challenges
of recently developed smart healthcare frameworks that are
the main obstacles to develop assistive prototypes. Some
potential future research directions are recommended for the
further improvement of the existing healthcare system. It is
quite impossible to replace the whole medical system with
technology, but it can reduce the burden of medical experts
by introducing some novel architectures. The development of
such assistive systems would be feasible while the medical
experts and the researchers would work jointly in a platform.
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