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ABSTRACT Computationally efficient, accurate, and privacy-preserving data storage and retrieval are
among the key challenges faced by practical deployments of biometric identification systems worldwide.
In this work, a method of protected indexing of biometric data is presented. By utilising feature-level fusion
of intelligently paired templates, amulti-stage search structure is created. During retrieval, the list of potential
candidate identities is successively pre-filtered, thereby reducing the number of template comparisons
necessary for a biometric identification transaction. Protection of the biometric probe templates, as well
as the stored reference templates and the created index is carried out using homomorphic encryption. The
proposed method is extensively evaluated in closed-set and open-set identification scenarios on publicly
available databases using two state-of-the-art open-source face recognition systems.With respect to a typical
baseline algorithm utilising an exhaustive search-based retrieval algorithm, the proposed method enables a
reduction of the computational workload associated with a biometric identification transaction by 90%,while
simultaneously suffering no degradation of the biometric performance. Furthermore, by facilitating a seam-
less integration of template protection with open-source homomorphic encryption libraries, the proposed
method guarantees unlinkability, irreversibility, and renewability of the protected biometric data.

INDEX TERMS Biometric identification, biometric template protection, computational workload reduction,
indexing, information fusion, face recognition.

I. INTRODUCTION
Personal, commercial, and governmental identity manage-
ment systems increasingly rely on biometric technologies,
which enable reliable recognition of individuals based on
highly distinctive characteristics of human beings, e.g. face
or fingerprints. Applications ranging from personal device
access [1], border control [2]–[4], forensic investigations
and law enforcement [5]–[7], national ID systems [8], [9],
and voter registration [10], [11] benefit from the use of
biometrics. The largest systems of this kind enrol hun-
dreds of millions or even beyond a billion enrolled subjects
(see e.g. [12]), with the global market value of biometric
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technologies currently estimated to be tens of billions of
dollars [13].

As the prevalence, size, and scope of the operational bio-
metric systems increase, the development of technologies
which are capable of accurately and efficiently processing
biometric data becomes critically important. In the chal-
lenging identification and duplicate enrolment check scenar-
ios, where typically an exhaustive search (i.e. one-to-many
comparison) is needed, solutions which facilitate practical
system response times are indispensable. Rather than merely
scaling the hardware architecture, which is associated with
high monetary costs, algorithmic methods (such as indexing)
referred to as biometric workload reduction [14] can be used
to speed-up the search queries (and hence reduce the mone-
tary costs). In recent years, strong interest from governmental
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side in such methods has been manifested through numerous
benchmarks and competitions [15]–[17].

In addition to the aforementioned practical requirements
pertaining to biometric performance and computational effi-
ciency, preventing misuse (e.g. privacy violations) of the
stored biometric reference data is essential. Existing pri-
vacy regulations, e.g. the General Data Protection Regulation
(GDPR) [18], classify biometric data under ‘‘special cate-
gories of personal data’’, thus entailing significant responsi-
bilities for the data controllers.

Traditional encryption methods are unsuitable for protect-
ing biometric data, since biometric characteristics exhibit
a natural intra-class variance. If traditional cryptographic
techniques are applied to biometric templates, said biometric
variance prevents a biometric comparison in the encrypted
domain. That is, the use of conventional cryptographic
methods would require a decryption of protected biometric
data prior to the comparison. In contrast, biometric template
protection [19]–[21] enables a comparison of biometric data
in the encrypted domain and hence a permanent protection
of biometric data. Biometric template protection schemes
use auxiliary data to obtain pseudonymous identifiers from
unprotected biometric data. Biometric comparisons are then
performed via pseudonymous identifiers while unprotected
biometric reference data is discarded [22].

Biometric template protection schemes have hardly been
employed in biometric identification systems [14]. One
reason for this is that many types of biometric template pro-
tection schemes require complex comparison methods which
renders them unsuitable for biometric identification (where
the workload is dominated by comparison costs). So far, only
a handful approaches have combined computational work-
load reduction strategies with biometric template protection.
In the context of face biometrics, those studies have mainly
employed cancelable biometrics, e.g. [23]–[25]. However,
most of those systems still report a degradation w.r.t. bio-
metric performance when benchmarked against unprotected
systems. Practically feasible applications of homomorphic
encryption in biometric identification systems have likewise
been presented [26]–[28]; however, while suffering little to
none biometric performance degradation, these schemes also
have relied on exhaustive search in a biometric identification
scenario and have not considered integration of computa-
tional workload reduction such as biometric indexing.

A. CONTRIBUTION AND ORGANISATION
The main contributions of this article are as follows:
• A comprehensive overview and literature survey of
works pertaining to (and especially those combining) the
areas of information fusion, computational efficiency,
and template protection in biometric identification
systems.

• A proposal of a multi-stage protected indexing and
retrieval system for facial biometric identification based
on optimised information fusion and incorporating data
privacy-preservation with homomorphic encryption.

• A thorough theoretical analysis and empirical evaluation
of the proposed system on a large dataset with state-
of-the-art facial recognition systems. Using ISO/IEC
IS 19795-1 [29] compliant experimental protocol and
metrics, the proposed system is shown to reduce the
computational workload of a biometric identification
retrieval by approximately 90%, while simultaneously
maintaining the baseline biometric performance. Addi-
tionally, the possibility of seamless integration of post-
quantum-secure homomorphic encryption means that
the data security and privacy objectives specified in
ISO/IEC IS 24745 [22] are ensured.

The remainder of this article is organised as follows:
section II provides relevant background information and an
overview of related works. The proposed system is described
in section III. The experimental setup and the obtained results
are presented in sections IV and V, respectively. Section VI
contains concluding remarks and a summary.

II. BACKGROUND AND RELATED WORK
The system proposed in this article combines three
research areas within biometrics, i.e. information fusion
(subsection II-A), computational workload reduction
(subsection II-B), and template protection (subsection II-C).
This section provides a brief overview of the relevant back-
ground information and key related works in those areas.

A. INFORMATION FUSION
Information fusion can be used in order to improve
the discriminative power of a biometric recognition sys-
tem. Referred to as ‘‘multi-biometric systems’’, they take
advantage of multiple information sources which are
combined (fused) in some way. Following fusion cate-
gories can be generally distinguished in the context of
biometrics [30], [31]:

Multi-type where multiple biometric characteristics (such
as facial images and fingerprint scans) are used.

Multi-sensorial where the biometric data acquisition is
conducted with diverse sensors providing comple-
mentary information (for example, near-infrared and
visible-wavelength cameras).

Multi-algorithm where the biometric data is processed util-
ising several complementary algorithms (for instance,
image descriptors based on texture and keypoint infor-
mation).

Multi-instance where more than one instances of the same
underlying type of biometric characteristic are used
(e.g. the images of right and left iris).

Multi-sample where several biometric samples stemming
from one type of biometric characteristic are used
(e.g. multiple acquisitions of a fingerprint scan with
the purpose of detecting reliable regions or assuring the
quality and consistency of the acquired data).

Information fusion can occur at different steps of the bio-
metric processing pipeline [30], [31], including:
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Sensor where raw data (e.g. images acquired by different
sensors or multiple samples) is combined before other
processing steps [32], [33].

Feature where the extracted feature sets (e.g. from multiple
samples) are consolidated [34], [35].

Score where the comparison scores computed thro-
ugh different information channels are combined
(e.g. averaged) [36], [37].

Rank where the orders (ranks) of potential matches
between a probe and the enrolment database obtained
through different information channels are consoli-
dated [38], [39].

Decision where the decisions (i.e. acceptance or rejection)
obtained through multiple information channels are
combined (e.g. by a majority vote) [40], [41].

In the context of this work, fusion of multiple samples
(from different data subjects) on feature level are of most
interest, as the system proposed in section III is designed to
operate at those level of the biometric processing pipeline.

The topic of information fusion in biometrics has been
addressed extensively in the scientific literature. In [30],
a general introduction to this topic is given, while [31],
[42], [43] provide recent and comprehensive surveys of this
research area.

B. COMPUTATIONAL WORKLOAD REDUCTION
Maintaining fast biometric identification system response
times often requires optimisation or additional investments
as the size of the enrolment database increases. The compu-
tational costs of the typical, exhaustive search-based, retrieval
method tend to grow linearly with the number of enrolled
data subjects [44]. Naturally, the expansion of the underlying
hardware (e.g. by using many servers which facilitate dis-
tributing the computations) can be used to maintain quick
system response times; however, this solution carries with
it high monetary costs, such as the purchase of the equip-
ment, its installation and maintenance, etc. While hardware
investments are often inevitable, an often overlooked possi-
bility is the optimisation of the underlying software and/or
algorithms.

In this context, the field of computational workload reduc-
tion has emerged in recent years and numerous methods have
been proposed which can help to mitigate some of the costs
of the physical infrastructure. The goal of such methods is
the reduction of the required amount of computations for
some specific tasks in the biometric recognition pipeline.
As the computational costs of the biometric template compar-
isons typically dominates the overall computational effort in
biometric identification transactions, most of the approaches
proposed in the literature are aimed specifically at optimising
this step of the biometric identification pipeline [14]. More
specifically, two broad classes of approaches can be distin-
guished: pre-selection, concentrating on the reduction of the
search space, i.e. the number of necessary template compar-
isons (see e.g. [45]), and feature transformation, aimed at

lowering the computational cost of the individual template
comparisons (see e.g. [46]). The former are of interest in the
context of this article.

Numerous methods rely on the so-called pre-filtering of
the enrolment database during a biometric identification
transaction. Such methods depend on categorical or weakly
discriminative features (e.g. geographic and/or demographic
metadata [47] or soft biometrics [48]), whereby the poten-
tial search space can be narrowed down quickly prior
to considering the actual highly discriminative, but more
computationally expensive to compute, biometric features.
Conceptually similar two or multi-stage methods oper-
ating on weakly discriminative, compact representations
(e.g. dimensionally-reduced or binarised) representation
of biometric data have also been considered [49]–[51].
Likewise, general concepts of coarse-to-fine search,
nearest-neighbour search, and clustering based on the fea-
ture sets extracted from biometric samples have also been
proposed [14], [45].

More complex methods directly utilising the extracted bio-
metric features and aimed at creating an intelligent search
structure (e.g. a search tree) have been shown to be capa-
ble of significantly reducing the computational workload.
In [52], a tree-based indexing and retrieval system for iris data
has been proposed. Many successful methods of biometric
indexing integrate information fusion; for example, [53] for
multi-instance fingerprint and iris data, respectively. Further-
more, generic multi-biometric indexing methods have also
been proposed e.g. in [54]–[56].
In [57], a multi-biometric cascade has been proposed with

the aim of successively filtering the candidate short-lists
based on score-level information. Similar concepts were
utilised in [58], where a signal-level fusion (i.e. morphing,
see e.g. [59]) of facial images facilitates a computationally
efficient and accurate indexing and retrieval for biometric
identification. Those methods are most closely related to the
indexing and retrieval method presented in this article.

Generally, the methods mentioned in this subsection often
require the storage of additional information (e.g. metadata)
and/or a kind of a ‘‘setup’’ step (e.g. creation of a search
structure) which requires some computational effort, but only
needs to be performed infrequently. On the other hand, many
of the described methods facilitate the reduction of com-
putational workload associated with biometric identification
transactions by several orders of magnitude w.r.t. the typical
exhaustive-search based retrieval method.

C. BIOMETRIC TEMPLATE PROTECTION
Biometric template protection represents an active field of
research since more than two decades. Comprehensive sur-
veys on this topic can be found in [19]–[22]. Biomet-
ric template protection methods are usually categorised as
cancelable biometrics and biometric cryptosystems. Can-
celable biometrics employ transforms in signal or feature
domain which enable a biometric comparison in the trans-
formed (encrypted) domain [62]. Biometric cryptosystems
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commonly bind a key to a biometric feature vector resulting
in a protected template. Biometric comparison is then per-
formed indirectly by verifying the correctness of a retrieved
key [63].

In addition to such domain-specific approaches,
general-purpose homomorphic encryption can be employed
for biometric template protection [64]. Homomorphic
encryption makes it possible to compute operations in the
encrypted domain which are functionally equivalent to those
in the plaintext domain and thus enables the estimation
of certain distances between homomorphically encrypted
biometric templates. As defined in ISO/IEC IS 24745 [22],
biometric template protection schemes shall fulfil the follow-
ing requirements:

Unlinkability the infeasibility of determining if two or more
protected templates were derived from the same bio-
metric instance, e.g. face. By fulfilling this property,
cross-matching across different databases is prevented.

Irreversibility the infeasibility of reconstructing the original
biometric data given a protected template and its cor-
responding auxiliary data. With this property fulfilled,
the privacy of the users’ data is increased, and addi-
tionally the security of the system is increased against
presentation and replay attacks. Depending on the used
template protection method, guaranteeing this property
may rely on sufficiently protecting a certain secret
(e.g. private encryption key(s)) from being compromised
by an attacker.

Renewability the possibility of revoking old protected tem-
plates and creating new ones from the same biometric
instance and/or sample, e.g. face image. With this prop-
erty fulfilled, it is possible to revoke and reissue the
templates in case the database is compromised, thereby
preventing misuse.

Performance preservation the requirement of the biomet-
ric performance not being significantly impaired by the
protection scheme.

Table 1 lists the mentioned types of biometric template
protection and their properties w.r.t. the above criteria as
well as key derivation and efficient biometric comparison.
The majority of approaches on cancelable biometrics and
biometric cryptosystems report a performance gap between
protected and original (unprotected) systems [21], as opposed
to approaches employing homomorphic encryption. Can-
celable biometrics usually employ a biometric comparator
similar or equal to that of unprotected biometric systems.
Therefore, cancelable biometrics are expected to maintain the
comparison speed of the unprotected system which makes
them also suitable for biometric identification [14]. In con-
trast, biometric cryptosystems may need more complex com-
parators. Similarly, homomorphic encryption usually requires
higher computational effort. Practical applications of certain
template protection methods, e.g. homomorphic encryption,
rely on maintaining the secrecy of the private key(s) used to
protect the data (see also subsection V-E).

TABLE 1. Properties of template protection categories.

Some research efforts and standardisation activities have
been devoted to establishing metrics for evaluating the
aforementioned properties of biometric template protection
schemes, e.g. in [65]–[68]. Nonetheless, additional specific
cryptanalytic methods may be necessary to precisely esti-
mate the security/privacy protection achieved by a particular
template protection scheme. Moreover, the result of such an
evaluation also depends on the biometric data to which the
template protection system is applied. This makes a compar-
ison of published results difficult and sometimes misleading.

In 2001, Ratha et al. [69] proposed the first cancelable
face recognition system using image warping to transform
biometric data in the image domain. Another popular can-
celable transformation of face images based on random con-
volution kernels was presented in [70]. In contrast to [69],
this approach employs a fundamentally reversible distor-
tion of the biometric signal based on some random seed
which later coined the term ‘‘biometric salting’’. Themajority
of published cancelable face recognition schemes applies
transformations in the feature domain [62]. Over the past
years, numerous feature transformations have been pro-
posed in order to construct face-based cancelable biometrics,
e.g. BioHashing [71], BioTokens [72], and Bloom fil-
ters [73]. Recently, feature transformations have been specif-
ically designed for deep convolutional neural networks, e.g.
learned security [74]. Analyses of some popular cancelable
face recognition systems have uncovered security gaps, e.g.
in [75]–[78], and already led or are expected to lead to
(continuous) improvements of such schemes.

Regarding biometric cryptosystems, the fuzzy commit-
ment scheme [79] and the fuzzy vault scheme [80] represent
widely used cryptographic primitives. Both schemes enable
an error-tolerant protection of (biometric) data by binding
them with a secret, i.e. key. Binarised face feature vectors
have been protected through the fuzzy commitment scheme in
various scientific publications, e.g. in [81], [82]. Also some
works have employed the fuzzy vault scheme for face tem-
plate protection, e.g. in [83]–[85]. It is worth mentioning that
some template protection approaches combine concepts of
cancelable biometrics with those of biometric cryptosystems
resulting in hybrid schemes [20].

For a long time, homomorphic encryption has been con-
sidered as impractical for biometric template protection
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TABLE 2. Overview of most relevant privacy-preserving WR schemes for face-based identification systems (results reported for best configurations and
scenarios; note the differences in the used evaluation datasets and performance metrics).

due to its computational workload. However, in the last
years, homomorphic encryption has been applied effectively
to face-based verification where practical processing times
could be achieved on commodity hardware [26]. Depending
on the used homomorphic cryptosystem, different feature
type transformations might be required.

Relevant works on biometric template protection for
face-based identification systems, i.e. one-to-many compar-
isons, are shown in table 2. The biometric performance
metrics are reproduced in the table exactly as in the cited
papers. Note that differently named metrics often corre-
spond to the same underlying concept and/or the authors use
them in a manner divergent from that specified in ISO/IEC
IS 19795-1 [29]. For example, RR-1 is the same as CRR-1,
while FRR and FAR roughly correspond to FNIR and FPIR.

Some of the listed approaches are cancelable biometrics
which usually retain the biometric comparator of the cor-
responding unprotected system. As mentioned earlier, this
property makes these approaches well suited to be applied
in identification mode. In addition, approaches for face iden-
tification with homomorphic encryption have been proposed,
e.g. in [27], [28]. These works, use different concepts to
maximize the efficiency of homomorphic encryption, includ-
ing optimisation strategies, e.g. batching or dimensional-
ity reduction. In summary, it is important to note that all
published works on biometric template protection for face
identification employ an exhaustive search, i.e. these scheme

scale linearly w.r.t. to the number of protected reference face
templates in the database.

As mentioned in subsection II-C, a large concern in bio-
metric system deployments is the risk of data exposure.1

Simultaneous efficient indexing and protection of biomet-
ric data has been proposed e.g. in [24], [60], [87], [88].
In [27], [28], the authors explore the use of homomor-
phic encryption in conjunction with biometric identification
and attempt to reduce computational workload by apply-
ing a packing strategy to decrease the computation between
the ciphertexts or by applying different (more computation-
ally efficient) HE schemes. In summary, coupling biometric
template protection with computational workload reduction
(i.e. ensuring privacy and computational efficiency in addi-
tion to high biometric performance) is an insufficiently
addressed topic in biometric research.

III. PROPOSED SYSTEM
The high-level, conceptual overview of the proposed sys-
tem is demonstrated in figure 1 (indexing) and algorithm 1
(retrieval). The proposed system relies on creation of an
efficient tree-like search structure by fusing the reference
templates stored in the enrolment database. Let N be the
number of subjects in the enrolment database and ni (selected

1This risk is not merely hypothetical – consider real hacks such as those
described in [86].
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FIGURE 1. Conceptual overview of database indexing and retrieval in the proposed system.

from the set
{
2x | x ∈ N+

}
) be the number of subjects con-

tributing to the fused templates at the i’th level of the tree-like
search structure. For instance, in figure 1, the roots of the
indexing trees consist of four subjects, i.e. n1 = 4. On the
following levels, this number decreases (n2 = 2) until
non-fused reference templates are considered at the final level
(n3 = 1). Subsections III-B and III-C provide details on how
the templates to be fused are paired and what information
fusion methods are used.

During a biometric identification transaction, the created
search structure is traversed whereby the biometric probe
is compared against the fused templates in order to succes-
sively narrow down the list of potential candidate identities
at each level of the search structure. The search structure
has log2 n1 + 1 levels; let ki represent the fraction of the
fused templates and their corresponding identities selected at
the i’th level of the search structure. The key idea here is
for k to be relatively small and decreasing at each level of
the search structure. Subsection III-A provides more details
on this retrieval algorithm, as well as a theoretical analysis of
the possible gains in computational efficiency w.r.t. a naïve
exhaustive search-based retrieval algorithm. The proposed
system also allows for a seamless integration of template
protection as described in subsection III-D.

A. RETRIEVAL
Since the fused templates retain sufficient discriminative
power, the probes exhibit better comparison scores against
their respective correct (mated) fused templates than against
the other (non-mated) fused templates. Consequently, it is
possible to make a robust pre-selection of a candidate
short-list to be passed onto the next level of the cascade.
In a successive manner, which is conceptually similar to the

Algorithm 1 Retrieval in the Proposed System
Input: probe, indexing_trees
Output: candidates
1: candidates← roots of indexing_trees
2: for i = 1 to log2 n1 + 1 do
3: scores← compare probe with all candidates
4: best_scores← find ‖scores‖ · ki highest scores
5: candidates← select candidates with best_scores
6: end for
7: return candidates

previous works on multi-modal and signal-level fusion-based
cascades of Drozdowski et al. [57], [58], the candidate
short-list shrinks at each level, thus resulting in fewer tem-
plate comparisons being made and hence in computational
workload reduction. The computational workload (W ) [29]
of the proposed retrieval scenario can be obtained using the
following formula:

W =
N
n1
+
∑log2 n1

l=2 2kl

N
· 100% (1)

This equation expresses the computational workload of the
proposed indexing and retrieval method as a percentage of the
workload required in the typical baseline scenario where an
exhaustive (1:N ) search is carried out.

Figure 2 illustrates the impact of the parameters of the
proposed system on its computational workload. The x-axis
shows the number of fused templates at the root level of
the search tree, i.e. how many templates are fused with each
other (the n1 parameter). The y-axis denotes the fraction of
templates pre-selected at the root level (k1) followed by a
cascade with logarithmically decreasing pre-selection sizes.
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FIGURE 2. Theoretical overview of computational workload depending on
the parameters of the proposed system.

�(W) denotes the theoretical lower bound, i.e. 1 fused tem-
plate being pre-selected at each level of the cascade. The
values in the figure are given for an N value which was used
in the empirical experiments reported later on in the paper.
With an increasingN value (i.e. growth of enrolment database
size), the lower bound of computational workload for the
proposed system can be expressed as follows:

lim
N→∞

�(W) =
1
n1
· 100% (2)

Following three observations can be made:

1) There do exist configurations (based on k1 and
n1 parameters) which require significantly less com-
putational workload than the baseline. In other words,
provided sufficient discriminative power, the proposed
system is capable of reducing the computational work-
load in biometric identification.

2) The k1 parameter has amoderate impact on the possible
computational workload reduction within each of the
four columns. Indeed, diminishing returns are quickly
approached as k1 at root level decreases – c.f. the work-
load at lower bound with values at e.g. k1 = 2−4 or
k1 = 2−5.

3) The n1 parameter has a large impact on the possi-
ble computational workload reduction. Each time n1
is doubled (i.e. the height of the cascade increases),
the workload is approximately halved for all k1 values.

From the above observations, it follows that for a
workload-centric perspective, one would prefer as high
n1 value as possible in order to achieve highest possible
workload reduction; the k1 values usually being a secondary
concern. Consider, for instance, that for n1 = 8, the lower
bound for achievable workload is 12.65%. If n1 can be
increased to 16, the aforementioned workload is achieved
already at a relatively high fraction (k1 = 2−2) of templates
being pre-selected at that level. It is, however, important to
remember that the indexing and pre-selection may increase
the false-negative errors, i.e. the parameters n1 and k1 likely

cannot be set to achieve the lower bound for computa-
tional workload without simultaneously causing a significant
impairment of the biometric performance. In other words,
the desired reduction in computational workload needs to be
feasible w.r.t. the discriminative power of the utilised recogni-
tion system. This trade-off between computational workload
and biometric performance is evaluated empirically later on
in this article.

B. SELECTION OF FEATURE VECTOR PAIRS
Deciding which parent samples to fuse with each other is
expected to have a non-trivial impact on the efficacy of the
proposed system. With an intelligent matching of the fused
subject pairs, an increase in the discriminative power of the
pre-selection procedure is expected, thereby improving the
overall results of the proposed system in terms of biometric
performance and computational workload.

Ideally, similar data subjects/samples would be fused with
each other. Conceptually, matching such pairs belongs to an
old andwell-known class of combinatorial optimisation prob-
lems. One could formulate it in terms of a stable roommates or
stable marriage problem. In practical experiments, however,
such formulation has been plagued by issues related to ‘‘odd
pairs’’ and solvability on a large set of data (see [89]–[91]).
In this work, those issues are circumvented by optimising
the matching algorithm with a global cost function instead
of seeking a stable matching. The benefit of this approach
is that some poorly matched (i.e. with a high cost) pairs are
allowed, while the overall matchings are well-optimised for
a given enrolment database. In practical experiments, this
formulation (corresponding to the assignment problem) has
been applied successfully.

More formally, let S represent the set of data subjects
present in the enrolment database. A bijective mapping of
this set to itself is sought, i.e. f : S → S, with an additional
constraint that the subjects may not be mapped to themselves,
i.e. ∀s ∈ S, f (s) 6= s. Given a weight function C : S ×
S → R+, the aim of a successful mapping is to minimise∑
s∈S

Cs,f (s). This work considered three methods for mapping

selection:
Random samples are paired purely by chance, i.e. no special

algorithm is used for the pair selection.
Soft-biometric similarity based on soft-biometric attributes

(sex, race, age) is computed between the enrolled sam-
ples as a basis for the assignment.

Similarity-score similarity based on non-mated comparison
scores between the enrolled samples computed with
a facial recognition system serves as a basis for the
assignment.

In practice, given an N -subject large enrolment database,
a square matrix with the aforementioned similarity scores
(soft-biometric or recognition based) can be created as illus-
trated in equation 3. There, Sx denotes the x’th data subject,
while cx,y denotes the cost of pairing the x’th and y’th data
subject with each other. To represent the constraint of data
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subjects not being allowed to be paired with themselves,
the diagonal is set to∞. In the concrete software implemen-
tation, the largest possible value of a floating-point datatype
is used instead.

C =



S1 S2 S3 · · · SN
S1 ∞ c1,2 c1,3 · · · c1,N
S2 c2,1 ∞ c2,3 · · · c2,N
S3 c3,1 c3,2 ∞ · · · c3,N
...

...
...

...
. . .

...

SN cN ,1 cN ,2 cN ,3 · · · ∞


(3)

As formulated above, a polynomial time solution for the
problem exists using the so-called Hungarian algorithm [92].
An iterative procedure is used to produce pairs for subsequent
steps in the cascade, i.e. for n > 2. While nominally compu-
tationally intensive, this step is only required once (offline)
during indexing of the enrolment database and not during
every retrieval. Parts of the procedure can be trivially par-
allelised and for larger databases the polynomial factor can
be mitigated by processing the database in chunks instead of
directly feeding it to the algorithm.

Figure 3 shows examples of subjects paired using the
soft-biometric and similarity-score based methods described
above. Details on the dataset and face recognition systems
used in the experiments are provided in section IV.

FIGURE 3. Example images of pairings found using the proposed method.

C. FEATURE FUSION METHODS
The choice of information fusion method has a non-trivial
impact on the discriminative power and hence the biometric
performance of a recognition system [42], [43]. The over-
arching goal of feature-level fusion is to create a fused fea-
ture vector v = (vi)ni=1, vi ∈ R from a pair of feature
vectors v and v′ of same size. For simplicity, this definition
and the formulas of the used fusion methods are provided in
a notation for two feature vectors being fused (i.e. n = 2).
However, for the specific application scenario considered
in this article, they can be (and are) trivially extended to

an arbitrary number (n) of feature vectors from the set
{2i | i ∈ N+}. Note that the fused feature vectors retain the
length and datatype of the originally extracted feature vectors.
Hence, no change of comparators is necessary to compute
distances between the fused and original templates.

Three fundamentally different types of feature fusion
methods are considered and described below. In the provided
formulas, µ represents an overall average value of elements
at a given position and is computed on a disjoint training set
of feature vectors.

1) AVERAGE-BASED
An intuitive method to fuse feature vectors is averaging.
Following variants of this method are considered:

Simple average The arithmetic mean of the elements at each
feature position is taken: vi = (vi + v′i)/2.

Weighted average The arithmetic mean of the elements at
each feature position is taken and additionally weighted
by the distance of this element from an overall average
at the given position computed on a training set: vi =
(vi|vi − µi| + v′i|v

′
i − µi|)/2. In other words, elements

which strongly deviate from the average are assigned
more weight.

The above two methods are henceforth referred to as
‘‘Average-1’’ and ‘‘Average-2’’.

2) DISTANCE-BASED
The following methods rely on putting the values of the
individual elements in relation to some overall properties of
the feature vectors.

Distance from mean For each element position, the element
furthest from an overall average at the given position

is chosen: vi =

{
vi |vi − µi| ≥ |v′i − µi|
v′i otherwise.

. In other

words, the element which exhibits the strongest devia-
tion from the average at a given position is used directly.

Distance from mean rank-based We define #(vi) ∈ N to be
the rank of vi in the sequence of elements of v sorted
in ascending order according to their distance to the
mean µ, preserving duplicate elements. Following this
operation, the element with the highest rank at a given

position is chosen: vi =

{
vi #(vi) ≥ #(v′i)
v′i otherwise.

The above two methods are henceforth referred to as
‘‘Distance-1’’ and ‘‘Distance-2’’.

3) INDEX-BASED
The following methods depend on the position of the ele-
ments in the feature vectors.

Section segregation A portion (e.g. half) of each of the con-

tributing vectors is taken directly: vi =

{
vi i ≤ n/2
v′i otherwise.
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Alternating index The feature elements are directly taken
from each of the contributing vectors in an alternating

manner: vi =

{
vi i ≡ 1 mod 2
v′i otherwise.

The above two methods are henceforth referred to as
‘‘Index-1’’ and ‘‘Index-2’’.

D. TEMPLATE PROTECTION
In the proposed scheme, template protection is facilitated
through integration of homomorphic encryption. In general,
an encryption algorithm E has the homomorphic property
for an operation � if it holds E(m1) � E(m2) = E(m1 �

m2),∀m1,m2 ∈ M , where M is the set of all possible
messages. For more details on this topic, see e.g. a detailed
survey in [93].

As shown in [27], the template comparator for biometric
templates extracted from facial images can be feasibly imple-
mented in the homomorphically encrypted domain. Depend-
ing on the format (float, integer, binary) of the feature vectors,
different template comparators and encryption schemes are
suitable. For the float and integer-based templates, squared
Euclidean distance might be used, whereas Hamming dis-
tance is suitable for binary templates. In HE schemes which
fulfil the additive and multiplicative property, the Euclidean
distance can be trivially implemented to be performed in
element-wise manner. If homomorphic batching is available,
the element-wise distances can be computed in a vectorised
operation. Furthermore, as suggested in [26], successively
rotating and adding the elements of the resulting vector of
element-wise distances can be used to compute the overall
distance between the two feature vectors. Hamming distance,
on the other hand, can be computed using an addition and a
decryption with an automatic modulo-2 operation.

The key idea of using HE-based comparators is that math-
ematically equivalent operations are conducted during tem-
plate comparison in the unprotected and protected domain.
Thus, the protection of the templates in the proposed scheme
fundamentally results in no loss of biometric performance
(in contrast to typical biometric cryptosystems and cance-
lable biometrics). Using homomorphic encryption libraries
described in subsection IV-C, the biometric probes, as well
as the stored biometric reference templates and the index
constructed from the fused templates can all be encrypted
and compared in the protected domain, thereby fulfilling
the biometric template protection objectives (unlinkability,
irreversibility, renewability, and performance preservation) of
ISO/IEC IS 24745 [22] (see subsection V-E for more details).
The proposed scheme requires a key pair to be generated

and managed by the system operator. The public key is
used to encrypt the enrolment database and is published so
that the clients can use it to encrypt the probe templates.
The system operator stores the private key and uses it to
decrypt the ciphertexts containing the comparison scores,
i.e. after the comparator has been applied in the encrypted
domain. The clients do not need to manage or store additional

keys, i.e. the aforementioned key pair is the same for all
the subjects. Due to the nature of the proposed application
scenario (biometric identification), creation of separate keys
for each subject would result in increased complexity, as well
as higher computational and storage requirements. Addi-
tional encryption (e.g. TLS) may be added for the transfer
of data between the clients and the system operator. The
presence of such keys naturally introduces the possibility
of attacks aimed at guessing or theft thereof, as well as
the responsibility of the system operator for the key man-
agement. Those challenges are, however, not specific to the
proposed system or to homomorphic encryption in general.
Any biometric systemwhich utilises template protection, be it
through dedicated biometric template protection approaches
(see subsection II-C) or classic general-purpose (non-
homomorphic) encryption must address the same challenges.

IV. EXPERIMENTAL SETUP
This section provides a detailed description of the setup for
the conducted experiments. The used dataset and face recog-
nition systems are described in subsections IV-A and IV-B,
respectively; subsection IV-C describes the used homomor-
phic encryption software, while subsection IV-D gives an
overview of the evaluation methodology and metrics.

A. DATASET
The academic MORPH dataset by Ricanek et al. [94] has
been used in the experiments. A subset of imageswas selected
based on approximate conformance with ICAO require-
ments for passport images [95]. As the proposed system
is aimed to function with such semi-constrained images,
the so-called ‘‘in-the-wild’’ datasets were not considered.
Furthermore, the chosen dataset facilitates the soft-biometric
pairing method described in subsection III-B, as groundtruth
metadata is available for three demographic attributes – sex,
race, and age. Figure 4 shows example images from the used
dataset, while table 3 provides a numerical summary of its
partitioning for the experiments.

FIGURE 4. Example images from the used dataset.

TABLE 3. Overview of the used dataset.
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TABLE 4. Summary of the used homomorphic encryption schemes.

B. FACE RECOGNITION SYSTEMS
Two well-known open-source face recognition systems are
used in the experiments:
ArcFace A somewhat recent (initial publication in 2018),

but continually improved and refined system pub-
lished by Deng et al. [96]. The code and pre-trained
model ‘‘LResNet100E-IR,ArcFace@ms1m-refine-v2’’
provided by the authors are used.2

CurricularFace A very recent system (2020) published by
Huang et al. [97]. The code and pre-trained model
‘‘IR101’’ provided by the authors are used.3

Both systems achieve excellent biometric performance in
popular large-scale face recognition benchmarks. The sys-
tems extract compact feature vectors with 512 floating-point
elements. Those vectors can be seamlessly fused using the
methods described in subsection III-C. Euclidean distance
is used to compute the dissimilarity between two feature
vectors.

C. HOMOMORPHIC ENCRYPTION
Table 4 summarises the HE schemes used to encrypt the
biometric templates. Open-source implementations were
used – [101] for CKKS and BFV, and [102] for NTRU.
To facilitate the encryption schemes which operate using
integer or binary input data, template quantisation and binari-
sation methods of [46] were used. The approximate execution
times given in table 4 (medians over multiple runs) refer to
single operations, e.g. a template comparison. Additionally,
in section V, this benchmark is reported for an entire iden-
tification transaction in the baseline and proposed system.
The timing benchmark was conducted on a freshly installed
Linux Debian 10 on a commodity notebook running an Intel
Core i7 2.7 GHz CPU and 16 GB DDR4 RAM. The timings
were conducted in a single-threaded environment; however,
it should be noted that many of the necessary computations
(e.g. computations of comparison scores) are trivially paralel-
lisable or distributable.

The choices of hardware and operating systems, presence
of certain optimisation libraries, as well as the programming
language and code quality in the actual implementations of
the HE algorithms inevitably differ. The reported execution
times should therefore be viewed only as a gross estimate
for the computational effort required by the specific imple-
mentations of the used HE schemes on commodity hardware.

2https://github.com/deepinsight/insightface
3https://github.com/HuangYG123/CurricularFace

It should be noted that given stronger hardware (c.f. [28]),
significantly faster execution times for the basic operations
in the homomorphically encrypted domain can be achieved.
Additionally, depending on the used HE scheme, it might
be theoretically possible to incorporate acceleration of linear
algebra operations in the encrypted domain [103], [104].

D. EVALUATION METRICS
In the experiments, the proposed method is evaluated against
an exhaustive-search based baseline. Two key aspects are
considered using standardised methods and metrics [29] sup-
ported by additional ones which are commonly reported in
the scientific literature:
Biometric performance In closed-set identification

experiments, the CMC curves, (true-positive) identi-
fication rate (IR), and rank-1 recognition rate (RR-1)
are reported. In open-set identification experiments,
the DET curves of false positive identification
rate (FPIR) and false negative identification rate (FNIR),
as well as FNIR at a decision threshold corresponding to
a fixed FPIR of 0.1% (denoted FNIR1000).

Computational workload the overall computational work-
load (denoted W ) of a single biometric identification
transaction is calculated the workload reduction by the
proposed scheme w.r.t. baseline is computed. This is
done based on the necessary number of template com-
parisons and reported for the proposed system in per-
centage terms in relation to the exhaustive search-based
baseline (i.e. withW = 100%).

V. RESULTS
The proposed system is evaluated experimentally as follows:
in subsections V-A and V-B, an analysis is conducted to
establish suitable configurations which simultaneously min-
imise the computational workload and maximise the biomet-
ric performance. In subsection V-C, the overall results for
the selected optimal configurations are reported; an ablation
study is conducted in subsection V-D. Security and scalabil-
ity of the proposed method are briefly discussed in subsec-
tions V-E and V-F, respectively.

A. ANALYSIS OF COMPUTATIONAL WORKLOAD
Figure 5 shows the computational workload in terms of
necessary template comparisons for the proposed indexing
and retrieval method. In contrast to the general, theoretical
overview from subsection III-A, this figure pertains to the
specific experimental setup described in section IV.
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FIGURE 5. Numbers of necessary template comparisons per identification
transaction for N = 4096 using the proposed system.

As noted in the theoretical analysis, the desired target area
for the parameter (n1 and k1) selection lies in the bottom
right corner of the matrix. For instance, given n1 = 16 and
k1 = 2−3, only 376 template comparisons are required for
a biometric identification transaction, which is much lower
than the 4096 template comparisons needed in the baseline
scenario. In general, there exist several parameter configura-
tions which result in the numbers of necessary template com-
parisons being significantly (between approximately 4 and
16 times) lower than those of a baseline retrieval method
performing an exhaustive search.

In the next subsection, an analysis is conducted to deter-
mine whether the desirable configurations w.r.t. compu-
tational workload (i.e. the rightmost part of the matrix
in figure 5) are also feasible w.r.t. biometric performance.

B. ANALYSIS OF PAIRING AND FUSION METHODS
From the point of view concentrated on biometric perfor-
mance, the optimal selection of n1 and k1 parameters depends
on following two factors:

1) The inherent discriminative power of the recognition
system.

2) The information loss caused by the template fusion.
The information loss due to template fusion fur-

ther depends on two factors: the used fusion method
(section III-C) and the number of templates fused with each
other (the n1 parameter). As previously mentioned, the pro-
posed indexing and retrieval schememay cause false-negative
errors when improperly configured, while the false-positive
errors would remain unaffected or even slightly reduced
through its application. To evaluate the two aforementioned
factors, a closed-set identification scenario can be used and
evaluated using CMC curves, which report the identification
rate at given ranks (denoted r) in an ordered list of comparison
scores between the probes and enrolment database.

Figure 6 shows the CMC curves for the considered facial
recognition systems, template pairing methods, and tem-
plate fusion methods. Aiming at highest possible workload

FIGURE 6. CMC curves for experiment with n1 = 16 templates
contributing to a fusion.

TABLE 5. Identification rates with n1 = 16 (in %).

reduction (recall subsection V-A), n1 = 16 (i.e. maximum
rank is 256) is selected. Table 5 shows the numeric values of
identification rate for the specific ranks depicted on the x-axis
in the figure.

Following observations can be made:

1) The proposed methods of intelligent pairing of sub-
ject templates to be fused result in a significant
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improvement of the identification rates w.r.t. to random
pairings (i.e. no optimisation).

2) The pairing of templates based on (non-mated) com-
parison scores performs much better than the pairing
based on soft-biometric attributes of the data subjects.

3) The biometric performance across the three considered
types of template fusion methods varies significantly.
In all considered cases, the fusion methods based on
averaging perform best, relatively closely followed by
fusion methods based on distance from mean. The
index-based fusion methods achieve a poor biomet-
ric performance. The differences between the fusion
method variants within their respective method types
are insignificant.

4) Although rank-1 identification rate is very low, both
recognition systems quickly converge (for the best per-
forming type of fusion methods) at 100% well before
the maximum rank of 256.

5) In general, CurricularFace performs slightly better than
ArcFace. However, the differences are not very large
and the general trends described above persist across
both recognition systems.

Based on the above evaluations and observations, the selec-
tion of optimal configurations for pre-selection can be made.
Accordingly, following choices are made:

Template pairing the method based on non-mated compar-
ison scores is chosen.

Template fusion the method based on averaging the con-
tributing templates is chosen.

Number of fused templates n1 = 16 can be used, as both
recognition systems appear to exhibit sufficient discrim-
inative power to compensate for the information loss
caused by fusing so many templates.

Fraction of preselected templates To avoid too many
pre-selection errors, configurations with IR(r) >

99.5% are considered. This condition is satisfied
for both ArcFace and CurricularFace when r ∈

{32, 64, 128}, using the comparison score-based pairing
and averaging-based fusion. These r values correspond
to k1 ∈ {2−1, 2−2, 2−3}. For recognition systems with
greater discriminative power, it is conceivable to achieve
even lower r and k1 values, thereby facilitating higher
workload reduction.

C. OVERALL RESULTS
To evaluate the overall performance of the proposed indexing
and retrieval system, open-set and closed-set identification
experiments are carried out for the configurations selected in
subsections V-A and V-B. Figure 7 shows the obtained DET
curves, while table 6 reports the numeric results using metrics
described in subsection IV-D.
Following observations regarding computational workload

and biometric performance can be made:

ArcFace All three chosen configurations perform similarly
to the baseline. The most conservative one in terms

FIGURE 7. DET curves for the chosen parameter configurations.

of computational workload reduction, i.e. k1 = 2−1,
achieves biometric performance essentially indistin-
guishable from that of the baseline, while simultane-
ously requiring only around 18% of the computational
workload that the baseline requires. The computational
workload can be further reduced to less than 10% of the
baseline workload (k1 = 2−3), while retaining a rea-
sonable (albeit slightly reduced) biometric performance
w.r.t. the baseline.

CurricularFace The results mirror those of ArcFace, thus
indicating a generalisability of the proposed index-
ing and retrieval method. The achieved computational
workload reduction is identical, as same parameter con-
figurations have been used. The biometric performance
of CurricularFace is slightly better than that of Arc-
Face, in particular at the FNIR1000 operating point. The
proposed system basically maintains the biometric per-
formance of the baseline at k1 ∈ {2−1, 2−2} for the
practically relevant FPIR values, whereas k1 = 2−3

yields an even lower computational workload at the cost
of a slight reduction in biometric performance.

In table 7, a summary of the computational requirements
for the proposed protected indexing system is given in actual
runtimes and storage usage for the off-the-shelf hardware
mentioned in subsection IV-C.
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TABLE 6. Summary of the proposed system results using metrics corresponding to those reported in table 2. The biometric performance for the protected
and unprotected versions of the system is identical.

TABLE 7. Approximate computational and data storage requirements
using the hardware specified in subsection IV-C for the unprotected
system and the proposed system with N = 4096 and 128 bits security.

It can be observed that:
• There exist massive differences in execution time and
storage space usage between the benchmarked homo-
morphic encryption methods. The proposed indexing
and retrieval method dramatically (order of magnitude)
reduces the execution times of an identification transac-
tion w.r.t. the baseline.

• The one-time computational costs of encrypting the
enrolment database and its index are negligible. Large
amount of space is required for the storage of the pro-
tected templates.

• The execution times of the proposed system with BFV
and especially CKKS based encryption do not suffice
for real-time deployments, but could nevertheless be
feasible whenever near-instantaneous system responses
are not required.

• Near-realtime runtimes are achieved for the proposed
system with NTRU-based encryption. This is mostly
because the Hamming weight (i.e. the sum of the dif-
ferences between individual feature vector elements)
cannot be computed in the encrypted domain using this
scheme. On the other hand, in BFV- and CKKS-based

schemes, the analogous sum can be (and is) computed
in the encrypted domain. While in principle still secure
and privacy-preserving, this means that using NTRU
in the proposed system introduces a further trade-off
between computational requirements and potential of
some information leakage.

D. ABLATION STUDY
To further analyse the impact of the individual components of
the proposed system, an ablation study is conducted. Accord-
ingly, following four systems are considered:

1) Baseline exhaustive search without template
protection.

2) Baseline exhaustive search with template protection.
3) Proposed indexing and retrieval method without tem-

plate protection.
4) Proposed indexing and retrieval method with template

protection.
In order to reduce redundancy w.r.t. tables 6 and 7, a con-

figuration of the proposed system which, according to the
authors, offers the best trade-offs is selected for the abla-
tion study. Accordingly, CurricularFace-based recognition is
chosen, as it performs marginally better than ArcFace. The
configuration n1 = 16, k1 = 2−1 of the indexing and retrieval
system is chosen, as its performance is nearest to that of the
baseline. Finally, NTRU homomorphic encryption is chosen,
as it is the fastest of the three tested ones.

Table 8 shows the summary of the results of the study.
Following conclusions can be made:
Biometric performance As expected, template protection

has no effect on biometric performance. This is because
the same underlying mathematical operations are com-
puted in the protected and unprotected domain. Using
the proposed indexing and retrieval scheme, the biomet-
ric performance is reduced, albeit only marginally.

Execution time The inclusion of template protection sig-
nificantly increases the execution time. This increase
can be partially mitigated by additionally including the
proposed indexing and retrieval scheme. Indexing the
database requires additional computational effort and
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TABLE 8. Ablation study for selected configurations from tables 6 and 7.

time; however, it can be completed offline and needs to
be done only once. Additionally, one of the main com-
putational cost factors, i.e. computing the comparison
scores between the templates in the enrolment database,
can be trivially parallelised or distributed.

Workload Using the proposed indexing and retrieval sys-
tem, the number of necessary template comparisons is
reduced more than 5-fold w.r.t. to an exhaustive search
baseline – irrespective of the use of template protection.

Storage Both indexing and template protection substantially
increase the amount of necessary storage space. The
index approximately doubles the storage space w.r.t. the
baseline, whereas protected templates require an order
of magnitude more space than unprotected ones.

E. SECURITY ANALYSIS
The proposed system fulfils the biometric template protection
objectives specified in ISO/IEC IS 24745 [22]:
Unlinkability the mathematical operations in HE domain

(and hence the distance comparators) cannot be com-
puted over templates encrypted using two different keys,
i.e. linking across applications is not possible by the
very nature of the used HE schemes, provided that
different private keys are used by those applications.
Furthermore, even in the unlikely case that two applica-
tions share the same keys, the proposed schemes operate
under the concepts of semantic security; specifically,
a random factor is utilised in the encryption functions.
Thus, encrypting an identical plaintext twice results in
completely different and indistinguishable ciphertexts.
Due to such guarantees from theoretical proofs of the
used HE algorithms [98]–[100], empiric evaluations e.g.
using the framework of Gomez-Barrero et al. [67], [73]
have not been conducted. This is because it would either
be impossible to compute the distances between the
protected templates (different keys across applications)
or the experiment would merely measure the strength
of the application-specific source of randomness (same
keys across applications).

Irreversibility the used HE schemes are based on ideal lat-
tices, i.e. are post-quantum-secure [105]. They provide
encryption with the strength of 128, 192, or 256 bits.4

There exists a trade-off between security and com-
putational requirements – as the encryption strength

4According to the https://homomorphicencryption.org/ standard.

increases, so does the computational complexity. Due to
the relatively low entropy of the facial representations
extracted using current state-of-the-art neural networks
(see below), encryption strength of 128 bits is sufficient
for the proposed system.

Renewability the HE key pair can be exchanged, where-
upon the biometric templates in the enrolment database
and index can be re-encrypted. As previously men-
tioned, this would result in set of completely new cipher-
texts. Ciphertexts encrypted with the old keys would no
longer be accepted by the system, since computations
on ciphertexts encrypted with different keys are not
possible in the used HE algorithms.

Performance preservation the comparator used in the
homomorphically encrypted domain is functionally
identical to that of the plaintext domain, i.e. it yields the
same comparison scores. Hence, the HE-based template
protection has no impact whatsoever on the biometric
performance. The biometric performance of the pro-
posed indexing system is nearly identical to that of the
baseline.

While traditional encryption schemes may provide
stronger security guarantees than homomorphic encryption,
this does not constitute the actual limiting factor w.r.t. facial
biometrics. The entropy of facial embeddings is consid-
ered to be much lower than the aforementioned achievable
cryptographic protection levels. For example, e.g. in [106],
it has been shown that while typical facial embeddings
extracted by deep neural networks consist of 512 values,
their intrinsic dimensionality is much lower (more than an
order of magnitude). In other words, it is more feasible (albeit
still extremely difficult) to guess a sufficiently similar facial
biometric template than to guess the encryption keys.
Finally, note that such attacks aimed at guessing the bio-

metric templates and/or encryption keys (or other secrets)
are not limited to the applications of homomorphic encryp-
tion for the purpose of biometric template protection. Other
types of dedicated biometric template protection approaches
(recall subsection II-C) as well as classic general-purpose
(non-homomorphic) encryption must likewise address those
challenges.

F. SCALABILITY
As the size of the enrolment database increases, following
factors within the proposed system need to be considered:
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Pairing although the pairing algorithm is computationally
intensive, its computational costs could be easily mit-
igated by distributing the computations or additionally
binning the enrolment database. It should also be noted
that an increased size of the enrolment database would
result in a larger probability of finding suitable pair-
ings – especially for the outlier subjects (and hence an
increased discriminative power of the system).

Fusion the operations for fusing the templates are imple-
mented efficiently using vectorised operations; these
computational costs are generally are negligible, e.g. in
comparison with those required for template pairing.
Furthermore, this part of the proposed system’s pipeline
can be trivially parallelised and/or distributed.

Encryption the computational costs of encrypting the enrol-
ment database and index are generally very low and
can additionally be trivially parallelised. The amount of
RAM required to pre-load (for use during retrieval) the
entire enrolment database and its index is approximately
twice that of the baseline.

Retrieval the computational workload of the proposed sys-
tem scales sub-linearly w.r.t. to the number of enrolled
subjects (as opposed to a typical baseline, which typ-
ically scales linearly). Due to a flexible design of the
proposed system, a dynamic adjustment (w.r.t. enrol-
ment database size) of the decision thresholds and
pre-selection subset sizes is possible. Lastly, the under-
lying concepts in the proposed indexing and retrieval
system can be trivially distributed or parallelised.

The pairing, fusion, and encryption operations are com-
puted infrequently and offline; they thus do not directly influ-
ence the (online) retrieval time. Considering the execution
timings in table 7, it is important to note that the experi-
ments were carried out in a single-threaded environment on
an ordinary laptop. Taking advantage of parallelisation or
distribution of the computations, as well as utilising more
powerful hardware, these execution times could be vastly
lowered (c.f. [28]).

VI. CONCLUSION
In this article, a method of computationally efficient indexing
and retrieval of biometric data has been presented. The pro-
posed indexing method relies on intelligent pairing of facial
parent templates based on their similarity (in terms of soft
biometrics or non-mated comparison scores), followed by
feature-level fusion. The created search structure facilitates
a multi-step biometric identification retrieval, whereby the
retrieved candidate lists are successively shortened in each
step of the cascade.

In a comprehensive experimental evaluation, several dif-
ferent pairing and fusion methods were benchmarked for the
indexing step using two modern, open-source face recogni-
tion systems. Using standardised evaluation protocols and
metrics, the proposed method was shown to achieve a bio-
metric performance nearly identical to that of an exhaustive

search-based baseline; simultaneously the computational
workload of biometric identification transactions has been
substantially reduced (down to ∼10%). In other words,
by using the proposed system during biometric identification,
a tenfold reduction in the required computational effort is pos-
sible with no negative impact on the biometric performance.
By integrating homomorphic encryption, the proposed sys-
tem achieves post-quantum-security and the biometric tem-
plate protection objectives of unlinkability, irreversibility, and
renewability.

In summary, the proposed system achieves a very good
balance between biometric performance, computational effi-
ciency, and privacy protection for biometric identification
scenarios.

REFERENCES
[1] A. Das, C. Galdi, H. Han, R. Ramachandra, J.-L. Dugelay, and

A. Dantcheva, ‘‘Recent advances in biometric technology for mobile
devices,’’ in Proc. Int. Conf. Biometrics Theory, Appl. Syst. (BTAS),
Oct. 2018, pp. 1–11.

[2] (Apr. 2016). European Union Agency for the Operational Management
of Large-Scale IT Systems in the Area of Freedom and Justice. Eurodac
Storage Capacity Increased. Accessed: Sep. 8, 2021. [Online]. Available:
https://www.eulisa.europa.eu/Newsroom/News/Pages/Eurodac-storage-
capacity-increased.aspx

[3] European Commission. (2018). Smart Borders. Accessed: Sep. 8, 2021.
[Online]. Available: https://ec.europa.eu/home-affairs/what-we-
do/policies/borders-and-visas/smart-borders_en

[4] Thales. (Jan. 2021). DHS’s Automated Biometric Identification System
IDENT—The Heart of Biometric Visitor Identification in the USA.
Accessed: Sep. 8, 2021. [Online]. Available: https://www.thalesgroup.
com/en/markets/digital-identity-and-security/government/customer-
cases/ident-automated-biometric-identification-system

[5] K. R. Moses, P. Higgins, M. McCabe, S. Probhakar, and S. Swann, Fin-
gerprint Sourcebook. Washington, DC, USA: US Department of Justice,
Automated Fingerprint Identification System, 2010, pp. 1–33.

[6] Federal Bureau of Investigation. (Mar. 2021). CODIS—NDIS
Statistics. Accessed: Sep. 8, 2021. [Online]. Available: https://www.
fbi.gov/services/laboratory/biometric-analysis/codis/ndis-statistics

[7] Thales. (Apr. 2021). Automated Fingerprint Identification System
(AFIS)—A Short History. Accessed: Sep. 8, 2021. [Online].
Available: https://www.thalesgroup.com/en/markets/digital-identity-
and-security/government/biometrics/afis-history

[8] Unique Identification Authority of India, ‘‘Role of biometric technology
in Aadhaar enrollment,’’ UIDAI, NewDelhi, India, Tech. Rep., Jan. 2012.

[9] A. Dalwai, ‘‘Aadhaar technology and architecture: Principles, design,
best practices and key lessons,’’ Unique Identificat. Authority India,
New Delhi, India, Tech. Rep., Mar. 2014.

[10] K. W. Bowyer, E. Ortiz, and A. Sgroi, ‘‘Iris recognition technology
evaluated for voter registration in Somaliland,’’Biometric Technol. Today,
vol. 2015, no. 2, pp. 5–8, Feb. 2015.

[11] Consortium for Elections and Political Process Strengthening, ‘‘Assess-
ment of electoral preparations in the Democratic Republic of the Congo,’’
CEPPS, Washington, DC, USA, Tech. Rep., May 2018.

[12] Unique Identification Authority of India. (2021). Aadhaar Dash-
board. Accessed: Sep. 8, 2021. [Online]. Available: https://www.
uidai.gov.in/aadhaar_dashboard/

[13] L. Pascu. (Mar. 2020). Global Biometrics Market to Surpass
$45B by 2024, Reports Frost & Sullivan. [Online]. Available:
https://www.biometricupdate.com/202003/global-biometrics-market-to-
surpass-45b-by-2024-reports-frost-sullivan

[14] P. Drozdowski, C. Rathgeb, and C. Busch, ‘‘Computational workload in
biometric identification systems: An overview,’’ IET Biometrics, vol. 8,
no. 6, pp. 351–368, Nov. 2019.

[15] National Institute of Standards and Technology. (Apr. 2021).
FRVT 1:N Identification. [Online]. Available: https://pages.
nist.gov/frvt/html/frvt1N.html

VOLUME 9, 2021 139375



P. Drozdowski et al.: Feature Fusion Methods for Indexing and Retrieval of Biometric Data

[16] National Institute of Standards and Technology. (2018). Iris
Exchange (IREX). Accessed: Sep. 8, 2021. [Online]. Available:
https://www.nist.gov/programs-projects/iris-exchange-irex-overview

[17] C. Burt. (Sep. 2019). DHS S&T Biometric Technology Rally Results
Suggest Face Best for Fast Processing. Accessed: Sep. 8, 2021.
[Online]. Available: https://www.biometricupdate.com/201909/dhs-st-
biometric-technology-rally-results-suggest-face-best-for-fast-processing

[18] E. Parliament, ‘‘Regulation (EU) 2016/679,’’ Off. J. Eur. Union,
vol. L119, pp. 1–88, Apr. 2016.

[19] A. Cavoukian and A. Stoianov, Biometric Encryption: The New Breed of
Untraceable Biometrics. Hoboken, NJ, USA: Wiley, 2010, pp. 655–718.

[20] C. Rathgeb and A. Uhl, ‘‘A survey on biometric cryptosystems and can-
celable biometrics,’’ EURASIP J. Inf. Secur., vol. 2011, no. 1, pp. 1–25,
Dec. 2011.

[21] K. Nandakumar and A. K. Jain, ‘‘Biometric template protection: Bridging
the performance gap between theory and practice,’’ IEEE Signal Process.
Mag., vol. 32, no. 5, pp. 88–100, Sep. 2015.

[22] Information Technology—Security Techniques—Biometric Information
Protection, Standard ISO/IEC 24745:2011, International Organization for
Standardization and International Electrotechnical Committee, Jun. 2011.

[23] X. Dong, S. Kim, Z. Jin, J. Y. Hwang, S. Cho, and A. B. J. Teoh, ‘‘Open-
set face identification with index-of-max hashing by learning,’’ Pattern
Recognit., vol. 103, Jul. 2020, Art. no. 107277.

[24] T. Murakami, R. Fujita, T. Ohki, Y. Kaga, M. Fujio, and K. Takahashi,
‘‘Cancelable permutation-based indexing for secure and efficient biomet-
ric identification,’’ IEEE Access, vol. 7, pp. 45563–45582, 2019.

[25] A. Sardar, S. Umer, C. Pero, and M. Nappi, ‘‘A novel cancelable Face-
Hashing technique based on non-invertible transformation with encryp-
tion and decryption template,’’ IEEE Access, vol. 8, pp. 105263–105277,
2020.

[26] V. N. Boddeti, ‘‘Secure face matching using fully homomorphic encryp-
tion,’’ in Proc. IEEE 9th Int. Conf. Biometrics Theory, Appl. Syst. (BTAS),
Oct. 2018, pp. 1–10.

[27] P. Drozdowski, N. Buchmann, C. Rathgeb, M. Margraf, and C. Busch,
‘‘On the application of homomorphic encryption to face identifica-
tion,’’ in Proc. Int. Conf. Biometrics Special Interest Group (BIOSIG),
Sep. 2019, pp. 1–8.

[28] J. J. Engelsma, A. K. Jain, and V. Naresh Boddeti, ‘‘HERS: Homo-
morphically encrypted representation search,’’ 2020, arXiv:2003.12197.
[Online]. Available: http://arxiv.org/abs/2003.12197

[29] Information Technology—Biometric Performance Testing and
Reporting—Part 1: Principles and Framework, Standard ISO/IEC
19795-1:2021, International Organization for Standardization and
International Electrotechnical Committee, ISO/IEC JTC1 SC37
Biometrics, 2021.

[30] A. Ross, K. Nandakumar, and A. K. Jain, Handbook of Multibiometrics.
USA: Springer, 2006.

[31] Information Technology—Biometrics—Multimodal and Other Multibio-
metric Fusion, Standard ISO/IEC TR 24722:2015, ISO/IEC JTC1 SC37
Biometrics, 2nd ed., Dec. 2015.

[32] Jain and Ross, ‘‘Fingerprint mosaicking,’’ in Proc. IIEEE Int. Conf.
Acoust. Speech Signal Process., May 2002, pp. 4064.

[33] G. P. Kusuma and C.-S. Chua, ‘‘PCA-based image recombination for
multimodal 2D+3D face recognition,’’ Image Vis. Comput., vol. 29, no. 5,
pp. 306–316, Apr. 2011.

[34] V. Kanhangad, A. Kumar, and D. Zhang, ‘‘Contactless and pose invariant
biometric identification using hand surface,’’ IEEE Trans. Image Pro-
cess., vol. 20, no. 5, pp. 1415–1424, May 2011.

[35] X. Yan, W. Kang, F. Deng, and Q. Wu, ‘‘Palm vein recognition based
on multi-sampling and feature-level fusion,’’ Neurocomputing, vol. 151,
no. 2, pp. 798–807, Mar. 2015.

[36] R. Snelick, M. Indovina, J. Yen, and A. Mink, ‘‘Multimodal biometrics:
Issues in design and testing,’’ inProc. 5th Int. Conf.Multimodal Interfaces
(ICMI), 2003, pp. 68–72.

[37] A. Jain, K. Nandakumar, and A. Ross, ‘‘Score normalization in
multimodal biometric systems,’’ Pattern Recognit., vol. 38, no. 12,
pp. 2270–2285, Dec. 2005.

[38] A. Abaza andA. Ross, ‘‘Quality based rank-level fusion inmultibiometric
systems,’’ in Proc. IEEE 3rd Int. Conf. Biometrics, Theory, Appl., Syst.,
Sep. 2009, pp. 1–6.

[39] A. Kumar and S. Shekhar, ‘‘Personal identification using multibiometrics
rank-level fusion,’’ IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 41,
no. 5, pp. 743–752, Sep. 2011.

[40] S. Prabhakar and A. K. Jain, ‘‘Decision-level fusion in fingerprint verifi-
cation,’’ Pattern Recognit., vol. 35, no. 4, pp. 861–874, Apr. 2002.

[41] P. P. Paul, M. L. Gavrilova, and R. Alhajj, ‘‘Decision fusion for multi-
modal biometrics using social network analysis,’’ IEEE Trans. Syst., Man,
Cybern., Syst., vol. 44, no. 11, pp. 1522–1533, Nov. 2014.

[42] L.M. Dinca andG. P. Hancke, ‘‘The fall of one, the rise of many: A survey
onmulti-biometric fusionmethods,’’ IEEEAccess, vol. 5, pp. 6247–6289,
2017.

[43] M. Singh, R. Singh, and A. Ross, ‘‘A comprehensive overview of biomet-
ric fusion,’’ Inf. Fusion, vol. 52, pp. 187–205, Dec. 2019.

[44] J. Daugman, ‘‘Biometric decision landscapes,’’ Comput. Lab., Univ.
Cambridge, Cambridge, U.K., Tech. Rep. UCAM-CL-TR-482, Jan. 2000.

[45] I. Kavati, M. Prasad, and C. Bhagvati, ‘‘Search space reduction in biomet-
ric databases: A review,’’ in Computer Vision: Concepts, Methodologies,
Tools, and Applications. Hershey, PA, USA: IGI Global, 2018, ch. 11,
pp. 1600–1626.

[46] P. Drozdowski, F. Struck, C. Rathgeb, and C. Busch, ‘‘Benchmarking
binarisation schemes for deep face templates,’’ in Proc. 25th IEEE Int.
Conf. Image Process. (ICIP), Oct. 2018, pp. 191–195.

[47] C. Gehrmann, M. Rodan, and N. Jönsson, ‘‘Metadata filtering for user-
friendly centralized biometric authentication,’’ EURASIP J. Inf. Secur.,
vol. 2019, no. 1, p. 7, Jun. 2019.

[48] A. Dantcheva, P. Elia, and A. Ross, ‘‘What else does your biometric data
reveal? A survey on soft biometrics,’’ IEEE Trans. Inf. Forensics Security,
vol. 11, no. 3, pp. 441–467, Mar. 2016.

[49] J. E. Gentile, N. Ratha, and J. Connell, ‘‘An efficient, two-stage iris
recognition system,’’ in Proc. IEEE 3rd Int. Conf. Biometrics, Theory,
Appl., Syst., Sep. 2009, pp. 211–215.

[50] S. Billeb, C. Rathgeb, M. Buschbeck, H. Reininger, and K. Kasper, ‘‘Effi-
cient two-stage speaker identification based on universal background
models,’’ in Proc. Int. Conf. Biometrics Special Interest Group (BIOSIG),
Sep. 2014, pp. 1–6.

[51] A. Pflug, C. Rathgeb, U. Scherhag, and C. Busch, ‘‘Binarization of
spectral histogram models: An application to efficient biometric identi-
fication,’’ in Proc. IEEE 2nd Int. Conf. Cybern. (CYBCONF), Jun. 2015,
pp. 501–506.

[52] P. Drozdowski, C. Rathgeb, and C. Busch, ‘‘Bloom filter-based search
structures for indexing and retrieving iris-codes,’’ IET Biometrics, vol. 7,
no. 3, pp. 260–268, May 2018.

[53] O. N. Iloanusi, ‘‘Fusion of finger types for fingerprint indexing
using minutiae quadruplets,’’ Pattern Recognit. Lett., vol. 38, pp. 8–14,
Mar. 2014.

[54] U. Jayaraman, S. Prakash, and P. Gupta, ‘‘Indexing multimodal biometric
databases using Kd-tree with feature level fusion,’’ in Proc. Int. Conf. Inf.
Syst. Secur. Berlin, Germany: Springer, 2008, pp. 221–234.

[55] A. Gyaourova and A. Ross, ‘‘A coding scheme for indexing multimodal
biometric databases,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jun. 2009, pp. 93–98.

[56] A. Gyaourova and A. Ross, ‘‘Index codes for multibiometric pattern
retrieval,’’ IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 518–529,
Apr. 2012.

[57] P. Drozdowski, C. Rathgeb, B.-A. Mokroß, and C. Busch, ‘‘Multi-
biometric identification with cascading database filtering,’’ IEEE Trans.
Biometrics, Behav., Identity Sci., vol. 2, no. 3, pp. 210–222, Jul. 2020.

[58] P. Drozdowski, F. Stockhardt, C. Rathgeb, and C. Busch, ‘‘Signal-
level fusion for indexing and retrieval of facial biometric data,’’ 2021,
arXiv:2103.03692. [Online]. Available: http://arxiv.org/abs/2103.03692

[59] U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, and C. Busch, ‘‘Face
recognition systems under morphing attacks: A survey,’’ IEEE Access,
vol. 7, pp. 23012–23026, 2019.

[60] Y. Wang, J. Wan, J. Guo, Y.-M. Cheung, and P. C. Yuen, ‘‘Inference-
based similarity search in randomized Montgomery domains for privacy-
preserving biometric identification,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 40, no. 7, pp. 1611–1624, Jul. 2017.

[61] D. Osorio-Roig, C. Rathgeb, P. Drozdowski, and C. Busch, ‘‘Stable hash
generation for efficient privacy-preserving face identification,’’ Trans.
Biometrics, Behav., Identity Sci., Jul. 2021.

[62] V. M. Patel, N. K. Ratha, and R. Chellappa, ‘‘Cancelable biometrics:
A review,’’ IEEE Signal Process. Mag., vol. 32, no. 5, pp. 54–65,
Sep. 2015.

[63] U. Uludag, S. Pankanti, S. Prabhakar, and A. K. Jain, ‘‘Biometric
cryptosystems: Issues and challenges,’’ Proc. IEEE, vol. 92, no. 6,
pp. 948–960, Jun. 2004.

139376 VOLUME 9, 2021



P. Drozdowski et al.: Feature Fusion Methods for Indexing and Retrieval of Biometric Data

[64] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey,
‘‘Recent advances in homomorphic encryption: A possible future for
signal processing in the encrypted domain,’’ IEEE Signal Process. Mag.,
vol. 30, no. 2, pp. 108–117, Mar. 2013.

[65] A. Nagar, K. Nandakumar, and A. K. Jain, ‘‘Biometric template trans-
formation: A security analysis,’’ in Media Forensics and Security II,
vol. 7541. Bellingham, WA, USA: SPIE, 2010, pp. 237–251.

[66] Y. Wang, S. Rane, S. C. Draper, and P. Ishwar, ‘‘A theoretical analysis
of authentication, privacy, and reusability across secure biometric sys-
tems,’’ IEEE Trans. Inf. Forensics Security, vol. 7, no. 6, pp. 1825–1840,
Dec. 2012.

[67] M. Gomez-Barrero, J. Galbally, C. Rathgeb, and C. Busch, ‘‘General
framework to evaluate unlinkability in biometric template protection sys-
tems,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 6, pp. 1406–1420,
Jun. 2018.

[68] Information Technology—Performance Testing of Biometric Template
Protection, Standard ISO/IEC 30136:2018, ISO/IEC JTC1 SC37 Biomet-
rics, International Organization for Standardization, 2018.

[69] N. K. Ratha, J. H. Connell, and R. M. Bolle, ‘‘Enhancing security and
privacy in biometrics-based authentication systems,’’ IBMSyst. J., vol. 40,
no. 3, pp. 614–634, Apr. 2001.

[70] M. Savvides, B. V. K. V. Kumar, and P. K. Khosla, ‘‘Cancelable biometric
filters for face recognition,’’ in Proc. 17th Int. Conf. Pattern Recognit.
(ICPR), 2004, pp. 922–925.

[71] A. B. J. Teoh, A. Goh, and D. C. L. Ngo, ‘‘Random multispace quantiza-
tion as an analytic mechanism for BioHashing of biometric and random
identity inputs,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12,
pp. 1892–1901, Dec. 2006.

[72] T. Boult, ‘‘Robust distance measures for face-recognition supporting
revocable biometric Tokens,’’ in Proc. 7th Int. Conf. Autom. Face Gesture
Recognit. (FGR), 2006, pp. 560–566.

[73] M. Gomez-Barrero, C. Rathgeb, J. Galbally, C. Busch, and J. Fierrez,
‘‘Unlinkable and irreversible biometric template protection based on
bloom filters,’’ Inf. Sci., vols. 370–371, pp. 18–32, Nov. 2016.

[74] J. R. Pinto, M. V. Correia, and J. S. Cardoso, ‘‘Secure triplet loss: Achiev-
ing cancelability and non-linkability in end-to-end deep biometrics,’’
IEEE Trans. Biometrics, Behav., Identity Sci., vol. 3, no. 2, pp. 180–189,
Apr. 2021.

[75] A. Kong, K.-H. Cheung, D. Zhang, M. Kamel, and J. You, ‘‘An anal-
ysis of BioHashing and its variants,’’ Pattern Recognit., vol. 39, no. 7,
pp. 1359–1368, Jul. 2006.

[76] J. Bringer, C. Morel, and C. Rathgeb, ‘‘Security analysis and improve-
ment of some biometric protected templates based on bloom filters,’’
Image Vis. Comput., vol. 58, pp. 239–253, Feb. 2017.

[77] L. Ghammam, K. Karabina, P. Lacharme, and K. Thiry-Atighehchi,
‘‘A cryptanalysis of two cancelable biometric schemes based on
index-of-max hashing,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 2869–2880, 2020.

[78] S. Kirchgasser, A. Uhl, Y. Martinez-Diaz, and H. Mendez-Vazquez, ‘‘Is
warping-based cancellable biometrics (still) sensible for face recogni-
tion?’’ in Proc. IEEE Int. Joint Conf. Biometrics (IJCB), Sep. 2020,
pp. 1–8.

[79] A. Juels andM.Wattenberg, ‘‘A fuzzy commitment scheme,’’ in Proc. 6th
ACM Conf. Comput. Commun. Secur. (CCS), 1999, pp. 28–36.

[80] A. Juels andM. Sudan, ‘‘A fuzzy vault scheme,’’ in Proc. IEEE Int. Symp.
Inf. Theory, Feb. 2002, p. 408.

[81] M. van der Veen, T. Kevenaar, G.-J. Schrijen, T. H. Akkermans,
and F. Zuo, ‘‘Face biometrics with renewable templates,’’ in Security,
Steganography, andWatermarking ofMultimedia Content VIII, vol. 6072.
Bellingham, WA, USA: SPIE, 2006, pp. 205–216.

[82] M. Ao and S. Z. Li, ‘‘Near infrared face based biometric key binding,’’ in
Proc. Int. Conf. Biometrics (ICB), 2009, pp. 376–385.

[83] T. Frassen, X. Zhou, and C. Busch, ‘‘Fuzzy vault for 3D face recogni-
tion systems,’’ in Proc. Int. Conf. Intell. Inf. Hiding Multimedia Signal
Process., Aug. 2008, pp. 1069–1074.

[84] Y. Wang and K. N. Plataniotis, ‘‘Fuzzy vault for face based cryptographic
key generation,’’ in Proc. Biometrics Symp., Sep. 2007, pp. 1–6.

[85] C. Rathgeb, J. Merkle, J. Scholz, B. Tams, and V. Nesterowicz,
‘‘Deep face fuzzy vault: Implementation and performance,’’ 2021,
arXiv:2102.02458. [Online]. Available: http://arxiv.org/abs/2102.02458

[86] United States Office of Personnel Management. (Sep. 2015).
Statement by OPM Press Secretary Sam Schumach on Background
Investigations Incident. [Online]. Available: https://www.opm.
gov/news/releases/2015/09/cyber-statement-923/

[87] G. Li, B. Yang, and C. Busch, ‘‘A fingerprint indexing algorithm on
encrypted domain,’’ in Proc. Trustcom/BigDataSE/ISPA, Aug. 2016,
pp. 1030–1037.

[88] T. Murakami, T. Ohki, Y. Kaga, M. Fujio, and K. Takahashi, ‘‘Cance-
lable indexing based on low-rank approximation of correlation-invariant
random filtering for fast and secure biometric identification,’’ Pattern
Recognit. Lett., vol. 126, pp. 11–20, Sep. 2019.

[89] B. G. Pittel and R. W. Irving, ‘‘An upper bound for the solvability
probability of a random stable roommates instance,’’ Random Struct.
Algorithms, vol. 5, no. 3, pp. 465–486, Jul. 1994.

[90] K.-S. Chung, ‘‘On the existence of stable roommate matchings,’’ Games
Econ. Behav., vol. 33, no. 2, pp. 206–230, Nov. 2000.

[91] A. Röttcher, U. Scherhag, and C. Busch, ‘‘Finding the suitable doppel-
gänger for a face morphing attack,’’ in Proc. Int. Joint Conf. Biometrics
(IJCB), Sep. 2020, pp. 1–7.

[92] H.W.Kuhn, ‘‘TheHungarianmethod for the assignment problem,’’Naval
Res. Logistics Quart., vol. 2, nos. 1–2, pp. 83–97, Mar. 1955.

[93] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, ‘‘A survey on homomor-
phic encryption schemes: Theory and implementation,’’ ACM Comput.
Surv., vol. 51, no. 4, pp. 79-1–79-35, 2018.

[94] K. Ricanek, Jr., and T. Tesafaye, ‘‘MORPH: A longitudinal image
database of normal adult age-progression,’’ in Proc. 7th Int. Conf. (FGR),
Apr. 2006, pp. 341–345.

[95] International Civil Aviation Organization, ‘‘Machine readable
passports—Part 9—Deployment of biometric identification and
electronic storage of data in eMRTDs,’’ ICAO, Montreal, QC, Canada,
Tech. Rep. 9303, 2015.

[96] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, ‘‘ArcFace: Additive angular
margin loss for deep face recognition,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2019, pp. 4690–4699.

[97] Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, and F. Huang,
‘‘CurricularFace: Adaptive curriculum learning loss for deep face recog-
nition,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 5901–5910.

[98] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘‘Homomorphic encryption
for arithmetic of approximate numbers,’’ in Proc. ASIACRYPT. Cham,
Switzerland: Springer, 2017, pp. 409–437.

[99] J. Fan and F. Vercauteren, ‘‘Somewhat practical fully homomorphic
encryption,’’ IACR Cryptol. ePrint Arch., vol. 2012, p. 144, Mar. 2012.

[100] D. Stehlé and R. Steinfeld, ‘‘Making NTRU as secure as worst-case
problems over ideal lattices,’’ in Proc. Annu. Int. Conf. Theory Appl.
Cryptograph. Techn. Berlin, Germany: Springer, May 2011, pp. 27–47.

[101] (Nov. 2020). Microsoft SEAL (Release 3.6). Microsoft Research.
Redmond, WA, USA. [Online]. Available: https://github.com/
Microsoft/SEAL

[102] K. Ruhloff, D. Cousins, and Y. Polyakov. (2017). The PALISADE Lat-
tice Cryptography Library. Accessed: Sep. 8, 2021. [Online]. Available:
https://git.njit.edu/palisade/PALISADE

[103] E. Crockett, ‘‘A low-depth homomorphic circuit for logistic regression
model training,’’ Cryptol. ePrint Arch., Tech. Rep. 2020/1483, 2020.
[Online]. Available: https://eprint.iacr.org/2020/1483

[104] H. Zong, H. Huang, and S. Wang, ‘‘Secure outsourced computation
of matrix determinant based on fully homomorphic encryption,’’ IEEE
Access, vol. 9, pp. 22651–22661, 2021.

[105] D. Bernstein and T. Lange, ‘‘Post-quantum cryptography,’’ Nature,
vol. 549, no. 7671, pp. 188–194, 2017.

[106] S. Gong, V. N. Boddeti, and A. K. Jain, ‘‘On the intrinsic dimensionality
of image representations,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 3987–3996.

PAWEL DROZDOWSKI is currently a Senior
Researcher with the Faculty of Computer Sci-
ence, Hochschule Darmstadt (HDA), Germany.
He coauthored over 20 technical publications in
the field of biometrics. His research interests
include biometrics, information security and pri-
vacy, pattern recognition, and algorithmic fair-
ness. He is a member of the European Association
for Biometrics (EAB) and represents the German
Institute for Standardization (DIN) in ISO/IEC

SC37 JTC1 SC37. He received the Best Student Paper Runner-Up (WIFS’18)
Award and the Best Poster (BIOSIG’19) Award.

VOLUME 9, 2021 139377



P. Drozdowski et al.: Feature Fusion Methods for Indexing and Retrieval of Biometric Data

FABIAN STOCKHARDT is currently pursuing the
M.Sc. degree with the Faculty of Computer Sci-
ence, Hochschule Darmstadt (HDA), Germany.
He also works as a Research Assistant with
HDA. He is a member of the da/sec – Biomet-
rics and Internet Security Research Group and the
National Research Center for Applied Cybersecu-
rity (ATHENE), Germany. He coauthored several
technical publications in the field of biometrics.
His research interests include image processing
and biometrics, in particular face recognition.

CHRISTIAN RATHGEB is currently a Senior
Researcher with the Faculty of Computer Science,
Hochschule Darmstadt (HDA), Germany. He is a
Principal Investigator with the National Research
Center for Applied Cybersecurity (ATHENE).
He coauthored over 100 technical articles in the
field of biometrics. His research interests include
pattern recognition, iris and face recognition, secu-
rity aspects of biometric systems, secure pro-
cess design, and privacy enhancing technologies

for biometric systems. He is a winner of the EAB–European Biometrics
Research Award 2012, the Austrian Award of Excellence 2012, Best Poster
Paper Awards (IJCB 2011, IJCB 2014, and ICB 2015), and the Best Paper
Award Bronze (ICB 2018). He is a member of the European Association
for Biometrics (EAB), a Program Chair of the International Conference of
the Biometrics Special Interest Group (BIOSIG), and an Editorial Board
Member of IET Biometrics (IET BMT).

DAILE OSORIO-ROIG received the B.Sc. degree
in computer science from the Technological Uni-
versity of Havana, in 2014. She is currently pursu-
ing the Ph.D. degree with the Faculty of Computer
Science, Hochschule Darmstadt (HDA), Germany.
She joined the Advanced Technologies Applica-
tion Center (CENATAV), Havana, Cuba, for com-
puter science graduate training. She is a member
of the da/sec – Biometrics and Internet Security
Research Group and the National Research Center

for Applied Cybersecurity (ATHENE), Germany. Her research interests
include pattern recognition, biometrics, and machine learning, specifically,
biometric indexing and privacy-enhancing technologies.

CHRISTOPH BUSCH (Member, IEEE) is cur-
rently a member of Norwegian University of Sci-
ence and Technology (NTNU), Norway. He holds
a joint appointment with Hochschule Darmstadt
(HDA), Germany. Further he lectures biometric
systems at Denmark’s DTU, since 2007. On behalf
of the German BSI, he has been the Co-ordinator
for the project series BioIS, BioFace, BioFin-
ger, BioKeyS Pilot-DB, KBEinweg, and NFIQ2.0.
He was/is a partner of the EU projects 3D-Face,

FIDELITY, TURBINE, SOTAMD, RESPECT, TReSPsS, iMARS, and oth-
ers. He is also a Principal Investigator with the German National Research
Center for Applied Cybersecurity (ATHENE) and is Co-Founder of the
European Association for Biometrics (EAB). He coauthored more than
500 technical articles and has been a speaker at international conferences.
He is a member of the editorial board of the IET Biometrics and formerly
of the IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY journal.
Furthermore, he chairs the TeleTrusT biometrics working group as well as
the German standardization body on Biometrics and is a Convenor ofWG3 in
ISO/IEC JTC1 SC37.

139378 VOLUME 9, 2021


