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ABSTRACT The development of techniques that allow the efficient identification of residential loads
(nonintrusive loadmonitoring) is a key factor for the practical implementation of demand response programs.
Recently, in terms of nonintrusive load monitoring, the use of deep learning has gained attention, mainly
the models based on convolutional neural networks. However, the efficient training of these models is
strongly dependent on the quantity and balance of the data, i.e., characteristics that are not normally found in
nonintrusive load monitoring datasets. To deal with these challenges, this paper proposes an approach based
on three stages, that are: (i) time series transformation into 2D images; (ii) feature extraction using deep
transfer learning; and (iii) classification/labelling of loads. Moreover, it was analyzed and defined the better
window size per load in relation to the f1-score reached by the classifiers. In this sense, it was considered
five loads present in the Reference Energy Disaggregation Dataset, where the proposed approach was able
to obtain an average f1-score of 83.2%. From the results analysis, it was demonstrated the greater capacity
of the proposed approach to infer and generalize its responses.

INDEX TERMS Convolutional neural network, deep transfer learning, feature extraction, nonintrusive load
monitoring, recurrence plots.

I. INTRODUCTION
Although the technological evolution has allowed the devel-
opment/improvement of electrical devices, there is an
increase in electricity consumption. In this sense, the iden-
tification of consumers’ electricity usage profile becomes
a valuable task, mainly to demand response programs [1].
To this end, nonintrusive load monitoring (NILM) emerged
as a research area that effectively contributes to this identifi-
cation, mainly for the residential sector [2]–[4]. Thus, NILM
approaches make it possible to identify the operating status
of each device and, consequently, disaggregate the electricity
consumption.

Researches on NILM began in the 90’s, where the first
proposed approaches basically analyzed real and reactive
power to identify the residential loads [5]–[10]. However,
due to the advances in the artificial intelligence area, it is
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possible to verify the increase use of machine learning-based
approaches [11]–[13]. From these advances, as shown in the
review proposed by [14], NILM researches were divided into:
(i) micro level – that considers loads’ current signatures,
i.e., using meters with high sampling rates that are, conse-
quently, more expensive; and (ii) macro level – that uses
currents or apparent power in RMS (Root Mean Square) and,
in this case, the meters may have a low sampling rate, being
more adequate as a real life application.

Within micro level approaches, the feature engineering
stage (extraction and selection) is quite common [11], [12],
[15]–[18]. This characteristic allows to advance the state-of-
the-art, reaching high precision results in the identification
task. On the other hand, macro level approaches, mainly due
to the use of RMS values, focused on the proposition of new
supervised [19]–[22] and unsupervised [23]–[31] algorithms
to identify residential loads.

According to the previously mentioned context, it is noted
that feature engineering for macro level has become a
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research gap, since it is not trivial to transform RMS values
into other features. However, due to the advances in deep
learning algorithms for different research areas, the possibil-
ity of transforming time series data into 2D images gained
notoriety.

In this sense, as expected, the use of time series transforma-
tion as a feature extraction stage and deep learning algorithms
were primarily performed to the micro level. In [32] and [33]
the authors transformed voltage and current signals into V-I
trajectories. From these 2D images, they have used a convolu-
tional neural network (CNN) to identify the residential loads.
To the best of our knowledge, in terms of macro level, only
the framework proposed in [34] transforms the RMS current
time series into recurrence plots (2D images), using them as
inputs to a CNN.

Given the intrinsic feature extraction process performed by
CNNs and the potential of recurrence plots (RP) to generate
2D images that highlight recurring actions in the state space,
this paper seeks to advance the state-of-the-art by propos-
ing/investigating:

• A deep transfer learning feature extraction (DTLFE)
stage, which was proposed to improve the identification
of residential loads. The effectiveness of DTLFE was
evidenced by using classical machine learning classi-
fiers, that are, multilayer perceptron (MLP), support
vector machine (SVM) and extreme gradient boosting
(XGBOOST);

• The better window size per load to improve the iden-
tification performance. Since the windowing process is
normally performed by the meter, the definition of a
maximum window size is important to determine the
hardware buffer size, i.e., this information could assist
in the specification of a meter to be properly used for
NILM purposes.

The remainder of the paper is organized as follows.
Section II addresses the most related approaches found in
the literature. Section III details the proposed methodol-
ogy, highlighting the DTLFE. The results are discussed in
the Section IV. Finally, the conclusions are presented in
Section V.

II. RELATED WORKS
This section brings theworks that use data from the Reference
Energy Disaggregation Dataset (REDD) to evaluate their per-
formances, more specifically those that consider the house 3.
This consideration was made, since house 3 is commonly
used to validate novel approaches. The characteristics of this
dataset will be presented in more details in subsection III-A.
Kolter and Johnson [35] presented the first results using

REDD as benchmark dataset in 2011. They used a Factorial
Hidden Markov Model (FHMM) to identify the loads, which
was able to achieve an accuracy of only 0.333 for house 3.
Due to this work, others were motivated to explore classi-
fiers based on Hidden Markov Model (HMM). This way,
in [36] the authors proposed a Bayesian HMM, obtaining an

accuracy of 0.815, i.e., a great advance when compared
to [35]. Also, it can be highlighted the HMM-based
approaches of [37] and [38], which reached accuracies
of 0.906 and 0.800, respectively. However, the REDD can
be considered as an unbalanced dataset, since loads like the
fridge are constantly on, while loads like the microwave
are sporadically used. For this reason, the most recent work
using FHMM [39] employs f1-score to assess its performance
instead of accuracy, demonstrating a great result by reaching
0.809.

A multi-label classification framework was proposed
by [40]. The computational experiments were conducted
in order to evaluate the performances of k-Nearest Neigh-
bors (kNN) and RAndom k-labELsets (RAkEL) classifiers.
In addition, the authors analyzed the use of power time series
and its decomposition by using a Wavelet transform. How-
ever, the directly use the power time series, when classified
by the kNN, presented the better average f1-score (0.530).

In [41], it was proposed the use of a Long Short-Term
Memory (LSTM) without any feature engineering stage. The
accuracy obtained for house 3 was about 0.920, i.e., greater
than that reached by [37].

Sparse coding-based approaches have been recently pro-
posed [22], [42], [43], presenting the advantage of using
fewer training samples. Due to this characteristic, sparse
coding algorithms are less prone to the effects of unbalanced
datasets. Despite this factor, these approaches were able to
reach accuracies between 0.465 and 0.650. Using fewer train-
ing samples, the authors of [44] investigated the behaviour
of semi-supervised learning algorithms. It was observed that
Manifold Regularization presented the best overall results.
For house 3, it obtained an accuracy of 0.892.

Kong et al. [45] proposed an approach that uses HMM
to model the home appliances and the Segmented Integer
Quadratic Constraint Programming (SIQCP) to disaggre-
gate the consumption. This approach shows good accuracy,
obtaining 0.835.

Recently, a framework based on RP and CNN was evalu-
ated by [34]. It was possible to demonstrate the robustness
of the proposed framework, which reaches average f1-score
and accuracy of 0.727 and 0.956, respectively. However,
as pointed out by the authors, these results clearly demon-
strate the unbalance inherent to the REDD.

Based on the above-mentioned researches, the lack of
feature engineering techniques that are effective for macro
level is evident. In this sense, the approach proposed in
this paper aims to fill this research gap, ensuring that even
classical machine learning algorithms can demonstrate high
performances.

III. PROPOSED METHODOLOGY
As previously mentioned, the proposed methodology seeks
to demonstrate the potential of DTLFE stage to improve the
identification of residential loads. A general overview of this
methodology is shown in Fig. 1, being each stage detailed in
the sequence.
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FIGURE 1. Overview of the proposed methodology.

The entire methodology was implemented by using Python
programming language, considering the following packages:
(i) PyTS to extract the RPs; (ii) Tensorflow/Keras to imple-
ment the CNN; and Scikit-learn/XGBOOST to run the other
machine learning classifiers. The source code was published
on Github.1 For the computations, an Intel Core i7-7700 CPU
(3.60GHz) with 16GB DDR4 RAM and NVIDIA Quadro
M5000 was used.

A. DATASET AND PREPROCESSING
First of all, it is important to mention that REDD [35] is
divided into low and high frequency measurements acquired
from six houses. However, it was considered only the low
frequency measurements obtained for the house 3. These data
were acquired from the main distribution panel at 1 Hz. The
training set was composed of data from 16th April 2011 to
16th May 2011 (70% of available data), while the test set
was composed of data from 17thMay 2011 to 30thMay 2011
(30% of remaining data).

Next, the RMS current time series were processed using a
sliding window. Thus, the definition of the window size is an
important part of the NILM problem, since a small window
can lose information that characterize the load operation cycle
and a large window can include noise and/or redundant infor-
mation. For this reason, the training and test sets were further
subdivided according to the size of the window (in seconds),
that are: 30, 60, 90, 180, 360, 540, 720, 900, 1080 and 2040.

Each obtained window have its class labelled using the
timestamps of the main distribution panel and the times-
tamps of the measurements acquired from the individual
loads. In this sense, it was generated a binary array with
5 dimensions, representing single-state (microwave) and
multiple-state loads (fridge, dishwasher, washer dryer 1,
washer dryer 2). These loads were chosen in accordance with
their energy consumption in the house 3, i.e., the loads with
more contribution on the aggregated energy consumption.

B. RMS CURRENT TIME SERIES TRANSFORMATION
From the windowed RMS current data, it was possible to
transform them into RPs, which are commonly used to

1https://github.com/diegocavalca/phd-thesis

identify patterns in nonlinear and dynamic systems (mainly
when dealing with time series). Considering that these pat-
terns are recurrent [46], the RP allows to visualize them [47]
as 2D images. An RP is defined as a MxM matrix gener-
ated from a time series with M samples, being expressed
by (1):

Ri,j = 2(ε − x ′j − x
′
i ), (1)

where x ′ ∈ <n; i, j = 1, 2, . . . ,M ; M is the number of states
(x ′i or x

′
j ) considered; n is the immersion dimension; ε is the

radius of the neighborhood (threshold) at the sample (x ′i or
x ′j ); and 2(.) is the Heaviside function.
Therefore, if Ri,j = 1, the state is recurrent and a black

pixel is marked on the graph; and if the Ri,j = 0, the state
is non-recurrent and a white pixel is marked. In this way,
each RP has differences in terms of texture (isolated pixels,
diagonal, vertical and horizontal lines) and typology [48].

In this paper, the RPs were specifically parameterized for
NILM applications, being ε = 10% and n = 1. These
parameters were obtained after exhaustive tests.

C. DEEP TRANSFER LEARNING FEATURE EXTRACTION
Considering the RPs (2D images) as inputs, this stage was
proposed to extract features from them. For this purpose,
a CNN was used, as this model is able to capture the sin-
gularities present in the images, usually arranged in large
dimensional spaces [49]. Despite its advantages in rec-
ognizing patterns on images, the computational resource
and the volume of data necessary for training are lim-
iting factors for real life applications, as is the NILM
case. For this reason, a transfer learning strategy was
adopted. Thus, a pre-trained model (CNN VGG16) [50] was
reused.

However, in this paper, the CNN VGG16 was just used to
extract features. Its original architecture is divided into five
convolutional layers and three subsequent fully-connected
layers, in addition to the softmax output layer. Thus, its last
fully-connected and softmax output layers were removed,
resulting in the convolutional architecture showed in Fig. 2.
Thus, the first fully-connected layer was maintained, since it
represents a feature vector (embeddings) used as input to train
and validate the ML models presented in the sequence.
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FIGURE 2. CNN VGG16 architecture used in the DTLFE.

FIGURE 3. Block diagram that represents the comparative analysis
considered in this study.

D. CLASSIFICATION USING MACHINE LEARNING
In the last stage of the proposed methodology, the feature
vector extracted by the DTLFE was presented to the fol-
lowing classifiers: MLP, SVM and XGBOOST. In order to
assess the performance of the DTLFE in conjunction with
the classifiers, two other comparative approaches were also
considered: (1) based on the extraction of features by means
of recurrence quantification analysis (RQA), using the indi-
cators called determinism and recurrence rate as inputs to
the three same classifiers; and (2) based on the use of RPs
as inputs to a CNN classifier, such as proposed in [34].
A block diagram representing the comparison test is pre-
sented in Fig. 3.

Since this paper is focused on improvements in terms
of feature extraction, the classifiers were parameterized
with default values, that are: MLP (α equals to 1e−3,
hidden layer size equals to 10); SVM (radial basis func-
tion kernel); XGBOOST (number of estimators equals
to 100).

From the identification of loads reached by the machine
learning classifiers, their performances were evaluated
according to the most used metrics for NILM, accuracy (acc)
and f1-score (f1), which can be described as:

acc =
TP+ TN

TP+ FP+ TN + FN
, (2)

f 1 = 2×
Precision× Recall
Precision+ Recall

, (3)

being Precision = TP
TP+FP , Recall =

TP
TP+FN , TP is the

number of true positive results, TN is the number of true
negative, FP is the number of false positive and FN is the
number of false negative.

In the sequence, the results were analyzed and discussed to
demonstrate the robustness and effectiveness of the DTLFE
against the other two approaches considered in this paper and
the state-of-the-art works.

IV. RESULTS AND DISCUSSIONS
The results were obtained considering the previously men-
tioned test dataset for different window sizes. Thus, they
were analyzed in terms of: (A) overall performance using a
fixed window size to compare the DTLFE with the two other
approaches highlighted in Fig. 3; (B) DTLFE generalization
capacity; (C) impact of window sizes on the performance; and
(D) comparison with the related works.

A. OVERALL PERFORMANCE ANALYSIS
As can be seen in Fig. 4, the DTLFE provided the best average
accuracy and f1-score for a fixed window size of 2,040 sec-
onds (the maximum window size considered). Since the
dataset is unbalanced (i.e., the amounts of samples per class
are different), the use of accuracy to measure the perfor-
mance of classifiers can be biased. In this sense, the use
of the f1-score metric becomes adequate. Thus, the perfor-
mance gain of the DTLFE when compared to the other two
approaches that use RQA and RP as feature extraction meth-
ods, ranged between 6.4% and 22.4%.
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FIGURE 4. Average accuracy and f1-score reached by the DTLFE compared
with RP and RQA feature extraction approaches.

TABLE 1. Performances obtained for compositions between feature
extraction approaches and classifiers using a fixed window size.

TABLE 2. MLP performances to classify each load using a fixed window
size of 2,040 seconds.

Analyzing the compositions between feature extraction
approaches and classifiers, the dominance of the DTLFE was
also noticed, as shown in Table 1 (ordered by f1-score).

The combination of DTLFE with the MLP classifier
obtained the best result in relation to f1-score and the differ-
ence in relation to the other approaches ranged from 10.6%
to 32.3%. This result shows that the proposed approach was
efficient even in view of the different loads considered and
the evident unbalance between the classes (labelled as ‘‘on’’
or ‘‘off’’) present in the REDD. The results of MLP for each
load and the number of ‘‘on’’ and ‘‘off’’ samples are shown
in Table 2.

Considering the best performance presented by DTLFE in
conjunction with an MLP-based classifier, a generalization
analysis was performed, as shown in the next subsection.

B. GENERALIZATION ANALYSIS
In order to assess the generalization of MLP learning, it was
submitted to a test dataset with randomly chosen samples.
For this evaluation, a 10-fold cross-validation strategy was

FIGURE 5. Probability distributions obtained for accuracy.

FIGURE 6. Probability distributions obtained for f1-score.

adopted. Thus, each of the feature extraction approaches were
analyzed, where only in the case of using RP a classifier
based on CNN was considered instead of the MLP. The
probability distributions obtained for accuracy and f1-score
are respectively presented in Figs. 5 and 6.
In general, it was possible to observe that the DTLFE

presents a good probability distribution, indicating that it has
the best learning and generalization capacity when compared
to the other two approaches discussed in this paper. In time,
it is interesting to note that the approach using RQA features
provides the most unstable results in terms of f1-score. This
way, such features do not provide enough information for
MLP training and, consequently, impair its generalization.

C. IMPACT OF WINDOW SIZE
Despite the use of fixed window size is common in NILM
researches, as previously stated, this size is a factor that
directly affects the performances of some approaches. This
is because the window size must be adjusted so that it is not
so small as to lose load operating cycles and not so wide
to have great overlap with other loads and to maximize the
data unbalance, being this a non trivial task. Based on this
statement, in this paper, it was analyzed the impact of window
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FIGURE 7. Impact of window size on the results of an MLP classifier for each load, considering the use of DTLFE
proposed approach.
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TABLE 3. Comparing the f1-score between fixed and variable sliding
window.

TABLE 4. Comparison with the state-of-the-art papers.

size per load, considering the DTLFE in conjunction with an
MLP classifier. The results are shown in the graphs of Fig. 7.

It is possible to observe that the window size has an impact
on the f1-score, since the results vary, from fixed to variable
sliding windows, in a range between 3.8% and 7% (Table 3).
Furthermore, in average, there was an increase of 3% (in
terms of f1-score) when using different windows per load.

D. COMPARATIVE ANALYSIS WITH RELATED WORKS
Morever, Table 4 presents a high-level comparison with the
state-of-the-art papers that considered the house 3 of REDD,
independent on their methodological aspects. The proposed
approach achieved the best performances for f1-score and
accuracy, considering both fixed or variable sliding window
per load. Therefore, the use of the proposed DTLFE demon-
strated to be a robust feature extraction technique.

V. CONCLUSION
The use of a methodology based on multiple stages (time
series transformation into images, automatic extraction of
features using deep transfer learning and classification) has
shown effective results regarding the task of identifying loads
to disaggregate their electricity consumption. The proposed
DTLFE approach was able to extract features that contribute
to better classify the loads and to improve the generalization
of an MLP classifier. In addition, the impact of window
size on the classifier’s performance was mitigated by using
different sizes of window for each load.

Given the results obtained by the proposed methodology,
it is still possible to analyze, in future research, the capacity
of the pre-trained model to perform the transfer learning in
relation to other houses contained in REDD or consider a
fine-tuning strategy for the same domain (i.e., using other
public NILM datasets). Moreover, it can be analyzed an
optimized parameterization of RPs and other techniques to
overcome the obstacles generated by the unbalanced data.
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