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ABSTRACT Identification of when and where moving areas intersect is an important problem in maritime
operations and air traffic control. This problem can become particularly complicated when considering large
numbers of objects, and when taking into account the curvature of the earth. In this paper, we present an
approach to conflict identification as a series of stages where the earlier stages are fast, but may result in
a false detection of a conflict. These early stages are used to reduce the number of potential conflict pairs
for the later stages, which are slower, but more precise. Our approach is generally applicable to objects
moving in piece-wise straight lines on a 2D plane, and we present a specific case where the Mercator
Projection is used to transform objects moving along rhumb lines on the earth into straight lines to fit in
our approach. We present several examples to demonstrate our methods, as well as to quantify the empirical
time complexity by using randomly generated areas.

INDEX TERMS Water space planning, collision avoidance, collision detection, interference identification,
nonlinear programming, R-trees, decision support system.

I. INTRODUCTION
Identifying conflicting operating areas on the ocean or in the
air is a complex and important problem in both maritime
operations and air traffic control. With thousands of ships and
aircraft travelling around the world every day, it is vital to
ensure that these vehicles do not operate too close to each
other, risking a collision. In the maritime domain, in 2009,
the USS Hartford and the USS New Orleans collided in the
strait of Hormuz, needing $120 million worth of repairs and
resulting in a loss of 21 months of operations [18]. The USS
Hartford, a submarine, was unaware of the USS New Orleans
when the vessels collided as the USS Hartford ascended
to the surface. The Federal Aviation Administration listed
midair collisions as the eighth leading cause of fatal aviation
accidents between 2001 and 2016 [7]. When planning routes
in these domains, a tool to rapidly identify spatio-temporal
conflicts can guarantee safe maritime and aircraft operations.

One of the challenges in identifying conflicts for aircraft
and ships is that the assets are not traveling in a straight
line in the Euclidean space. The curvature of the earth must

The associate editor coordinating the review of this manuscript and

approving it for publication was Haluk Eren .

be taken into account for accurate conflict identification.
In our approach, we assume that the assets are travelling
along rhumb lines, which are lines with a constant angle
relative to the north pole.We then use theMercator Projection
to transform the space into a 2D plane where rhumb lines
result in straight lines, and linear methods can be used. This
approach could be used for other transformations as well. For
example, for tracks that follow the shortest path between two
points on the surface of the earth, i.e., great circle tracks,
the gnomonic projection would result in a 2D plane where
great circles are straight lines.

II. RELATED RESEARCH
There has been considerable work done on interference iden-
tification in the area of air traffic control. Much of this
research focuses on conflict resolution, or finding a route that
eliminates conflicts, but detection of conflicts is a prerequisite
to solve the conflict resolution problem. Chiang et al. [5]
presented a method to detect conflicts and use this infor-
mation to route aircraft without conflicts using Delaunay
and Voronoi diagrams. Wollkind et al. [23] propose a dis-
tributed multi-agent negotiation technique for resolving air
traffic conflicts. Alligier et al. [2] investigated the problem
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of conflict detection with uncertain trajectories. Jardin [15]
uses a grid-based approach to determine if multiple aircraft
occupy the same discrete location simultaneously. There has
also been work done in detecting when collisions will hap-
pen between two ships for the purposes of autonomous ship
routing [16], [21].

A common approach to determine if two regions over-
lap involves a two-phase identification process [19]. The
first phase, called the broad phase, uses bounding boxes to
quickly identify potentially conflicting pairs of polyhedra.
However, broad phase methods can result in false alarms, that
is, an interference is deemed to exist when, in fact, none does.
The second phase, called the narrow phase, invokes pairwise
collision detection algorithms that determine whether inter-
ference indeed exists between the pairs identified by the broad
phase.

A. BROAD PHASE
The computational efficiency of broad phase methods stems
from the use of bounding boxes. For example, the method of
axis-aligned bounding boxes (AABBs) draws a rectangular
prism that completely contains a region. If the projections
of the bounding boxes onto the global axis overlap, then
the regions may overlap; otherwise, the regions are deemed
disjoint. Oriented bounding boxes (OBBs) provide a tighter
fit than AABBs, since the bounding volume is oriented to
minimize the total volume [13]. The AABB and OBB vol-
umes can be embedded as hierarchical tree structures to
represent assigned regions. Examples of hierarchical tree data
structures include octrees [14], k-d trees [3], bucket trees [10],
and R-trees [17]. Octrees recursively divide a cube into
eight octants, while quadtrees [9], the 2-dimensional analogs,
divide a plane into quadrants. An octree is formed with
child elements that are the octants generated by recursively
splitting the parent elements. Each child element contains an
indicator of whether a region is contained in the child element
or not. The k-d tree is a generalization of the octree, where
instead of binary splits, as used in generating the octree,
the volume is split into k sub-trees. The analysis of k-d trees
applies to octrees and quadtrees. The resolution (i.e., size
of the space partitions) of the k-d tree represents a trade-off
between the false positive rate and the query time. A finer
resolution results in fewer false positives at the expense of an
increased query time. Therefore, the choice of resolution is
critical to the success of the k-d trees and the related space
partitioning methods (octrees, quadtrees, etc).

B. NARROW PHASE
Examples of existing narrow phase algorithms for con-
vex polygon and polytope regions include GJK (Gilbert,
Johnson, Keerthi), Voronoi Marching (Closest Feature Pair),
and linear programming algorithms. The GJK algorithm
successively minimizes the distance between two convex
polygons, or more generally, polytopes [4], [11]. Voronoi
Marching finds the closest feature pair, where features are
Voronoi partitions of the exterior space of a convex polygon

TABLE 1. Summary of notation.

(polytope) [8]. A linear program [1] is solvable by an interior
point method to detect intersections of polytopes. The GJK
algorithm is a simplex-based method, and thus inferior to
an interior point method for polygons (polytopes) with a
large number of vertices, since the latter can handle models
with a large number of vertices faster. The Voronoi Marching
method has robustness issues and can exhibit cycling [20].
If the polygons are on the surface of the Earth, the line
between two points along the surface of the Earth is not
uniquely defined. We will consider the case in which both
the edges of the polygon, as well as the movement of the
polygon are described as rhumb lines, a line with constant
angle, or bearing, relative to either the true or magnetic north
pole. In this case, the problem can no longer be solved as a
linear program.

III. PROBLEM FORMULATION
Consider N polygons each with Ni vertices with the ith poly-
gon evolving over time as

pi(k, t) =
[
pix(k, t)
piy(k, t)

]
, k ∈ {1 . . .Ni} (1)
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This includes both dynamic polygons whose vertices vary
with time, as well as static polygons whose vertices do
not change with time. Both static and dynamic polygons
have initial times t i0, and final times t if , upon which they
appear and disappear, respectively. We assume the polygons
are convex and that the edges of the polygons are linear,
but we assume the vertices are moving in a straight line,
with possibly time-varying velocity. To model more complex
paths of dynamic polygons, the path can be decomposed into
piece-wise straight line segments. We will also make use of
a ‘‘center’’ reference point that does not need to be at the
geometric center of the polygon, but needs to be at a constant
location within the moving polygon. We define this reference
point as

ci(t) =
[
cix(t)
ciy(t)

]
(2)

We also assume that, given a known velocity and a location
ci(t), we can determine the time t when the center point is at
that location. The method for doing this is discussed for a
specific application in Section V.

IV. SOLUTION APPROACH
A. SOLUTION OUTLINE
Our method to find the set of intersecting objects is to use
successively more complicated stages to narrow down the
set of potentially conflicting objects. The earlier stages (e.g.,
broad phase purges undeniably non-intersecting objects) will
be faster, but not as selective in removing pairs of objects
from the set of potential conflicts in that there may be false
alarms. Later stages will be slower, but are invoked upon
a smaller, more manageable input set due to the screening
work from the earlier stages. The first stage entails the use
of axis-aligned bounding boxes in an R-Tree. The second
stage comprises polygon intersection with a sweep-line algo-
rithm. The third stage, if required, subsequently outputs the
time of intersection via the projection of the intersection’s
vertices. The final and the fourth stage is required when
both objects are moving, and comprises our proposed novel
nonlinear program to determine the time of intersection. This
overall process is shown in Figure 1, and is described in
algorithm 1.

B. STAGE 1: R-TREE
The first step is to insert the Axis-Aligned Bounding
Boxes (AABBs) of all objects into an R-tree data structure to
query for potential conflicts. The AABB is simply the min-
imum and maximum longitude and latitude of the polygon.
For moving polygons, a bounding box that spans the entire
object’s trajectory is used. For a given AABB, the left, right,
bottom and top is defined as

L i = min
k,t

pix(k, t) (3)

Ri = max
k,t

pix(k, t) (4)

FIGURE 1. Solution approach outline.

Bi = min
k,t

piy(k, t) (5)

T i = max
k,t

piy(k, t) (6)

An alternative would be to use Time Parameterized
R-Trees (TPR Trees) [22]; however, such structures have the
limitation that the objects must be added in chronological
order, which would render this step slower. More signifi-
cantly, they are only valid for objects moving linearly and
with constant velocity. R-trees group the AABBs of objects
into larger AABBs in a balanced tree structure, which can
then be quickly queried to determine if a point is within one
of the AABBs. Once all the objects are added to the R-tree,
each object is queried to determine which other object(s) the
AABB conflicts with. The output of this step is a set of pairs
of potential conflicts. Because the polygons are represented
by AABBs, there is a possibility of false detection of con-
flicts, but there will not be any missed detections. Because
each query for an object returns all the other potential con-
flicts with that object, this method is very fast at uncovering
potential conflicts, and can be used to remove unquestionably
non-conflicting objects. This is useful because the dataset
that stems from waterspace planning or air traffic planning is
likely to be such that there are many non-conflicting objects
and a small fraction of objects with conflicts. Algorithm 2
describes this step.
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Algorithm 1: Overall Solution Approach
Input: A: All areas

/* Stage 1, use R-Trees to find
potential conflicts */

potential_conflicts = R_Tree_Check(A)
for x in potential_conflicts

/* Stage 2, For all potential
conflict pairs, use Shapely to
find intersection */

intersection = shapely_check(x)
if intersection is empty

/* No conflict, continue to next
potential conflict */

end if
if either object in x is a track

/* Stage 3, for tracks, use
linear projection, using
intersection from Shapely */

intersection_time =
linear_projection(x,
intersection)
if intersection_time is empty

/* No conflict, continue to
next potential conflict */

end if
end if
if both objects are tracks

/* Stage 4, If both objects are
tracks, use nonlinear
programming, using
intersection time range
calculated by linear
projection */

intersection_time =
NLP(x,intersection_time)
if intersection_time is empty

/* No conflict, continue to
next potential conflict */

end if
end if

end for

C. STAGE 2: AREA OF INTERSECTION
Once we have the subset of objects that are potentially con-
flicting, we can begin checking each pair (in parallel, if nec-
essary) to eliminate false detections. If both areas are static
polygons, this is simply checking for the intersection of the
two polygons.

If one or both of the objects are dynamic polygons,
this intersection operation is not adequate to definitively
determine that there is a conflict, but it can provide useful

Algorithm 2: Stage 1: R-Tree

Function R_Tree_Check(A):
Input: A: All areas
Output: List of pairs of potential conflicts
/* This function adds the AABB of

each area to an R-Tree and
checks after each addition for
potential conflicts with the
latest added area */

for areai in A
/* Make Axis-Aligned Bounding

Box for the area, as defined
in Equations 3-6 */

AABBi = make_AABB(areai)
F Add AABBi to R-tree
for areaj in R-tree within AABBi

/* redCheck if time ranges of
objects overlap */

if max(t i0, t
j
0) ≤ min(t

i
f , t

j
f )

F Add objects i, j as potentially
conflicting

end if
end for

end for

information and there is no possibility of a missed detection
of a conflict. For these objects, the vertices of the swept
area of the track are calculated and used in the intersection
algorithm. The swept area is defined as the convex hull of
the polygon at the initial and final times for each piece-wise
linear segment, which is subsequently aggregated to account
for the entirety of the track. The convex hull of a set of points
is defined as the smallest convex set containing all points.
As shown in Section V, the convex hull operation is trivial
for some shapes, such as rectangles. Using the swept area
gives us the spatial information of where the conflict could
potentially be, but not the temporal information of whether
the objects are in the same place at the same time. The swept
area is defined by the set operation

0i = convex_hull
({
pi(k, t i0)∀k

}
∪

{
pi(k, t if )∀k

})
(7)

If the polygon is static, the convex hull operation does not
need to be performed, and the set of points for the polygon
can be defined as

0i =

{
x : x =

Ni∑
k=1

αkpi(k),
Ni∑
k=1

αk = 1, αk >= 0

}
(8)

The intersecting area determined by Shapely, a package
for set-theoretic analysis and manipulation of planar fea-
tures [12], is given by

Aij = 0i ∩ 0j (9)

138650 VOLUME 9, 2021



A. Bienkowski et al.: Interference Identification for Time-Varying Polyhedra

The vertices (extreme points) of this set are defined as

aij(k), k ∈ {1, . . . ,N ij
a } (10)

To calculate the intersection of two polygons, we used the
Python library Shapely, which is based on the C++ library
GEOS and the Java Topology Suite (JTS). The algorithm used
by Shapely is described in Chapter 2.3 of [6] This algorithm
will provide the vertices of the intersection of two polygons.
If this intersection is empty, there is no conflict. If it is not
empty, we not only learn that there is definitely a conflict, but
we also obtain the additional spatial information of where the
overlapping area is. If both polygons are static, this is the final
step for determining if a conflict exists. If one or both of the
conflicts are dynamic polygons, further computational steps
are needed to ensure that a conflict does in fact exists, and
the information from the Shapely analysis is used in the next
stage.

D. STAGE 3: PROJECTED TIME OF INTERSECTION
At this point in our proposed multistage approach, all remain-
ing pairs of polygons to be checked contain at least one
dynamic polygon, and at some point in space, the paths of the
polygons intersect.What remains to be determined is whether
there is still a collision when time is taken into account. To do
this, we can project the vertices of the conflicting area that
were calculated in the previous stage onto the line between
the reference point of the polygon at the start and end times.

ρij(k) =
(ci(t if )− c

i(t i0))
T (aij(k)− ci(t i0))∥∥∥ci(t if )− ci(t i0)∥∥∥22

(11)

If ρij(k) is 0, it means that the vertex was projected to the
reference point at the start time. On the other hand, if ρij(k)
is 1, it means the vertex was projected to the reference point
at the end time. We are interested in the first time of conflict
and the last time of conflict, so we only need the largest
and smallest values of ρij(k), i.e., ρijmax and ρijmin. In order
to determine the time of conflict, we use the distance from
the reference point to the vertex that is furthest forward and
backward in the direction of travel, defined as

ρif = max
k

 (ci(t if )− c
i(t i0))

T (pi(k, t i0)− c
i(t i0))∥∥∥ci(t if )− ci(t i0)∥∥∥22

 (12)

ρib = min
k

 (ci(t if )− c
i(t i0))

T (pi(k, t i0)− c
i(t i0))∥∥∥ci(t if )− ci(t i0)∥∥∥22

 (13)

If ρib ≤ ρ
ij
min ≤ ρ

i
f then the conflict is within the polygon at

time t i0, meaning this is our first time of conflict. If 1− ρib ≤
ρ
ij
max ≤ 1 + ρif , then the conflict is present at time t if and

this is our final time of conflict. If these conditions are not
true, then the fractional position of the reference point can be
found by ρijmax−ρif for the final time of conflict and ρijmin+ρ

i
b

Algorithm 3: Stage 3: Linear Projection

Function linear_projection(i,j,intersection):
Input: i,j: indices of potential conflict pair
intersection: intersection of potential conflicting
areas, calculated by shapely, consisting of vertices
aij(k)
Output: tstart , tend : start and end time of conflict,

or none if no conflict exists
/* This function uses linear

projection to calculate the
earliest and latest times of
intersection between two objects

*/
for each vertex aij(k) in intersection

ρij(k) =
(ci(t if )− c

i(t i0))
T (aij(k)− ci(t i0))∥∥∥ci(t if )− ci(t i0)∥∥∥22

ρif = max
k

 (ci(t if )− c
i(t i0))

T (pi(k, t i0)− c
i(t i0))∥∥∥ci(t if )− ci(t i0)∥∥∥22


ρib = min

k

 (ci(t if )− c
i(t i0))

T (pi(k, t i0)− c
i(t i0))∥∥∥ci(t if )− ci(t i0)∥∥∥22


end for
if ρib ≤ ρ

ij
min ≤ ρ

i
f then

tstart = t i0
else

tstart = track_time(ρijmin + ρ
i
b)

end if
if 1− ρib ≤ ρ

ij
max ≤ 1+ ρif then

tend = t if
else

tend = track_time(ρijmax − ρif )
end if

for the first time of conflict. From these values, the reference
point can be determined, and from that, the time of conflict.
These last steps are application specific, and are discussed
for a specific application in Section V. Algorithm 3 and
Algorithm 4 in Section V describe this step. If both polygons
in a potential conflict are dynamic, then the times calculated
from this section are not necessarily accurate, because the
polygons need not be present at the conflict vertices aij(k) at
the projection times. In this case, however, the times can be
calculated by projecting the conflict vertices onto the tracks of
both polygons, and the most restrictive times of conflict can
be used as limits, i.e. the true time of conflict must be within
that range. If, in this step, one polygon is static and the other
is dynamic, then the times calculated will be the true range
of the time of conflict, and no further computational steps
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are needed. If, for a different application, it is not possible to
determine the time of conflict from the reference point, this
linear projection step may be skipped and the step described
in the next section could be used for both cases, where both
polygons are dynamic or where one is static and the other is
dynamic.

E. STAGE 4: TIME OF INTERSECTION VIA NONLINEAR
PROGRAMMING
The next step is performed only if both polygons in a potential
conflicting pair are dynamic. In this case, we use nonlinear
programming to find the minimum and maximum times that
a convex combination of the vertices of each polygon can be
found to be at the same point. This problem has a linear cost
function, but nonlinear constraints, both because the location
of the vertices varies nonlinearly with time, and because
there is a cross-term between the convex coefficients and the
time-varying vertices. We used the Sequential Least Squares
Programming method in the Scipy package in python to solve
this nonlinear program.

min
α,β,t

t (14)

s.t.
Ni∑
k=1

αkpi(k, t) =
Nj∑
k=1

βkpj(k, t) (15)

Ni∑
k=1

αk = 1 (16)

Nj∑
k=1

βk = 1 (17)

αk , βk ≥ 0 ∀k (18)

tmin ≤ t ≤ tmax (19)

The limits on time are taken from the conflicting time range
calculated in stage 3. It is important to note that if the vertices
are moving at a constant velocity, then this problem becomes
a linear programming problem, by replacing equation (15)
with

Ni∑
k=1

αkpi(k, t i0)+ αkv
it =

Nj∑
k=1

βkpj(k, t
j
0)+ βkv

jt (20)

where vi and vj are the velocities of the vertices.

V. APPLICATION TO RHUMB LINE-BASED PROBLEM
In the previous section, we assumed the edges of the polygons
are straight lines. Because the polygons we are considering
are on the surface of the Earth, the line between two points
along the surface of the Earth is not uniquely defined.We will
consider the case in which both the edges of the polygon,
as well as the movement of the polygon are described as
rhumb lines. A rhumb line is defined as a line with constant
angle, or bearing, relative to either the true or magnetic North
Pole. Considering a point moving at a constant velocity,
at a constant bearing, the rhumb line is described by first

defining our polygons in spherical coordinates, i.e., latitude
and longitude, as a set of vertices with the k th vertex for the
ith polygon defined as

pi
s
(k, t) =

[
piλ(k, t)
piφ(k, t)

]
(21)

where the λ component represents the longitude, and the
φ component represents the latitude, and t represents the
time. The rhumb lines between these points are not straight
lines, so we cannot use these points in our solution approach
as they are; instead, we need to do a transformation
first.

One important feature to note about rhumb lines is that
if two points are moving along a rhumb line with the
same bearing, but different starting points, the distance
between the points will vary. This means that in order for
a dynamic polygon to maintain edges of the same length,
the vertices must be defined using rhumb line’s translations
from the polygon’s reference point. We define the reference
point as

cis(t) =
[
ciλ(t)
ciφ(t)

]
(22)

Rhumb linemotion over time is described by the following:

ciφ(t) = ciφ(t
i
0)+

si(t − t i0)

R
cos(θ i) (23)

ciλ(t) = ciλ(t
i
0)+ tan(θ i) ln

 tan
(
π
4 +

1
2c

i
φ(t)

)
tan

(
π
4 +

1
2c

i
φ(t

i
0)
)
 (24)

where si and θ i are the speed in knots (nautical miles per hour)
and bearing in degrees of object i, and R is the radius of Earth
in nautical miles. In order for these equations to describe a
line, we use the Mercator projection, which is a common
method of projecting the surface of the earth onto a plane.
The key useful property of the Mercator projection for our
purposes is that rhumb lines are straight lines in the Mercator
plane. The Mercator transformation is given as

cix(t) = ciλ(t) (25)

ciy(t) = ln
[
tan

(
π

4
+

1
2
ciφ(t)

)]
(26)

We will refer to the Mercator transformed reference point
vector as cim(t). We can then use equations (23) and (24)
to get the Mercator coordinates over time as shown in
equations (27) and (28), at the bottom of the next page.

The vertices of the polygon can be defined by a set of steps
to take from the reference point to each vertex. TheseM steps
are defined by bearings ψ i

m(k) and distances d im(k) and the
vertices can be found by repeatedly applying equations (23)
and (24) as shown in equations (29) and (30), at the bottom
of the next page.

Also important to note is that rhumb line translations do not
commute, that is, finding the front of the polygon first, then
moving to the left or to the right of the direction of travel
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TABLE 2. Distances and bearings for rhumb line rectangle. Each pair
represents (d i

m(k), ψ i
m(k)).

gives a different point than moving to the left or right first,
then moving along the direction of travel. For our application,
we will define our polygons as rectangles, and define our
steps as in Table 2

In Section IV-C, we needed to find the convex hull of
the polygons at the initial and final times. For a rectangle
moving along a track perpendicular to two of the sides, this
is straightforward. In this case, we can simply take the front
vertices at the end time and the back vertices at the start time,
that is, pi(1, t if ), p

i(2, t if ), p
i(3, t i0), p

i(4, t i0). In Section IV-D,
we needed to find the time that a dynamic object would be
at a point given the location along the track. In this particular
case, as shown in Algorithm 4, this can be done by inverting
the Mercator projection of the point in question, calculating
the distance along the rhumb line from cis(t

i
0), and using the

fact that in spherical coordinates, the object is travelling at a
constant speed along the rhumb line.

VI. RESULTS
In this section, we illustrate our method with several example
problems, and then present timing results using randomly
generated sets of shapes.

A. EXAMPLE 1: PAIR OF STATIC POLYGONS
The first example involves two static polygons shown
in Figure 2. The first step is to check the AABBs of the two
polygons using an R-tree (Section IV-B). Because the blue
and green dashed lines overlap in Figure 2, this step will
determine that there is a potential conflict. The next step is to
find the area of intersectionwith Shapely (Section IV-C). This
step will give us the red shaded region in Figure 2, identifying

FIGURE 2. Example with two static polygons. Solid lines indicate polygon
objects, dashed blue and green lines indicate AABB for the polygons,
dashed red line indicates the identified conflicting area.

the conflicting area. Since this conflicting area exists, we have
determined that there is in fact a conflict, and no further steps
are needed.

B. EXAMPLE 2: A STATIC POLYGON AND
A DYNAMIC TRACK
This example consists of a static polygon and a dynamic
polygon, shown in Figure 3. The parameters for this example
are shown in Table 3.

In this example, theAABBs are not shown, but the first step
will be the same as in the previous example. The next step will
be to use Shapely to find the area of intersection between the
static polygon and the convex hull of the dynamic polygon
at the start and end times. Once this is found, the vertices
of the area of intersection are projected onto the reference
point track, resulting in the dashed red lines in Figure 3
(Section IV-D). In this case, the time of intersection is deter-
mined to be between 4.04 and 10.58 hours after the start time
of the dynamic polygon.

C. EXAMPLE 3: TWO DYNAMIC TRACKS
In this example, there are two dynamic tracks, shown
in Figure 4. The parameters for the blue track are the same
as in the previous example, shown in Table 3, the parameters
for the green track are shown in Table 4. The first three
steps are the same as in the previous examples, resulting
in the dashed red and black lines in Figure 4. In this case,
the projection of the intersection vertices results in two sets

cix(t) = cix(t
i
0)+ tan(θ i) ln

 tan
(
π
4 +

1
2 (c

i
φ(t

i
0)+

si(t−t i0)
R cos(θ i))

)
tan

(
π
4 +

1
2c

i
φ(t

i
0)
)

 (27)
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2
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))]
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Algorithm 4: Finding Time From Projection Fraction

Function track_time(ρ):
Input: rho: Fraction of the track to conflict point
Output: Time at which the reference point of the

area is at the point described by rho
/* This function calculates the

time at which the moving haven
reference point is at a given
fraction along a track */

/* First, find the point along the
Mercator line corresponding to
the fraction */

q
m
= ρ(cim(t

i
f )− c

i
m(t

i
0))+ c

i
m(t

i
0)

/* Next, invert the Mercator
projection */

q
s
=

[
qx

2 arctan (tanh ( qy2 ))

]
/* Calculate the distance along a

rhumb line to the projected
point */

1ψ = ln

 tan
(
π
4 +

qφ
2

)
tan

(
π
4 +

ciφ (t
i
0)

2

)


if 1ψ is close to 0 then
/* This means the track is

East/West, so the latitude
remains the same */

w = cos qφ

else

w =
(qφ − ciφ(t

i
0))

1ψ

end if

d =
√
(qφ − ciφ(t

i
0)

2 + w2(qλ − ciλ(t
i
0))

2

t = d/si

of times. Projecting onto the blue track gives a range of 3.16 to
10.58 hours, projecting onto the green line gives 1.33 to
6.95 hours. This leads us to use 3.16 to 6.95 hours as our limits
on time when solving our nonlinear programming problem
(Section IV-E). Solving the nonlinear programming problem
results in an exact time of conflict between 4.12 hours and
4.63 hours.

FIGURE 3. Example with one static and one dynamic polygon. Blue is
static polygon, green line indicates the track of the dynamic polygon,
green dashed line indicates the convex hull of the dynamic polygon at the
start and end times, dashed red shaded area indicates the area of
intersection, black dashed lines indicate projection of the intersection
vertices.

TABLE 3. Parameters for Example 2.

TABLE 4. Parameters for Example 2.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
In order to test the runtime of our approach, we generated
sets of random areas and tracks. All areas were generated
within a box with latitudes between 0 and 30 degrees, and
longitudes between −45 and −15 degrees. Areas were gen-
erated with 3 to 10 vertices, by generating 3 to 10 angles
between 0 and 2π and for each angle generating a radius
between 50 and 100 nautical miles from a randomly gener-
ated center. Tracks were generated by randomly placing the
first waypoint, and placing a second point between 50 and
100 nautical miles away, with the dimensions of the rect-
angle varying between 20 and 40 nautical miles on a side.
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FIGURE 4. Example with two dynamic polygons. Solid lines indicate
tracks of the polygons, dashed blue and green lines indicate the convex
hull of the polygons at the start and end times, red shaded area indicates
the area of intersection, dashed black lines indicate the projection of
intersection vertices.

FIGURE 5. Example of a set of randomly generated areas.

We generated areas for 3 cases, one with only static areas,
one with both areas and tracks, and one with only tracks.
The tests were run on a computer with an AMD Ryzen 7
2700X processor and 32GBof RAM.An example of the set of
areas generated is shown in Figure 5. The overall time spent
is shown in Figures 6, which shows that there is significant
variation in the amount of time taken for a given number of
objects. This is because the number of conflicting objects, can
vary significantly, which affects the number of times the later
stages must be executed. Figure 7 shows that for cases with
only static areas, the execution time is close to linear with the
number of conflicts. When there are dynamic tracks involved,
there is still variation because there is more possibility for
false positive detections in the earlier stages, which cause the
later stages, especially stage 4 to take longer. The time spent
in each step was measured, and is shown in Figures 8-12.
Figure 8 shows that stage 1 is very fast at eliminating potential
conflicts, and scales well with the number of objects. Figure 9

FIGURE 6. Total runtime as a function of the number of objects.

FIGURE 7. Total runtime as a funciton of the number of conflicts.

FIGURE 8. Total broad phase runtime as a function of the number of
objects.

shows that stage 2 is taking the most amount of time, but
it is handling more conflicts, and if for example, this stage
was skipped and nonlinear programming was used instead,
Figure 11 and 12 shows that for the same number of potential
conflicts, this would take significantly longer. Thismeans that
shapely is useful for static vs. static and static vs. dynamic
conflicts, as well as for eliminating false positive conflict
detections. Similarly, Figure IV-D shows that stage 3 takes
little time, making it preferable for static vs. dynamic con-
flicts over nonlinear programming. For stage 4, the time was
measured separately for the cases where the potential conflict
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FIGURE 9. Total shapely runtime for all objects, as a function of the
number of potential conflicts that resulted from broad phase.

FIGURE 10. Total projection runtime for all objects, as a function of the
number of potential conflicts that resulted from shapely step.

FIGURE 11. Runtime for nonlinear programming phase for all cases
where a true conflict was detected, as a function of how many times this
happened.

was determined to be true (Figure 11, and where it ended up
being a false alarm (Figure 12. The time for false alarms was
significantly longer than the time for true conflicts, which
highlights the need for the previous phases to limit the number
of false alarms as much as possible.

Stages 2 through 4 deal with independent pairs of
potential conflicts, and therefore can be sped up using

FIGURE 12. Runtime for nonlinear programming step for all cases where
NLP determined that there was no conflict, as a function of how many
times this happened.

parallelization. This would result in speedups particularly
with very large numbers of objects. We have used our method
on examples with 500-800 objects with the entire process
taking 3-5 seconds.

VII. CONCLUSION
In this paper, we presented an approach to detect conflicts
between large sets of static and dynamic polygons. We solved
the problem in four sequential stages. First, R-trees were used
to rapidly eliminate non-conflicts, but with the possibility of
false detection of conflicts. Next, the area of intersection was
found between two potentially conflicting polygons using
the Shapely library, a package for set-theoretic analysis and
manipulation of planar features. For static polygons, this is
the last step needed. In the next stage, the conflict vertices
from the previous stage were projected onto the track of
the dynamic polygon, allowing the time of conflict to be
determined. For pairs of one static and one dynamic poly-
gon, this is the last stage needed. The last stage for finding
conflicts between pairs of dynamic polygons was a nonlinear
programming problem that finds the minimum and maxi-
mum time where a convex combination of the vertices of
the polygons were at the same location. We demonstrated
the conflict identification approach via three examples of
increasing complexity, and presented computation times for
randomly generated sets of polygons. In the future, we plan to
develop automated methods to determine optimal areas and
routes that avoid conflicts, allowing us not only to identify
where there are problems with a plan, but to be able to proac-
tively recommend ways to adjust plans by mission planners
to resolve conflicts. We also plan to investigate methods to
estimate/predict the locations and sizes of dynamic polygons
with more complicated movements, and in the presence of
noise.
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