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ABSTRACT Fine-grained Image Analysis (FGIA) as a branch of the image analysis tasks has received
more and more attention in recent years. Compared with ordinary image analysis tasks, FGIA requires more
detailed human data annotation, which not only requires the annotator to have professional knowledge, but
also requires greater labor costs. An effective solution is to apply the domain adaptation (DA) method to
transfer knowledge from existing fine-grained image datasets to massive unlabeled data. This paper presents
the circular attention mechanism to cyclically extract deep-level image features to match the label hierarchy
from coarse to fine. What is more, the networks effectively improve the distinguishability and transferability
of fine-grained features based on the adversarial learning framework. Experimental results show that our
proposed method achieves excellent transfer performance on three fine-grained recognition benchmarks.

INDEX TERMS Fine-grained, domain adaptation, image recognition, attention, adversarial learning.

I. INTRODUCTION
Fine-grained Image Analysis (FGIA) is called sub-category
image analysis which aims to categorize an object among a
large number of subordinate categories within the same meta-
category. In previous FGIA tasks, the dataset required manual
annotation by professionals, which required a great time cost
and manpower. Therefore, people try to use machine learning
models as a substitute for fine-grained image recognition and
annotation. However, different from general image analysis
tasks, different sub-category images in FGIA tasks may have
the similar shape, size and even textures. The huge intra-class
differences and subtle inter-class differences in FGIA tasks
bring challenges to mainstream machine learning models.
To address this issue, people have made many efforts and
achieved great advance in fine-grained recognition tasks in
recent years. On one hand, many researches [1], [2] are ded-
icated to extracting local discriminative features to improve
the ability of deep networks for identifying subtle differ-
ences between similar fine-grained image samples. On the
other hand, the number of fine-grained image datasets has
increased significantly in recent years, which includes differ-
ent sample types such as birds [3] [4], flowers [5], [6], cars
[7]1-[10], dogs [11], [12], etc.
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Still, it is unrealistic to allow the labels of fine-grained
images to cover all the datasets on demand. Therefore,
scholars try to use computers to replace human experts
for fine-grained annotation of images in large-scale data
sets. One promising way is to apply the domain adaptation
approaches [13] to fine-grained recognition tasks. For exam-
ple, we may transfer the knowledge from existing labeled
birds datasets to massive unlabeled birds images in the wild
to save the tedious fine-grained annotation work.

However, fine-grained domain adaptation algorithms face
great challenges in many aspects. In fine-grained domain
adaptation tasks, we not only have to face the common
problem of inter-domain distribution differences in domain
adaptation algorithm, but also have to solve the problems
of huge intra-class differences and subtle inter-class differ-
ences that are unique in fine-grained domain adaptation tasks.
The traditional image domain adaptation algorithm [14]-[16]
usually establishes the connection between the two domains
by finding the correlation between the source domain and
the target domain in the feature space, and thus achieves
the purpose of reducing the inter-domain distribution differ-
ences. But when it comes to the fine-grained domain adap-
tation, the situation becomes more complicated in that we
have to confront tough issues brought by the fine-grained
categorization. As shown in Figure 1, birds under different
fine labels may have similar characteristics, such as similar
feather colors and bird beak shapes. This makes it difficult
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FIGURE 1. Birds under different fine labels in different datasets.

for feature-based domain adaptation algorithms to achieve
satisfactory results.

This paper aims to address these challenges by designing
adversarial networks with circular attention mechanism for
fine-grained domain adaptation. We use the attention mech-
anism to locate the most discriminative regions in images.
Furthermore, the circular attention mechanism is designed
to locate multi discriminative regions for fine-grained image
analysis tasks by recursively dropping the previous discrim-
inative region and adopting the attention mechanism again.
The general idea of our domain adaptation method is to
extract the fine features in the fine-grained images from the
multi discriminative regions learned in the circular atten-
tion mechanism, and use the adversarial learning network to
enable domain adaptation progressively from coarse-grained
categories to fine-grained categories.

We evaluate our method on three benchmarks. Two of them
are based on the domain adaptation of bird images, including
the CUB-200-2011 [17], CUB-200-Painting [18], NABirds
[4] and iNaturalist2017 [19] datasets, and the other is based
on the domain adaptation of vehicle images, including the
Stanford [8] dataset. The extensive experimental results show
that the proposed adversarial networks with circular attention
mechanism achieve excellent performance in fine-grained
domain adaptation tasks.

The rest of this paper is organized as follow. Section II
gives a brief description on related work. In Section III,
the adversarial networks with circular attention mechanism
are introduced in details. Section IV provides the compari-
son experiments and ablation experiments on three different
benchmarks. Finally, we conclude the paper in Section V.

Il. RELATED WORK

A. FINE-GRAINED IMAGE CLASSIFICATION

In recent years, fine-grained image classification as the basis
of fine-grained image tasks, has received more and more
attention in the field of computer vision. Since the differences
between the fine-grained categories are subtle, traditional
CNN networks are difficult to obtain features that are suf-
ficient to support fine-grained image classification.
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To address this issue, researchers have proposed three solu-
tions. The first solution is to enhance the fine-grained classifi-
cation ability by introducing additional labels such as partial
annotations and visual attributes to the images [20]-[23].
Another solution is to improve the feature representation
ability of the network. For example, Lin et al. [24] proposed
a bilinear model to fuse features in different dimensions of
images to obtain features that are more suitable for fine-
grained image recognition tasks. On the basis of this article,
Gao et al. [25] proposed a compact bilinear pooling method,
which reduces the computational complexity. The third and
which is the most mainstream method is to locate the position
of the object to be classified in the image, so that the CNN
networks can provide more refined features. Hu er al. [26]
first proposed attention mechanisms to locate the object.
Similarly, Yang et al. [27] proposed the Region Proposal Net-
work (RPN) which concatenates original features and partial
features together to do the object location. The above methods
have achieved fairly good performance in fine-grained image
classification tasks.

B. DOMAIN ADAPTATION

Domain adaptation problem is a representation method in
transfer learning, which aims to use the labeled data (source
domain) to learn the classifier and use it to predict the label
of the unlabeled data (target domain). The most commonly
used method for domain adaptation is to transform the data
features of the source domain and the target domain into a
unified feature space through feature transformation, so as to
reduce the discrepancy between two domains [15], [28] [29].
Pan et al. [30] proposed Transfer Component Analysis (TCA)
method which uses the Maximum Mean Discrepancy (MMD)
[31] as a metric to minimize the distribution discrepancy
between the source and the target domain. In recent years,
feature-based domain adaptation methods are usually com-
bined with neural networks. Long et al. [32] integrated the
idea of adversarial learning into the domain migration algo-
rithm and proposed Conditional Adversarial Domain Adap-
tation (CADN) method. The above methods have made great
contributions to domain adaptation algorithms, but unfor-
tunately, none of them are aimed at fine-grained images
adaptation tasks. Due to the ignorance of the hierarchical
labeling of fine-grained images, these methods are difficult to
achieve satisfactory results in the task of fine-grained domain
adaptation.

llIl. PROPOSED METHOD

In this section, our proposed adversarial networks with
circular attention mechanism is introduced in details. Some
mathematical notation is set to interpret our method. In the
fine-grained domain adaptation task, a source domain is given
as S = {(x, Yfs y’cC |sz1 )} with both fine label y and coarse

label {yk }]]::1 in a K-layer class hierarchy. On contrast, a tar-
get domain 7 is consisted of n, unlabeled examples. The joint
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distributions on the source and target domains are denoted as
P (x,y) and Q (x, y) respectively.

A. CIRCULAR ATTENTION MECHANISM

The overall framework of our networks is shown in Figure 2.
Networks with circular attention mechanism are designed to
extract the fine features in the fine-grained images from the
multi discriminative regions learned in the circular attention
mechanism.

We first introduce the circular attention mechanism which
is shown in Figure 3. In our work, we adopt attention mech-
anism on bilinear pooling to train the attention maps. The
bilinear pooling was first adopted by Lin ez al. [24] to improve
the performance on fine-grained image classification tasks.
The algorithm flow of circular attention mechanism is sum-
marized in Algorithm 1.

Algorithm 1: Circular Attention Mechanism

Input: Input image I = R, i = 1, K(K-layer class
hierarchy), threshold &
Output: Attention areas {L{, Ly, ..., L,}

while i < K do
1. Generate attention maps A with spatail attentional

bilinear pooling;

2. Generate mA by averaging the attention maps on
channels;

3. Binarize mA according the threshold §:

0 ifmA < 3§
1 ifmA > §

M =

4. Locate the discriminative region and sample local
image L; from the raw image R;
5. Generate the drop image D by dropping the
discriminative region in the input image /;
| 6.i<i+ 1,1 <D

By iteratively dropping the previous discriminative region
from the raw image, the circular attention mechanism could
propose a set of local images {L, L, ..., L,} from high to
low information. It is natural to associate these local images
with the class hierarchy of fine-grained labels. This is also
in line with human’s cognitive habits. In order to distinguish
fine-grained differences in images, people may focus more
attention on the details of the object. The circular attention
mechanism filters out the background of the images and
selects local images that have received more attention in the
raw image to assist the fine-grained classification.

B. PROGRESSIVE GRANULARITY LEARNING

After extracting the local images from the circular attention
mechanism, progressive granularity learning method [18]
is used to complete the training from coarse-grained to
fine-grained for the recognition tasks. As shown in Figure 2,
the coarse labels are divided into K levels. CNN is introduced
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with a coarse feature extractor G and K label predictors
Ck k =1,2,--- K. The image data x with coarse labels
y’C‘, k=1,2,---,K is fed into the coarse-grained CNN and
trained on the source domain by minimizing the cross-entropy
loss as follows:

K

2: skok
Ly (yc’yc)

k=1

where 9’6‘ = C* (G (x)) is the k-th coarse predicted distribu-
tion and Ly is the cross-entropy (CE) loss.

On the other hand, the fine labels of the images are
explored by the fine feature extractor F' and fine label pre-
dictor Y, which is trained by minimizing a cross-fine hybird
loss:

K ok
A A Ye | A
L (55 16133 ) = D (eyf +l-e)) % yf)
k=1

where Dgy is the Kullback-Leibler divergence, yr =
Y (F (x)) is the fine predicted distribution and yy is the corre-
sponding truth label. During training, ¢ follows the formula
to change from O to 1 [33]:

1 —e 100
- 1+ e 100
where p is the ratio of the training iteration progress. As the
training progresses, ¢ gradually approaches to 1. Thus the
influence of coarse labels disappears and the cross-fine hybird
loss converges to the fine-grained loss:

Ly (9’2 |§:1’§’/¥Yf) = Dxz. (yr| 3r)

which plays the same role as the CE loss.

&

C. ADVERSARIAL LEARNING

After progressive granularity learning, the domain adversarial
networks are used for domain adaptation. We first establish
the relationship between the predicted distribution y and the
fine feature f = F (x). In this paper, we employ a bilinear
transformation with residual connection [34] to combine the
y and the feature /. Embedding the feature with the predicted
class information can enhance discriminative. What is more,
the residual connection retains the subtle differences between
the features in the fine-grained images. The bilinear transfor-
mation is expressed as follows:

Bi(5.f) = (yTAF + b) of

where A and b are the weight and bias of the bilinear trans-
formation, @ represents the residual connection. Parameters
A and b are both learned from the following adversarial
learning.

Common domain adversarial networks are consist of three
network modules: the feature extractor F, the domain dis-
criminator D and the label predictor Y. F and Y is trained
to extract transferable features. At the same time, F and D
conduct adversarial training. D aims to distinguish the source
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FIGURE 2. Networks with circular attention mechanism.

domain from the target domain, while F is trained to keep
the D away from making correct judgments. In our method,
the coarse predictors CK |kK:l’ the fine label predictor Y
and the domain discriminator D are trained for adversarial
learning. The overall loss of the network is as follows.

K

0(G, c"‘ FLY.D)

k=

- S, (c* G, ¥)

5 xeS k=1

1 X K
o L (c G| _ Y (F (x)>,yf)

S LB E @) F @), d)
xeSuT
where A is a hyperparameter, d is the domain label of x and
n = ng + n; is the total sample size of the source and target
domains. The overall loss of the network can be divided into
three parts as shown in the formula. First is the Ly, which is
the cross-entropy loss for coarse recognition and is minimized
by G and ck |sz |- Second is the Ly, which is the coarse-fine
hybird loss for fine recognition and is minimized by ¥ and F.
Both two losses are introduced in the previous sections. The
last part is Lz, which is the cross-entropy loss for domain dis-
crimination and is minimized by F. The adversarial training
of the network is to reduce these three losses at the same time
to obtain better fine-grained recognition accuracy. Compared
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FIGURE 3. Circular attention mechanism.

with previous domain adversarial networks, our networks can
gradually align the feature distribution between domains from
coarse-grained to fine-grained.

IV. EXPERIMENTS

We evaluate the proposed Adversarial Networks with Circu-
lar Attention Mechanism to state-of-the-art domain adapta-
tion models on three benchmarks. Table 1 records the dataset
sources of the three benchmarks and the specific number
of images. Figure 4, 5 and 6 show example images for
fine-grained domain adaptation task in the three benchmarks.

A. DATASETS

1) BENCHMARK I: CompCars

Benchmark I (CompCars) is composed of two fine-grained
image datasets about cars. One is Stanford (S) [8] dataset
introduced by Jonathan Krause et al. The other is collected by
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TABLE 1. The dataset sources of the three benchmarks.

| Benchmarks | Datasets | Images |
Stanford 8,144
CompCars Web 8,041
_ CUB-200-2011 3,788
CUB-Birds | CUB-200-Painting | 3,047
' NABirds 2,988
Birds-31 iNaturalist2017 2,857

Web

4 45 B 3

CUB-200-Painting

FIGURE 5. Images in Benchmark II: CUB-Birds.

us from the Web (W). Images in both datasets are organized
in three levels. From coarser to finer, the same 42 Make, 72
Model and 20 Year are collected. For example, for a specific
image, the label is like 2012 Tesla Model S.

2) BENCHMARK II: CUB-BIRDS

Benchmark II (CUB-Birds) contains two domains for
fine-grained birds images domain adaptation: CUB-200-2011
(C) [17] and CUB-200-Painting (P) [18]. CUB-200-2011 is
the most widely used dataset for fine-grained visual catego-
rization task. It contains 11,788 images of 200 subcategories
belonging to birds. Each image has detailed annotations:
15 Part Locations, 312 Binary Attributes, 1 Bounding Box.
CUB-200-Painting is a dataset of bird paintings introduced
in [18]. The category lists of the two datasets are consis-
tent. However, the CUB-200-Painting dataset only contains
3,047 images. In order to balance the amount and the dis-
tribution between the two domains, 3,788 images in the
CUB-200-2011 are selected as the domain images.
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FIGURE 6. Images in Benchmark IlI: Birds-31.

3) BENCHMARK lII: BIRDS-31

Benchmark III (Birds-31) can also be split into two domains:
NABirds (N) [4] and iNaturalist2017 (I) [19]. Not all of
the images from the two datasets are incorporated into the
Benchmark. 31 categories with a balanced sample size are
selected and the labels are in four levels. Specifically, there
are 31 Species, 25 Genera, 16 Families, and 4 Orders.

B. IMPLEMENTATION AND RESULTS

All comparison experiments are carried out on Pytorch.
We finetune the ResNet-50 [34] model pretrained on
ImageNet. For the fairness of the experiments, the param-
eters in all domain adaptation tasks are kept consistent
and unchanged. Mini-batch SGD with momentum of 0.9 is
adopted as the optimization function and batch size is fixed
to 36. The learning rate strategy is the same as [33].

We evaluate the proposed Adversarial Networks with
Circular Attention Mechanism and record the average classi-
fication accuracy after the domain adaptation based on three
benchmarks. Several fined-grained visual categorization and
domain adaptation methods are selected for comparison
experiments, including ResNet-50 [34], Inception-v3 [35],
Bilinear CNN [24], Deep Adaptation Network (DAN) [15],
Domain Adversarial Neural Network (DANN) [33], joint
Adap-tation Network (JAN) [36], Adversarial Discrimina-
tive Domain Adaptation (ADDA) [37], Multi-Adversarial
DomainAdaptation (MADA) [38], Conditional Adversar-
ial Domain Adaptation (CDAN) [32] and Batch Spectral
Penalization (BSP) [39].

As shown is Table 2, our method performs best across
both transfer tasks on CompCars. It outperforms the second
best method CDAN+BSP by more than 1.5% on average
accuracy. We raise average accuracy from the baseline DANN
of 73.03% to 80.66%, an increase of 7 percent. Similarly,
the experimental results on CUB-Birds and Birds-31 are
recorded in Table 3 and Table 4. On CUB-Birds, our method
achieves the best performance among all domain adaptation
methods. The accuracy is improved by more than 8% com-
pared to the baseline DANN. Our algorithm also achieved
the best performance on Birds-31 with an accuracy rate of
6.3% higher than the baseline DANN and 2.2% higher than
the second best method.
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TABLE 2. Accuracy(%) on Benchmark I: CompCars.

Methods S—-Ww W —S Avg
ResNet-50 74.22 +0.20 65.93 £ 0.22 70.08
Inception-v3 69.74 £ 0.17 64.58 +0.31 67.16
Bilinear CNN 76.51 +0.23 66.74 + 0.35 71.63
DAN 73.73 £0.29 71.70 £ 0.24 72.72
DANN 73.67 £0.32 72.38 £0.12 73.03
JAN 84.16 +0.18 71.01 +0.26 77.59
ADDA 74.01 +0.27 72.96 £ 0.30 73.49
MADA 81.77 £ 0.20 71.89 +0.29 76.83
CDAN 82.37 £ 0.21 74.56 + 0.17 78.47
CDAN + BSP 83.35 £ 0.34 74.91 £0.15 79.13
Our method 84.40 £0.02 76.92 1+ 0.26 80.66

TABLE 3. Accuracy(%) on Benchmark 1I: CUB-Birds.

Methods C—P pP—C Avg
ResNet-50 47.88 £0.31 36.62 + 0.23 42.25
Inception-v3 51.59 £ 0.21 40.724+0.15  45.88
Bilinear CNN 54.09 £+ 0.35 41.59 +£0.57  47.84
DAN 58.95 £+ 0.43 39.33£0.35  49.14
DANN 57.54 £ 0.38 43.01 +£0.29 50.28
JAN 62.42 + 0.29 40.37 £ 0.39 51.40
ADDA 60.12 +0.31 40.65 £ 0.17 50.36
MADA 63.67 £ 0.23 44.28 +0.30 53.98
CDAN 63.18 = 0.16 45.42 +£0.25 54.30
CDAN +BSP  63.27 +£0.19 46.62 +0.39 54.95
Our method 67.05 +£0.12 49.57 +0.23 58.31

TABLE 4. Accuracy(%) on Benchmark IlI: Birds-31.

Methods N —1T I — N Avg
ResNet-50 71.08 £ 0.23 82.46 £0.45  76.77
Inception-v3 68.00 + 0.16 79.88 +0.17 73.94
Bilinear CNN 71.37 £0.48 83.37+£0.43 7737
DAN 70.67 +0.33 82.91 + 0.60 76.79
DANN 71.00 £0.24 80.53 £0.25  75.77
JAN 71.09 £+ 0.48 83.34£0.20 7722
ADDA 72.39 +0.31 84.36 + 0.47 78.38
MADA 70.99 £ 0.17 87.056 £0.25  79.02
CDAN 73.80 £0.17 86.17+£0.26  79.99
CDAN + BSP 74.11 +0.16 85.72 + 0.32 79.92
Our method 76.18 £0.26 88.01 +0.18 82.10

From the experimental results on the three benchmarks,
we notice that the improvement of our methon on CUB-Birds
is larger than that on CompCars and Birds-31. There are
two reasons. First, the basic recognition accuracy is relatively
low on CUB-Birds, which leaves to the domain adaptation
algorithm a larger room for improvement. Second, it can be
seen from Figure 5 that the inter-domain variations of CUB-
Birds are much larger than CompCars and Birds-31. Unlike
CompCars and Birds-31, the images in two domains are
all real photos. The images in CUB-200-Painting (P) dataset
include watercolor, oil painting, cartoon, etc. This shows that
the circular attention mechanism in our algorithm locates the
details of the object itself so as to reduce the influence of
image style and background on domain adaptation task.
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C. ABLATION STUDY

We design ablation experiments by removing the circular
attention mechanism. The results of the ablation experiments
on the three benchmarks are recorded in Table 5, 6 and 7.

TABLE 5. Ablation study: Accuracy(%) on Benchmark I: CompCars.

Methods N —1 I —-N Avg
Without attention 80.05 + 0.19 71.04 +0.29 75.55
With attention 84.40 +0.02 76.92+0.26 80.66

TABLE 6. Ablation study: Accuracy(%) on Benchmark I1: CUB-Painting.

Methods N —1 I —- N Avg
Without attention 61.46 £ 0.30 43.32 £0.37 52.39
With attention 67.05+0.12 49.57+0.23 5831

TABLE 7. Ablation study: Accuracy(%) on Benchmark IlI: Birds-31.

Methods N =1 I —+ N Avg
Without attention 72.02 £0.16 83.92 £+ 0.35 71.97
With attention  76.18 +0.26 88.01+0.18 82.10

It can be seen from the Table 5, 6 and 7 that circular
attention mechanism improves the accuracy by about 5% on
the three benchmarks. This demonstrates that the circular
attention mechanism works well to the positioning of the fine-
grained features. With the gradual learning of labels from
coarse to fine, the attention mechanism effectively reduces
the inter-domain variations in the datasets, thereby achieving
better domain adaptation accuracy.

V. CONCLUSION

In this paper, we propose the adversarial networks with cir-
cular attention mechanism to solve the fine-grained domain
adaptation problem. The key idea of our model is to locate
multiple discriminative areas in the image through the cir-
cular attention mechanism and gradually align them with
multiple levels in the fine-grained image label. On this basis,
we design an adversarial training network to complete the
domain adaptation task of fine-grained images. We com-
pare our method with other state-of-the-art methods on three
benchmarks for fine-grained domain adaptation. The experi-
mental results show that the proposed method is effective and
achieves the best performance in all three benchmarks.
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