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ABSTRACT This paper proposes a reinforcement learning anti-disturbance fault tolerant control structure
for a class of nonlinear uncertain systems with time varying matched and mismatched disturbances.
To deal with the time varying matched and mismatched disturbances, two second order disturbance
observers (SODOs) are designed for the inner and outer loop dynamic equations. For the purpose of
enhancing the robustness and adaptivity with respect to the system uncertainties, two long short-term
memory (LSTM) networks those possesses perfect fitting ability, have been introduced as the critic and
actor networks. Moreover, to overcome the difficulty caused by the unknown perturbations of the control
effectiveness, several fault tolerant adaptive laws have been designed. Consequently, a novel reinforcement
learning anti-disturbance fault tolerant control structure has been established for the concerned disturbed
nonlinear uncertain system. Two numerical examples are provided finally, demonstrating the satisfactory
performance of the proposed control structure.

INDEX TERMS Adaptive control, reinforcement learning control, disturbance observer, anti-disturbance
control, actuator faults.

I. INTRODUCTION
Nonlinear control system is always one of the focuses and
difficulties in the control field [1]–[3]. In order to solve the
control problem of nonlinear systems, the researchers have
proposed a series of control methods and strategies [4], [5].
Isidori and his colleges first proposed a feedback linearization
method based on differential geometry to solve nonlinear
system problems [6]. A discontinuous nonlinear synovial
membrane control method for nonlinear systems was pro-
posed in [7]. In [8], to deal with the nonlinear control system
with disturbances and input uncertainties, a novel disturbance
observer has been designed and a stable control law has
been proposed. In [9], the authors proposed an optimal H∞
tracking control method for nonlinear multivariable dynamic
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systems. In [10], a gap measurement method is introduced to
design a multi-model stable controller for a class of nonlinear
systems. In [11], taking the matched and mismatched distur-
bances into consideration, a trajectory linearization control
method has been designed for the disturbed nonlinear sys-
tems. In [12], for a class of nonlinear systems with time-
varying de-lay and state constraints, a novel quantitative
adaptive control strategy has been established. In [13], for
the miniature high-precision nonlinear system, a proportional
integral-differential control method based on the dynamic
hysteresis nonlinear model and inverse model has been pro-
posed. However, in the above-mentioned results, the intelli-
gent methods such as the neural net-works, the deep learning
methods, the reinforcement learning approaches, have never
been utilized to construct the control laws, and the suppres-
sion performance for the unknown nonlinearities or system
uncertainties may have to be enhanced.
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Among the plenty of the intelligent algorithms, the rein-
forcement learning strategies and methods possess the advan-
tages of autonomous learning ability and ability of handling
the complex dynamics [14]. Reinforcement learning control
is a deep combination of the control technique and reinforce-
ment learning methods, possessing the excellent ability of
handling the complex or uncertain dynamics existing in the
control systems, and so as to effectively realize the stabiliza-
tion or tracking control. Recently, many of the reinforcement
learning control methods have been investigated or reported.

In [15], a novel adaptive fault-tolerant attitude control
approach has been designed based on the long short-term
memory (LSTM) network for the fixed-wing UAV subject to
the high dynamic disturbances and actuator faults. In [16],
a reinforcement learning state feedback control method has
been designed. In [17], a reinforcement learning control
structure using the hidden reward function has been con-
structed. In [18]control method has been synthesized by
using the reinforcement learning and behavior-critic strat-
egy. In [19], a deep reinforcement learning control method
has been provided, and a novel model-free reinforcement
learning fault tolerant control structure has been established.
In [20], an improved adaptive reinforcement learning control
method has been proposed for the deformation control of the
aerospace unmanned systems.

Moreover, because of the excellent ability of handling the
complex or uncertain dynamics, the reinforcement learning
control methods have been applied to a plenty of the prac-
tical engineering systems. In [21] and [22], two reinforce-
ment learning trajectory tracking control methods has been
investigated for the underactuated ships and the soft robots.
In [23], a reinforcement learning control has been proposed
for vehicle robot with variable gravitational center. In [24],
by using reinforcement learning algorithm, a novel precise
control strategy has been pro-posed for the nonlinear fast hot
machining control system. In [25], a strategy-based reinforce-
ment learning control method has been reported, minimiz-
ing switching time and overshoot of the nonlinear floating
piston system. In [26], a real-time reinforcement learning
control method has been proposed for experiential playback.
In [27], a model-free reinforcement learning con-troller has
been designed for the electrically driven cold heat storage
system. Besides, the reinforcement learning control methods
have also been applied to the air injection systems [28], the
humanoid robots [29], the HVAC(Heating Ventilation andAir
Conditioning) systems [30].

However, the reinforcement learning control methods has
never been designed for the nonlinear system with both
matched and mismatched disturbances. Moreover, for the
matched andmismatched disturbances with time-varying fea-
tures, the reinforcement learning anti-disturbance control law
has been rarely reported. Furthermore, for the nonlinear sys-
tem suffer-ing from the actuator faults and themultiple distur-
bances simultaneously, the reinforcement learning controllers
is lacking. Therefore, this paper carries out the research of
SODO based reinforcement learning anti-disturbance fault

tolerant control for a class of nonlinear uncertain systems
with matched and mismatched disturbances. The main con-
tributions of this paper can be summarized as follows:
• To the best of the authors knowledge, the reinforcement
learning fault tolerant anti-disturbance controller has
been firstly proposed for the nonlinear uncertain systems
with matched and mismatched disturbances.

• By using the LSTM networks as the critic and actor
networks, the robustness and adaptivity with respect to
the system uncertainties can be enhanced.

• Benefitting from the estimation ability of the SODO,
both of the matched and mismatched time-varying dis-
turbances can be handled.

II. PROBLEM FORMULATION
A. THE UNCERTAIN NONLINEAR SYSTEMS WITH
MATCHED AND MISMATCHED UNCERTAINTIES
Consider the following nonlinear uncertain system with
matched and mismatched uncertain-ties:

ẋ1 (t) = x2 (t)+ d0 (t)

ẋ2 (t) = f (x1 (t) , x2 (t))+1f (x1 (t) , x2 (t))

+BN [3+13]u (t)+ d1 (t)+ d2 (t)

y (t) = x1 (t) (1)

where x1 ∈ Rn and x2 ∈ Rn denote the system states, u ∈ Rm

is the control input. B ∈ Rn×m,N ∈ Rm×m. f (x1 (t) , x2 (t))
and 1f (x1 (t) , x2 (t)) are the known and unknown nonlin-
earities existing in the considered nonlinear uncertain system.
3 = 3T

∈ Rm×m is a known matric, representing the control
effectiveness. 13 = [13]T ∈ Rm×m denotes the unknown
perturbations of the control effectiveness. d0 (t) denotes the
mismatched time-varying disturbance, while d1 (t) and d2 (t)
are the matched disturbances.

The objective of this paper is to design a reinforcement
learning anti-disturbance control to realize stably tracking for
desired signal yd (t), in the presence of the unknown non-
linearities, the unknown perturbations of the control effec-
tiveness, and the mismatched and matched time-varying
disturbances.

To achieve the design objective, the following assumptions
are required:
Assumption 1: The matched and mismatched disturbance-

sare all bounded, i.e., there exists a constant d̄0, d̄1, d̄2 such
that ∀t ≥ 0, ‖d0‖ ≤ d̄0, ‖d1‖ ≤ d̄1, ‖d2‖ ≤ d̄2.
Assumption 2: Define M = [3+13]

/
3. It is assumed

that λmin (M) > 0.
Assumption 3: The desired signal yd (t) is assumed to be

smooth and twice differential.

B. LONG SHORT-TERM MEMORY NETWORK
To achieve the reinforcement learning anti-disturbance con-
trol for the concerned nonlinear uncertain system with
matched and mismatched disturbances, the long short-term
memory net-works are introduced as action network and critic
network.
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The output of the LSTM can be formulated by

z = W T8(y) (2)

where y ∈ Rn and z ∈ R represent the input and output signals
of the LSTM. The LSTM in-cludes the forget gates, input
gates, memory states, update gate and output gates, those can
be described as follows:

ft = σ
(
Wf [ht−1, xt ]+ bf

)
it = σ (Wi [ht−1, xt ]+ bi)

c̃t = tanh (Wc [ht−1, xt ]+ bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ot = σ (Wo [ht−1, xt ]+ bo) (3)

The final output state is ht = ot ◦ tanh (ct).
Lemma 1 ([38], [39]): For any unknown smooth function,

the LSTM network can achieve approximation with bounded
errors. In details, for any given smooth function f : Rn→ R,
the follow-ing equation holds:

f (y) = W T8(y)+ ε

where W is the weight matric of LSTM, ε is the error of
LSTM approximation.

III. MAIN RESULTS
A. THE CONTROL STRUCTURE OF THE REINFORCEMENT
LEARNING ANTI-DISTURBANCE CON-TROLLER
The control structure of the proposed reinforcement learn-
ing anti-disturbance control law is shown in Fig 1. Two
SODOs are utilized to handle the matched and mismatched
time-varying disturbances. The critic network is utilized
to evaluate the anti-disturbance control performance of the
closed-loop system, and the actor network is introduced as a
component in the anti-disturbance fault tolerant control law.

FIGURE 1. The control structure of the proposed reinforcement learning
anti-disturbance control law.

B. REINFORCEMENT LEARNING ANTI-DISTURBANCE
CONTROL LAW

Define e1 (t) = x1 (t)−yd (t). Based on the dynamic equa-
tion of the nonlinear uncertain system (1), the cost function
is selected as follows.

J =
∫
∞

0

[
eT1 (τ )Qe1 (τ )+ u

T (τ )Ru (τ )
]
dτ (4)

To approximate the cost function, a LSTM network is
selected as the critic network, which is

J = W T
c 8c (x)+ εc (5)

whereWc ∈ Rpc is the desired weight of the critic network. εc
is a bounded error of the critic network. pc is nodes number of
the NN, and8c (x) ∈ Rpc is a vector of the primary functions.
Define Ĵ and Ŵc as the estimated value of J and Wc,

respectively. Hence, we can get that

Ĵ = Ŵ T
c 8c (x) (6)

Construct the residual mean square error function of the
critic network as

Ec =
1
2
eTc ec

ec = eT1Qe1 + u
TRu+ Ŵ T

c ∇8cẋ1 (7)

where ∇8c = ∂8c(x)/∂x,∇8c ∈ Rpc×n. The updating
objective of the weight of the critic net-work is to mini-
mizeEc. Therefore, according to the gradient descentmethod,
the update law for the weight of the critic network can be
designed as
˙̂W c = cWc

[
σWc (σ

T
Wc
Ŵc + Qe21 + Ru

2)
]
− cWcσcŴc (8)

where σWc = ∇8cẋ1. cWc , σWc > 0 are positive design
constants.

In this paper, the actor network is fused into the adaptive
fault tolerant controller. Consider-ing that 1f (x1 (t) , x2 (t))
is unknown, a LSTM network is introduced as the actor
network, which is

1f = W T
a 8a(x)+ εf (9)

where Wa ∈ Rpa×n,8a(x) ∈ Rpa represents the desired
weight and the primary function vector of the actor network.
εf is the bounded error of the actor network, satisfying that∥∥εf ∥∥ ≤ ε̄f . The estimated value ofWa is defined as Ŵa.
Taking the derivatives of both sides of e1 (t) yields that

ė1 (t) = x2 (t)+ d0 (t)− ẏd (t) (10)

To force the inner loop of the nonlinear uncertain system
to be stable, the virtual control signal is designed as

x2c (t) = −K1e1 (t)− d̂0 (t)+ ẏd (t) (11)

where K1 > 0 is the control gain. d̂0 (t) is the estimated value
of the mismatched time varying disturbance d0 (t), obtained
from the following second order disturbance observer:

d̂0 (t) = p1,0 (t)+ L3x1 (t)

ṗ1,0 (t) = −L3
[
x2 (t)+ d̂0 (t)

]
+
ˆ̇d0 (t)

ˆ̇d0 (t) = p2,0 (t)+ L4x1 (t)

ṗ2,0 (t) = −L4
[
x2 (t)+ d̂0 (t)

]
(12)

Define e2 (t) = x2 (t)− x2c (t). We can get that

ė2 (t) = f (x1 (t) , x2 (t))+1f (x1 (t) , x2 (t))
+BN [3+13]u (t)+d1 (t)+d2 (t)−ẋ2c (t) (13)
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By combining the actor network, the baseline control sig-
nal is designed as

uc =
[BN3]T

BN3[BN3]T


−K2e2 (t)− e1 (t)
−f (x1 (t) , x2 (t))
−Ŵ T

a 8a (x)− d̂1 (t)
−d̂2 (t)+ ẋ2c (t)

 (14)

where K2 > 0 denotes the control gain matric of the outer
loop. d̂1 (t) is an adaptive parameter, generated from the
following equation:

˙̂d1 = cd
[
e2 − σd d̂1

]
(15)

d̂2 (t) is the estimated value of mismatched time varying
disturbance d2 (t), generated from the following second order
disturbance observer:

d̂2 (t) = p1,2 (t)+ L1x2 (t)

ṗ1,2 (t) = −L1
[
f (x1 (t) , x2 (t))+ Ŵ T

a 8a (x)
]

−L1
[
BN3u (t)+ d̂1 (t)+ d̂2 (t)

]
+
ˆ̇d2 (t)

ˆ̇d2 (t) = p2,2 (t)+ L2x2 (t)

ṗ2,2 (t) = −L2
[
f (x1 (t) , x2 (t))+ Ŵ T

a 8a (x)
]

−L2
[
BN3u (t)+ d̂1 (t)+ d̂2 (t)

]
(16)

The update law of Ŵa is designed as follows:

˙̂W a = cWa8a

[
eT2 + Ĵ�

T
]
− cWaσaŴa (17)

The final control signal is designed as

u (t) = uc (t)+ ua (t) (18)

where ua is utilized to deal with the unknown perturbations
of the control effectiveness, de-signed by:

ua (t) = −M̂ (t) uc (t) (19)

where M̂ is the estimated value ofM . The adaptive law of M̂
is designed as

˙̂M = cM
[
NTBT e2uTc − σM M̂

]
(20)

C. STABILITY ANALYSIS
Theorem 1: Consider the nonlinear uncertain system (1) with
matched and mismatched uncertainties. Suppose Assump-
tion 1, 2 and 3 are satisfied. If the critic network and the
actor network are selected as (5) and (9) respectively, the rein-
forcement learning anti-disturbance control law is designed
as (18), (15) (20), the update law for the network weights are
designed as (8) and (17), then all the signals of the closed-loop
control system will be bounded and the tracking error can be
forced to converge into a compact neighborhood of zero.

Proof: Define d̃0 = d̂0 − d0, ˜̇d0 = ˆ̇d0 − ḋ0, d̃2 = d̂2 −
d2, ˜̇d2 = ˆ̇d2 − ḋ2. By using equation (12) and (16), we and
take the derivative to get:

˙̃d0 = −L3d̃0 + ˜̇d0

˙̃
ḋ0 = −L4 ˜̇d0
˙̃d2 = −L1d̃2 − L1d̃1 + ˜̇d2 − L1W̃ T

a 8a + L1BN13u
˙̃
ḋ2 = −L2 ˜̇d2 − L2W̃ T

a 8a + L2BN13u (21)

Define W̃a = Ŵa−Wa, W̃c = Ŵc−Wc, M̃ = M̂−M , d̃1 =
d̂1−d1, the following closed loop equations can be obtained:

ė2 = −K2e2 − e1 − W̃ T
a 8a−d̃1−d̃2−BN (13+3) M̃uc

˙̃W a = cWa8a

[
eT2 + Ĵ�

T
]
− cWaσaŴa

˙̃W c = −cWc

[
σWc (σ

T
Wc
Ŵc + εc)

]
− cWcσcŴc (22)

The Lyapunov function L(t) is selected as follows:

L(t) =
1
2
eT1 e1 +

1
2
eT2 e2 +

1
2
d̃T0 d̃0 +

1
2
˜̇d
T

0
˜̇d0

+
1
2cd

d̃T1 d̃1 +
1
2
d̃T2 d̃2 +

1
2
˜̇d
T

2
˜̇d2

+
1

2cM
Tr
(
M̃T (13+3) M̃

)
+

1
2cWa

Tr
(
W̃ T
a W̃a

)
+

1
2cWc

Tr
(
W̃ T
c W̃c

)
+ J∗ (x1) (23)

Take the derivative of (23) as follows

L(t) =
1
2
eT1 e1 +

1
2
eT2 e2 +

1
2
d̃T0 d̃0 +

1
2
˜̇d
T

0
˜̇d0

+
1
2cd

d̃T1 d̃1 +
1
2
d̃T2 d̃2 +

1
2
˜̇d
T

2
˜̇d2

+
1

2cM
Tr
(
M̃T (13+3) M̃

)
+

1
2cWa

Tr
(
W̃ T
a W̃a

)
+

1
2cWc

Tr
(
W̃ T
c W̃c

)
+ J∗ (x1) (24)

By using equation (17), it can be known that

c−1Wa
Tr
(
W̃ T
a
˙̃W a

)
= eT2 W̃

T
a 8a + W̃ T

c 8c�
T W̃ T

a 8a

+Wc
T8c�

T W̃ T
a 8a − σaTr

(
W̃ T
a Ŵa

)
≤ ρ8eT2 e2 +

8̄2
a

4ρ8
Tr
[
W̃ T
a W̃a

]
+ ρ9W̃ T

c W̃c

+
λmax

(
8c�

T�8T
c
)
8̄2
a

4ρ9
Tr
[
W̃ T
a W̃a

]
+ ρ10Wc

TWc +
λmax

(
8c�

T�8T
c
)
8̄2
a

4ρ10
Tr
[
W̃ T
a W̃a

]
−
σa

2
W̃ T
a W̃a +

σa

2
Wa

TWa (25)

Similarly, the following inequality can be get:

cWc
−1Tr(W̃ T

c
˙̃W c) = −W̃ T

c σWcσ
T
Wc
W̃c

− W̃ T
c σWcεc − W̃

T
c σcŴc

≤

(
ρ6 +

λmax
(
σ̄Wc

)
4ρ6

)
W̃ T
c W̃c
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+ ρ7λmax

(
σWcσ

T
Wc

)
W̃ T
c W̃c

+
1
4ρ7

ε2c −
σc

2
W̃ T
c W̃c +

σc

2
Wc

TWc

(26)

where σ̄Wc = σWcσ
T
Wc
σWcσ

T
Wc
. Accordingly, it can be known

that J∗x
T ẋ1 satisfies:

J∗x
T ẋ1 ≤ −λmin{Q}||e1||2 − λmin{R}||u||2 (27)

Substituting (21) into (24) yields:

d̃T0
˙̃d0 + ˜̇d

T

0
˙̃
ḋ0 = −d̃T0 L3d̃0 + d̃

T
0
˜̇d0 − ˜̇d

T

0 L4
˜̇d0 (28)

It follows that

d̃T0
˜̇d0 ≤ ρ11d̃T0 d̃0 +

1
4ρ11
˜̇d
T

0
˜̇d0 (29)

Meanwhile, we know that

d̃T2
˙̃d2 + ˜̇d

T

2
˙̃
ḋ2 = −d̃T2 L1d̃2 − d̃

T
2 L1d̃1

+ d̃T2
˜̇d2 − d̃T2 L1W̃

T
a 8a + d̃T2 L1BN13u

−
˜̇d
T

2 L2
˜̇d2 − ˜̇d

T

2 L2W̃
T
a 8a +

˜̇d
T

2 L2BN13u

(30)

By using the Young’s inequities, we can get that:

−d̃T2 L1d̃1 ≤ ρ0d̃
T
2 d̃2 +

λmax
[
LT1 L1

]
4ρ0

d̃T1 d̃1

d̃T2
˜̇d2 ≤ ρ1d̃T2 d̃2 +

1
4ρ1
˜̇d
T

2
˜̇d2

−d̃T2 L1W̃
T
a 8a ≤ ρ2d̃T2 d̃2 +

λmax
[
LT1 L1

]
4ρ2

8̄2
aTr

[
W̃ T
a W̃a

]
d̃T2 L1BN13u ≤ ρ3λmax

(
L̄1
)
d̃T2 d̃2 +

1
4ρ3

ε2δ

−
˜̇d
T

2 L2W̃
T
a 8a ≤ ρ4

˜̇d
T

2
˜̇d2 +

λmax
[
LT2 L2

]
4ρ4

8̄2
aTr

[
W̃ T
a W̃a

]
˜̇d
T

2 L2BN13u ≤ ρ5λmax
(
L̄2
)
˜̇d
T

2
˜̇d2 +

1
4ρ5

ε2δ (31)

where 8̄a is the upper bound on the demonstration number
||8a||. By combining equations (27), (28) and (29), we know
that:

d̃T2
˙̃d2 + ˜̇dT2

˙̃
ḋ2

≤ −

[
L1 −

2∑
i=0

ρi − ρ3λmax
(
L̄1
)]
d̃T2 d̃2

−

[
L2 −

1
4ρ1
− ρ4 − ρ5λmax

(
L̄2
)]
˜̇d
T

2
˜̇d2

+
λmax

[
LT1 L1

]
4ρ0

d̃T1 d̃1 +
[

1
4ρ3
+

1
4ρ5

]
ε2δ

+

[
λmax

[
LT1 L1

]
4ρ2

+
λmax

[
LT2 L2

]
4ρ4

]
8̄2
aTr

[
W̃ T
a W̃a

]
(32)

Moreover, the following inequities can be obtained

−eT1 d̃0 ≤ ρz1e
T
1 e1 +

1
4ρz1

d̃T0 d̃0

−eT2 d̃2 ≤ ρz2e
T
2 e2 +

1
4ρz2

d̃T2 d̃2 (33)

By combining equations (24), (32) and (33), we know that

L̇(t)

≤ −eT1 (K1 − ρz1) e1 − eT2 (K2 − ρz2) e2

+
1
cWa

Tr
(
W̃ T
a
˙̂W a

)
− eT2 W̃

T
a 8a+

1
cd
Tr
(
d̃T1
˙̂d1
)
− eT2 d̃1

+
1
cM

Tr
(
M̃T (13+3)

˙̂M
)
− eT2 BN (13+3) M̃uc

−

[
L3 − ρ11 −

1
4ρz1

]
d̃T0 d̃0 −

[
L4 −

1
4ρ11

]
˜̇d
T

0
˜̇d0

−

[
L1 −

2∑
i=0

ρi − ρ3λmax
(
L̄1
)
−

1
4ρz2

]
d̃T2 d̃2

−

[
L2 −

1
4ρ1
− ρ4 − ρ5λmax

(
L̄2
)]
˜̇d
T

2
˜̇d2

+
λmax

[
LT1 L1

]
4ρ0

d̃T1 d̃1

+

[
λmax

[
LT1 L1

]
4ρ2

+
λmax

[
LT2 L2

]
4ρ4

]
8̄2
aTr

[
W̃ T
a W̃a

]
+

[
1
4ρ3
+

1
4ρ5

]
ε2δ +

1
cWc

Tr
(
W̃ T
c
˙̂W c

)
+ J∗x

T ẋ1 (34)

By using equation (17), (20) and (25) (27), the following
equation can be obtained:

L̇(t)

≤−eT1 (K1 − ρz1I ) e1 − eT2 (K2 − ρz2I − ρ8I ) e2

−



σa

2
−
λmax

[
LT1 L1

]
8̄2
a

4ρ2

−
λmax

[
LT2 L2

]
8̄2
a

4ρ4
−
8̄2
a

4ρ8

−
λmax

(
8c�

T�8T
c
)
8̄2
a

4ρ9

−
λmax

(
8c�

T�8T
c
)
8̄2
a

4ρ10


Tr
[
W̃ T
a W̃a

]

−

σc2 − ρ6 − ρ9 − λmax
(
σ̄Wc

)
4ρ6

− ρ7λmax

(
σWcσ

T
Wc

)
 W̃ T

c W̃c

−
σM

2
Tr
(
M̃T (13+3) M̃

)
−

[
σd

2
−
λmax

[
LT1 L1

]
4ρ0

]
d̃T1 d̃1

−

[
L3 − ρ11 −

1
4ρz1

]
d̃T0 d̃0 −

[
L4 −

1
4ρ11

]
˜̇d
T

0
˜̇d0

−

[
L1 −

2∑
i=0

ρi − ρ3λmax
(
L̄1
)
−

1
4ρz2

]
d̃T2 d̃2
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−

[
L2 −

1
4ρ1
− ρ4 − ρ5λmax

(
L̄2
)]
˜̇
2d
T
˜̇d2

− λmin{Q}||e1||2 − λmin{R}||u||2

+

[
1
4ρ3
+

1
4ρ5

]
ε2δ +

σM

2
Tr
(
MT (13+3)M

)
+
σd

2
dT1 d1 +

σa

2
Tr
[
W T
a Wa

]
+

(
ρ10 +

σc

2

)
Wc

TWc +
1
4ρ7

ε2c (35)

Define:

c = min



λmin (K1 − ρz1I ) , λmin (K2 − ρz2I − ρ8I ) ,
λmin{Q}, λmin{R},
cMσM
2

,
cdσd
2
−
cdλmax

[
LT1 L1

]
4ρ0

,

cWaσa
2 −

cWaλmax
[
LT1 L1

]
8̄2
a

4ρ2

−
cWaλmax

[
LT2 L2

]
8̄2
a

4ρ4
−
cWa8̄

2
a

4ρ8

−
cWaλmax

(
8c�

T�8T
c
)
8̄2
a

4ρ9

−
cWaλmax

(
8c�

T�8T
c
)
8̄2
a

4ρ10
,

cWcσc

2
− cWcρ6 − cWcρ9−

cWcλmax
(
σ̄Wc

)
4ρ6

− cWcρ7λmax

(
σWcσ

T
Wc

)
,

L3 − ρ11 −
1

4ρz1
,L4 −

1
4ρ11

,

L1 −
2∑
i=0
ρi − ρ3λmax

(
L̄1
)
−

1
4ρz2

,

L2 −
1
4ρ1
− ρ4 − ρ5λmax

(
L̄2
)


εL =

[
1
4ρ3
+

1
4ρ5

]
ε2δ +

σM

2
Tr
(
MT (13+3)M

)
+
σd

2
dT1 d1 +

σa

2
Tr
[
W T
a Wa

]
+

(
ρ10 +

σc

2

)
Wc

TWc +
1
4ρ7

ε2c (36)

Then according to (35)and(36),we can get:

L̇ (t) ≤ −cL (t)+ εL (37)

and

L(t) ≤ L(0)e−ct + εL (38)

Therefore,according to (38), it can be known that the sys-
tem state,the disturbance estimation error d̃0, ˜̇d0, d̃2, ˜̇d2 of
SODO and the adaptive estimation error d̃1, W̃a, W̃c, M̃ are
all bounded.In addition,the boundness of ẋ1, ẋ2, d̂1, d̂0, ˆ̇d0,
d̂2, ˆ̇d2, M̂ , Ŵa, Ŵc can be verified. Moreover, it is obvious
that the tracking error can be forced to converge into a com-
pact neighborhood of zero,which completes the proof.

FIGURE 2. The tracking performance for the desired signal under Case 1.

FIGURE 3. The estimation performance for the matched and mismatched
disturbances d̂0 and d̂2 under Case 1.

IV. SIMULATION STUDY
In order to evaluate the effectiveness and performance of

the proposed reinforcement learning-anti-disturbance fault-
tolerant control law, a numerical example is provided in this
section.

In the simulation, we select1f = 2 sin(x1+5)+cos(6x2−
4),B = 1,N = 1. The desired signal yd is generated by
ÿd + 2ẏd + yd = sin(0.25t) + sin(0.5t), yd (0) = 0, ẏd (0) =
0. The initial value of the system is set as: x1 = 0.5, x2 =
0, d̂1 = 0, p1,0 = 0, p2,0 = 0, p1,2 = 0, p2,2 = 0, M̂ = 0.
The initial weight parameters of the actor network and the
critic network are set as:

Ŵa =



0.2
0.6
−0.3
0.1
−0.5
0.8
0.15
−0.23
0.35


, Ŵc =



0.3
0.1
−0.7
0.5
−0.64
0.28
0.85
−0.23
0.35
−0.11
−0.92



T

144510 VOLUME 9, 2021



S. Huang et al.: SODO Based Reinforcement Learning Anti-Disturbance Fault Toler-Ant Control

FIGURE 4. The adaptive parameters under Case 1.

FIGURE 5. The weights of the actor network and the critic network under
Case 1.

FIGURE 6. The tracking performance for the desired signal under Case 2.

For the proposed control method, the control gain is K1 =

3,K2 = 10 and the adaptive parameters are cWa = 5,
cWc = 5, cd = 0.5, cM = 0.5 and σa = 3, σc = 0.003, σd =
0.1, σM = 2.

In Case 1, the matched and mismatched disturbances are
set as trapezoidal disturbances those varying with time. The
simulation results are shown in Fig 2 - Fig 5. The simulation
results show that the proposed control method can achieve
satisfactory results under the condition of actuator failure and
constant or changing external disturbance. All signals in the

FIGURE 7. The estimation performance for the matched and mismatched
disturbances d̂0 and d̂2 under Case 2.

FIGURE 8. The adaptive parameters under Case 2.

FIGURE 9. The weights of the actor network and the critic network under
Case 2.

closed-loop control system are bounded during the whole
control process.

In Case 2, the matched and mismatched disturbances are
set as square waves those varying with time. The simulation
results are shown in Fig 6 - Fig 9. It is obvious that the pro-
posed reinforcement learning- anti-disturbance fault-tolerant
control method can still guarantee stable tracking, while the
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control methods without SODO or reinforcement learning
may produce un-desired tracking errors and time delay. From
the simulation results of the two cases, the effectiveness and
the advantages of the proposed reinforcement learning- anti-
disturbance fault-tolerant control method can be verified.

V. CONCLUSION
This paper addressed the reinforcement learning control

problem for the nonlinear uncertain systems with matched
and mismatched time-varying disturbances, as well as the
unknown perturbations of the control effectiveness. Two
SODOs have been designed for the concerned non-linear
uncertain system, estimating and compensating the time
varying matched and mismatched disturbances. Two LSTM
networks those possesses perfect fitting ability have been
utilized as the critic and actor networks, improving the adap-
tivity with respect to the system un-certainties. Then by
designing several fault tolerant adaptive laws, the reinforce-
ment learning anti-disturbance fault tolerant control structure
which can handle the matched and mismatched time-varying
disturbances, has been established. Two cases of simulation
have been performed in this paper, and the advantages of the
proposed control structure can be known.
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