IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 29, 2021, accepted September 25, 2021, date of publication October 8, 2021, date of current version October 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3118854

Toward Fast and Scalable Firmware Fuzzing
With Dual-Level Peripheral Modeling

EUNBI HWANG, HYUNSEOK LEE, SEYEON JEONG, MINGI CHO,

AND TAEKYOUNG KWON ", (Member, IEEE)

Graduate School of Information, Yonsei University, Seoul 03722, South Korea

Corresponding author: Taekyoung Kwon (tackyoung @yonsei.ac.kr)

This work was supported by the Defense Acquisition Program Administration and Agency for Defense Development under Contract

UDI190016ED.

ABSTRACT Firmware vulnerabilities raise serious security concerns with the rapid growth in connected
embedded devices. Fuzzing is an effective dynamic testing technique to find those vulnerabilities; however,
firmware fuzzing is very limited by hardware dependence, such as on-chip and off-chip peripherals. The
latest elegant approaches are making substantial progress in hardware-independent firmware fuzzing, but
there is room for further improvement. We observe that hardware-independent peripheral modeling is
scalable but slow at the register level; in contrast, at the abstract function level, it is fast but has limited
scalability. Firmware fuzzing is still challenging in terms of achieving both scalability and efficiency.
To address this problem, we present a dual-level approach that leverages register level modeling and selective
function level modeling in a hybrid manner. Our method starts firmware fuzzing at the register level and
connects peripheral handlers while executing hardware abstraction layer functions. We evaluate our method
in terms of efficiency, scalability, and effectiveness with four real-world firmware and demonstrate the

possibility of relatively fast and scalable firmware fuzzing that combines the benefits of the two levels.

INDEX TERMS Firmware, fuzzing, peripheral modeling, security, vulnerability.

I. INTRODUCTION

Embedded systems are prevalent in our daily lives, including
but not limited to the Internet of Things (IoT), automation
systems, and smart cars. In particular, the growth in connected
IoT devices is spectacular; for example, the revenue of such
devices was approximately 12 billion in 2020 (about 15 times
compared to 2010), which is likely to exceed 30 billion
in 2025 [1]. This rapid progress has resulted in a signifi-
cant increase in firmware vulnerabilities, which are listed
in the NIST National Vulnerability Database [2]. Firmware
vulnerabilities are critical security concerns, leading to not
only digital but also physical damage through substantial
failures, such as (late) crashes, reboots, and hangs, and even
silent faults, in embedded systems [3], [4]. They present a
much higher impact in general terms than the ones in OS or
application-level vulnerabilities because they are at the low
level of the infrastructure [5]. Unfortunately, however, it is
cumbersome and difficult to test firmware from a security
perspective, particularly when running on microcontrollers

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek

141790

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

called MCUs and even worse as closed-source and blob bina-
ries, due to the complex environmental dependencies required
at run time [6], [7].

Fuzzing is an effective and scalable testing method that is
widely used to detect vulnerabilities in modern software [8].
Coverage-guided fuzzers, such as AFL [9], have successfully
discovered many bugs in a variety of software [10]. Thus,
the application of coverage-guided fuzzing to MCU firmware
is highly desirable; however, this task is challenging [4].
Although on-chip fuzzing is preferable to address hardware
dependencies, it is infeasible because of the limited resources
in MCUs. Hardware emulation may deal with this problem
by running every element on commodity computers, but this
task is laborious and impractical because of the notorious
heterogeneity in embedded hardware. For example, both on-
chip/off-chip peripherals and architectural derivatives are
extremely diverse in this domain. Indeed, none of the modern
emulators can emulate the whole range of MCU peripherals,
entailing that firmware executions are disrupted.

Recently, Muench et al. [4] studied firmware fuzzing and
suggested that partial emulation with peripheral modeling
might be a reasonable direction to the hardware-independent

VOLUME 9, 2021

https://orcid.org/0000-0002-5513-0836
https://orcid.org/0000-0001-7005-6489

E. Hwang et al.: Toward Fast and Scalable Firmware Fuzzing With Dual-Level Peripheral Modeling

IEEE Access

(peripheral-agnostic) firmware fuzzing. As a quick response
to this, two invaluable methods were proposed. Feng et al. [7]
presented P?IM, which abstracts diverse peripherals at
the memory-mapped register level and handles firmware
I/O based on automatically generated models for fuzzing.
Clements et al. [6] proposed an approach of peripheral mod-
eling at the abstract function level by replacing hardware
abstraction layer (HAL) functions with software handlers for
fuzzing; they introduced HAL-Fuzz along with a high-level
emulation system called HALucinator. Although both of
these approaches realize hardware-independent firmware
fuzzing, there remains a scope for further improvement.
We observe that P?IM is scalable but relatively slow, whereas
HAL-Fuzz is fast but less scalable and requires HAL func-
tions and exact matching environments. Thus, it is a chal-
lenging task to satisfy both the scalability and efficiency of
firmware fuzzing.

In this paper, we address this problem by presenting a
dual-level approach that leverages both register level periph-
eral modeling and selective function level peripheral model-
ing in a hybrid manner. Our prototype system called hybrid
emulation for firmware fuzzing (HEFF), starts firmware
fuzzing at the register level and connects peripheral handlers
while executing HAL functions. We combine the benefits
of the two levels for fast and scalable firmware fuzzing.
We implement our system based on P2IM and HAL-Fuzz,
and perform evaluation in terms of efficiency, scalability, and
effectiveness.

A. CONTRIBUTION
This paper makes the following contributions.

o Dual-Level Peripheral Modeling. We proposed a novel
approach of peripheral modeling in a hybrid manner to
improve hardware-independent firmware fuzzing.

« Fastand scalable firmware fuzzing. We implement our
prototype system and conduct fuzzing experiments.

« Effectiveness of bug finding. Our prototype system
finds more bugs and finds them faster.

B. ORGANIZATION

Section II reviews related work. Section III describes back-
grounds of firmware fuzzing and conducts small experiments
for our motivation. Section IV represents our system design.
Section V reports our evaluation. Section VI makes a discus-
sion. Section VII concludes this paper.

Il. RELATED WORK

We classify the previous work related to this study into
three categories. Readers are referred to the WYCINWYC
paper [4] for more about firmware fuzzing and its challenges.

A. FULL EMULATION

In general-purpose OS-based devices, since hardware interac-
tion occurs in the kernel, it is possible to process these interac-
tions through the emulated kernel without special emulations

VOLUME 9, 2021

of the peripherals. Firmadyne [11], Costin et al. [12], and
FirmFuzz [13] are some of the reported vulnerability-finding
studies targeting Linux-based embedded devices; these are
based on a full system emulation of QEMU [14]. Addi-
tionally, FIRM-AFL [10] is an augmented process emu-
lation technique that combines QEMU’s full system-mode
and user-mode emulations to improve the compatibility and
fuzzing performance.

Embedded-OS or no-OS abstraction-based devices com-
municate directly with the peripherals such that firmware
emulation requires peripheral emulations. Moreover, all doc-
uments are required for full emulation of the board and
peripherals of the target device. QEMU_STM32 [15] per-
forms emulations using the STM32 library based on the
expanded QEMU. Panda [16] uses the register knowledge
of each board through the SDK and performs emulations
by implementing all the logic for peripheral operation at the
register-level in QEMU.

The accuracy of system-vulnerability detection through
full emulation of the firmware is high, however, detailed
knowledge of the hardware is often lacking, and even with
sufficient information, a significant amount of engineering
effort required to implement full emulators [4], [17]. More-
over, there is a disadvantage that such emulations are slow [4].
Therefore, HEFF, which explores vulnerabilities targeting
embedded-OS or no-OS abstraction-based devices, uses a
partial emulation technique that overcomes this limitation of
full emulation.

B. PARTIAL EMULATION (HARDWARE-IN-THE-LOOP)
Hardware-in-the-loop partial emulations require firmware
images and physical devices. Avatar [18] solves the hardware
resource problem and performs firmware emulation by for-
warding the state changes of all the memory and CPU reg-
isters of the emulator to the actual device. PROSPECT [19]
provides a proxy that and tunnel arbitrary peripheral accesses
within the virtual machine to the embedded system under
test, while SURROGATES [20] provides an FPGA bridge
between the host and target to reduce the operational
overheads and enable analyses of complex systems. Fur-
ther, Avatar’> [21] is a multi-target orchestration platform
that is implemented by extending Avatar. This approach
enables state transfer between tools such as GDB, QEMU,
angr, OpenOCD, and PANDA; WYCINWYC [4], PRE-
TENDER [22], Unicorefuzz [23], and HALucinator [6] use
Avatar? between the emulators or analysis tools for firmware
operation.

This method overcomes the limitation of full emulation in
that it reduces the engineering effort in implementation by
emulating physical devices. However, as described in §I, it is
not easy to provide physical devices for emulation because
there are various peripherals used in the embedded device.
HEFF eliminates these peripheral dependencies that exist in
hardware-in-the-loop by using the modeled peripheral instead
of the physical device during partial emulation.

141791

IEEE Access

E. Hwang et al.: Toward Fast and Scalable Firmware Fuzzing With Dual-Level Peripheral Modeling

C. PARTIAL EMULATION (PERIPHERAL MODELING)
Partial emulations with peripheral modeling require firmware
images and peripheral modeling without the firmware source
code or hardware. PRETENDER [22] performs peripheral
modeling using machine-learning techniques, and P2IM [7]
processes the peripheral I/O by abstracting them at the
register-level. However, HALucinator [6] solves the periph-
eral device problem of firmware emulation by partial emula-
tion using the processing method as a peripheral abstracted
handler at the HAL function-level. HAL-Fuzz [24] performs
firmware fuzzing by combining HALucinator and AFL.
In addition, a recent study showed that, DICE [25] and
Conware [26] can improve the limitations of P2IM [7] by
modeling DMA or using symbolic execution.

Unlike these approaches, HEFF combines register- and
function-level modeling; hence, we compared HEFF with
P2IM and HAL-Fuzz and observed that our dual-level periph-
eral modeling in emulation was scalable and efficient.

lll. MOTIVATION
This section briefly describes the background of our study
and clarifies the research problem through small experiments.

A. BACKGROUND

1) FIRMWARE IN EMBEDDED DEVICES

Firmware is a low-level software that provides hardware con-
trols in various embedded devices. Muench et al. [4] catego-
rized those embedded devices into the following three classes
according to the type of an operating system: general pur-
pose OS, embedded OS, and no OS abstraction. At present,
approximately 81% of the embedded devices are working
with MCU firmware with no or less OS abstraction [27],
which is our major concern in this study.

2) FIRMWARE FUZZING

Fuzzing is a dynamic testing technique to discover hidden
bugs, mainly in software, through random garbled inputs.
Literally speaking, fuzzing embedded systems is similar to
walking barefoot on a rough gravel road. Instrumentation
tools on firmware without emulation are usually not possi-
ble. Full emulation of both processor and peripheral devices
is impractical because of hardware diversity; furthermore,
partial “hardware-in-the-loop”” emulation also presents poor
fuzzing performance due to the bottleneck in communication
with actual hardware devices. Such emulation is usually slow
and unscalable for firmware fuzzing.

As explored in [4], partial emulation with peripheral
modeling is a promising approach to firmware fuzzing,
in which a processor is fully emulated while peripher-
als are only virtually modeled in software. This concept
is convincing as any firmware can run on an emulator
without real or fully emulated peripherals, as long as
the emulator can provide acceptable peripheral data to
firmware whenever required. Moreover, it is sufficient to con-
sider only on-chip peripherals in fuzzing because firmware

141792

TABLE 1. Fuzzing performance of P2IM and HAL-Fuzz on Robot
firmware (5h).

Firmware Speed (run/s) Basic blocks
P2IM HAL-Fuzz P2IM HAL-Fuzz
Robot 2223 97.68 1166 315

g 40 = = HAL symbols
S 35 == GCC 2018 g4 (Ideal)
230 28 57 29 [GCC 2017 q2
< 20 =
g 20 2 17 17 15 14
5 10 7 5 e 7 7 ﬂ_’ﬁ
%0 | []
UART 1 UART 2 SPI_1 SPi 2 12C GPIO

Firmwares

FIGURE 1. Libmatch’s HAL function matching results.

cannot access off-chip peripherals directly. Recently,
we observed two such promising approaches: PIM [7] and
HAL-Fuzz [6], [24].

B. PROBLEM DEFINITION

Our fundamental question is whether the partial emulation
with peripheral modeling is fast and scalable for fuzzing.
Therefore, we conducted two small experiments to clarify the
research problem of our study.

1) REGISTER-LEVEL PERIPHERAL MODELING

P2IM [7] treats peripherals as a black box by manipulating
memory-mapped registers reserved for peripherals, rather
than emulating any peripherals, so as to provide the equiv-
alent processor-peripheral interfaces to a generic emula-
tor (such as QEMU) for firmware fuzzing. For example,
on ARM Cortex-M MCUs, peripheral registers are manda-
torily mapped to the 0x40000000-0x5fff£f£ff mem-
ory segment; thus, P2IM considers each memory word in
this segment as a potential memory-mapped register. To this
end, P2IM automatically instantiates the interface models for
firmware specific information; it also monitors and handles
every access to the peripheral registers. Although P2IM is
highly scalable for firmware fuzzing, we observed that the
performance at the register-level can be further improved in
terms of speed.

Table 1 shows the result of our experiment that compares
P2IM and HAL-Fuzz in terms of fuzzing performance (runs
per second) on a firmware (960KB) that includes HAL func-
tions. Although the number of basic blocks executed by PZIM
is more than HAL-Fuzz which performs fuzzing through an
external handler, P2IM is about four times slower than HAL-
Fuzz for fuzzing. Readers are referred to Table 3 for further
comparisons.

2) FUNCTION-LEVEL PERIPHERAL MODELING

HAL-Fuzz [6], [24] provides high-level replacements for
HAL functions located by library matching techniques in
firmware. It handles external interactions between the emu-
lated firmware and the corresponding peripheral models for

VOLUME 9, 2021

E. Hwang et al.: Toward Fast and Scalable Firmware Fuzzing With Dual-Level Peripheral Modeling

IEEE Access

Preprocessing

Firmware

Function
List Check

Function List J

Modified
Firmware Binary

HEFF |
1
Emulation :
1
1
Function Handler 1
y Mutated Input H -
Function HAL Function Level [F [Fuzzing
Address Check ~— > uzzer ! Result
No Peripheral Cartpet H
Interface Model |
1
Register Level 1
1
1
1

FIGURE 2. HEFF System Overview. In the emulation, whether the function which is in the function list is hooked in the firmware is expressed as “Yes” or

“No."

fuzzing without any peripheral emulation. HAL-Fuzz needs
a specific tool named LibMatch to locate HAL functions in
stripped binary firmware, which is highly dependent on the
HAL object files that are used to identify HAL functions
from arbitrary firmware in LibMatch. Although HAL-Fuzz
is fast for firmware fuzzing thanks to the lower granularity at
the abstract function-level, we observed that rigorous require-
ments for the library matching environments can be relaxed
to further improve the scalability.

Figure 1 illustrates the result of our experiment that com-
pares the HAL functions found by LibMatch in the dif-
ferent compilation environments for each firmware. The
HAL object files used in our experiment were compiled
using GCC (2018 g4 version) with the -O0 optimiza-
tion level. For the ideal result of LibMatch, we com-
piled six bare-metal firmwares which are available in [28]
(UART_1 [29], UART_2 [30], SPL_1 [31], SPI_2 [32],
12C [33] and GPIO [34]) in the same environment as that of
HAL object files. Moreover, to compare the matching results
according to the GCC version, we compiled the firmware
using the GCC with -O0 (2017 g2 version), respectively.
Finally, to confirm the results according to the optimization
options, we also used GCC (2018 g4) with other optimization
levels (-O1, -02, -03, -Os and -0g).

In the ideal case, 95% (median) HAL functions were
successfully identified. However, when the compiler ver-
sions were different, the matching result became consider-
ably lower. Furthermore, when the optimization levels were
even slightly different, no matching result came out. Since
HAL-Fuzz is a function hooking-based approach, the exact
identification of HAL functions by LibMatch is mandatory
for firmware fuzzing and also for the proper emulation.

C. OUR DIRECTION

To achieve the benefits of peripheral modeling at both lev-
els, we present a dual-level approach for peripheral mod-
eling. We implemented a firmware fuzzer based on P2IM
and HAL-Fuzz; named HEFF that might enjoy both lev-
els optimistically half and half. In HEFF, the peripheral
modeling starts at the register-level, as in P2IM, because
it is automatic and scalable. When a HAL function call is
detected, function-level peripheral modeling is launched by
connecting a peripheral handler, as in HAL-Fuzz. Although

VOLUME 9, 2021

constructing the peripheral handler requires an engineer-
ing effort, this function-level process accelerates fuzzing.
Furthermore, HEFF implemented in this way enable fast
fuzzing of firmware which calls both HAL and non-HAL
functions (e.g., CNC), which was impossible with existing
function-level processing alone, through dual-level periph-
eral modeling. In addition, we observed that even with fewer
handlers, HEFF is faster than P2IM (Table 4) and more scal-
able than HAL-Fuzz (Table 6). HEFF performs efficient and
scalable firmware fuzzing.

IV. SYSTEM DESIGN

A. OVERVIEW

Figure 2 illustrates an overview of HEFF’s system architec-
ture. HEFF takes a target firmware and a function list as
inputs; after the preprocessing, it initiates firmware emulation
via QEMU. Preprocessing enables independent control of
functions to be processed at the function level during emula-
tion via binary rewriting. For peripherals that cannot be emu-
lated using QEMU, HEFF’s dual-level peripheral modeling is
employed. Dual-level modeling commences at register-level
first, when the HAL function is hooked through the function
address check in real time, peripheral modeling is performed
through a handler at the HAL function-level. When the han-
dler processing of the corresponding function is completed,
the process returns to the next address of the instruction at
which the HAL function is called, and emulation continues at
the register-level. Finally, fuzzing in HEFF is performed by
transferring the mutated input generated in the AFL to the part
that requires an external input among the peripheral models
generated at each level.

B. DUAL-LEVEL PERIPHERAL MODELING

1) PREPROCESSING

HEFF’s dual-level peripheral modeling requires a pre-built
QEMU and modified firmware.

Pre-built QEMU is built by inserting the HAL function
list and the corresponding handlers into the QEMU imple-
mented by P2IM. The HAL function list is composed of the
function name and its start address, which can be created
through the symbol parsing program or LibMatch analysis
of the HALucinator [6]. In addition, the function handlers are

141793

IEEE Access

E. Hwang et al.: Toward Fast and Scalable Firmware Fuzzing With Dual-Level Peripheral Modeling

Algorithm 1 HEFF Process

Input: Firmware binary, Function List
Output: Fuzzing result

F = Firmware binary

F,0a = Modified firmware binary

FL = Function list file

FLf;nc = Functions in FL

FLqqr = Start address of FLgpc

pc = Program pointer

1: Initiate Function List Check

2: while run FI budget reached do:

3: FLfync = get(FL) // Ly is the address to be modified.
4: run radare2 with FLy.:

5: 4-byte hex value after FL 44 — overwrite 70 47 (bx Ir)
6: return F,,,4

7: Initiate Function Address Check

8: while run F,,,,; with HEFF:

9: if pc = FL 44,

10: Convert to Function-level

11: AFL mutated input — Function Handler

12: return fuzzing output

13: else:

14: Convert to Register-level

15: AFL mutated input — Peripheral Interface Model
16: return fuzzing output

17: return fuzzing result

implemented in C-code by modeling the external interactions
between the emulated firmware and the peripherals of the
corresponding target firmware.

Modified firmware is created by rewriting the hex value to
the start point of listed functions so that the internal function
is not driven. Functions handled at function-level are only run
via handlers. However, when the firmware runs in QEMU,
it is difficult to control the entire function with only the
start address because the translated tiny block of QEMU
constantly changes. Therefore, to prevent internal functions
from running, as described in lines 1-6 of Algorithm 1 above,
HEFF finds the function start addresses in the binary from a
given function list check logic and rewrites the first 2 bytes
with bx Ir (little endian: 70 47). In this manner, the function
hooked directly parses the address to return in the function
handle and specifies /r (r14). If the function is called, bx Ir
code is subsequently executed according to the modified /r
information, so the function is immediately terminated and
the next instruction is executed. Through this process, it is
possible to reduce unnecessary internal function operations
during emulation.

2) FUNCTION ADDRESS CHECK

Function address check is the core of dual-level emula-
tion, given that the function-level modeling is operated only
through this process. The function address check logic moni-
tors the program counter (PC) value, which is changed during
firmware operation in real time. At this point, if the PC
value matches the address in the function list, that func-
tion is hooked and converted to the function-level peripheral
modeling.

141794

3) FUNCTION-LEVEL PERIPHERAL MODELING

In HEFF, function-level peripheral modeling is executed by
connecting the handler corresponding to the hooked HAL
function after the function address check. This peripheral
abstraction handler was proposed in HALucinator [6], and
it is created by converting the HAL function argument into
data that the peripheral model can use. This facilitates easy
handling of complex interactions between peripherals and
processors. In addition, in most cases, because some hard-
ware concepts such as power or clocking do not exist in the
emulation, the return values of the handlers do not affect the
emulation.

4) REGISTER-LEVEL PERIPHERAL MODELING

Peripheral modeling at the register-level continues as long as
the HAL function is not hooked during emulation. In addi-
tion, this method uses P2IM’s peripheral interface modeling.
First, it classifies the control register (CR), status register
(SR), and data register (DR) via register access patterns, and
then defines the peripheral interface to be emulated in the
target firmware through model abstraction. Next, by handling
peripheral I/O with the peripheral interface defined through
model instantiation, the running firmware can emulate with-
out peripheral problems. Using the modeling of P2IM, HEFF
continuously emulates at the register-level when it does not
operate at the function-level.

C. FUZZER

HEFF performs fuzzing by providing a mutated input in two
ways (represented on lines 11 and 15 of Algorithm 1), given
that it carries out peripheral modeling at the dual-level. After
peripheral modeling at the register-level, HEFF channels the
AFL-mutated input into the DR where the data value store.
Whereas, after function-level peripheral modeling, the AFL-
mutated input is provided to the function handler by pars-
ing the mutated file of the AFL. For example, the HAL
function argument of the receive-related function consists
of (peripheral handle, data variable to store input, length
of input value). The elements of this stored in the r0, rl,
and r2 registers, respectively, when the function is called.
Concerning the fuzzing input of the handler a data variable to
store the input and the length of the input value are required.
The handler parses the rl and r2 registers, splits the input in
the mutated file of the AFL as much as the input value length
(r2), and stores it in the data variable (r1) to be saved.

V. IMPLEMENTATION

We implemented HEFF on top of P2IM. HEFF takes a func-
tion list and firmware binary as the inputs. Using these inputs,
function list check, function address check processes, and
corresponding HAL function handlers are implemented by
inserting 10 lines of C code in the QEMU. In addition,
the firmware binary is automatically modified by our python
script which based on radare2 [35]. Table 2 shows an example
of modified firmware.

VOLUME 9, 2021

E. Hwang et al.: Toward Fast and Scalable Firmware Fuzzing With Dual-Level Peripheral Modeling

IEEE Access

TABLE 2. Example of modified input firmware.

Address Firmware Modified Firmware

08007540 80 B5 00 AF 70 47 00 AF
08007550 00 FO 5A FE 00 FO 5A FE
08007560 11 FA FA F7 11 FA FA F7

Concerning the function handler, we obtained the
function-level handling idea from HAL function hooking
and handling in HAL-Fuzz. We ported the C code function
handler to gnu-eclipse-qemu in P2IM so that it could be used
in HEFF. There are two major function handlers implemented
in HEFF: a receive handler, which receives the input from the
fuzzer, and a return-zero handler, which bypasses functions
that are not specifically needed in the fuzzing and returns zero
to the 10 register. Through the return-zero handler, we con-
trol the init- and transmit-related functions, because these
functions do not require inputs during a firmware execution
and consequently are not important for the fuzzing process.
Meanwhile, we did not modify P2IM for register-level periph-
eral modeling.

VI. EVALUATION
To evaluate HEFF, we set the following research questions:

o RQI: Is HEFF efficient? (§VI-B)
o RQ2: Is HEFF scalable? (§VI-C)
« RQ3: Is HEFF effective in bug detection? (§VI-D)

A. EXPERIMENTAL SETUP

1) EXPERIMENT DATA

In the experiments, we used four real firmware provided by
P2IM [36]. The real firmware are CNC, PLC, Robot and
Drone, which use HAL functions. CNC is a grbl milling
controller firmware used in 3D printers and laser cutters,
PLC (Programmable Logic Controller) is a firmware that
controls important processes as part of the sterilizer, Robot
is a motion controller firmware used in personal transport
devices, and Drone is an autopilot controller firmware for
quad-copters. The experiment was conducted by applying
a total of 9 handlers, 4 handlers each including duplicates,
to CNC, PLC, Robot, and Drone.

2) SEEDS

The executable seed input values are different for each
firmware. In the case of P2IM and HEFF, a random seed value
is used, whereas HAL-Fuzz requires an input of a specific
length for each firmware. Therefore, the input used in HAL-
Fuzz was used in P*2IM and HEFF only for the same firmware.

3) PLATFORM AND CONFIGURATION

We conducted the experiments on a virtual machine with
Intel® Xeon(R) Gold 6134 CPU and 16GB RAM, running

VOLUME 9, 2021

2 400 411K 400 ¢ ==
5 370 K 363 g = P2M
5 329K
3 301K
X 300 287 K
- 259K
o
+*

200 CNC PLC Robot Drone

Firmware

FIGURE 3. The average number of executions of HEFF and P2IM for real
firmware on the 10times run (5h).

TABLE 3. Real firmware information.

Firmware MCU 0oS Size #HALSs
CNC STM32F42971 Bare metal 287KB 54
PLC STM23F429Z1 Arduino 774KB 54
Robot STM32F103RB Bare metal 960KB 43
Drone STM32F103RB Bare metal 425KB 41

TABLE 4. The number of executions of each firmware at 10 fuzzing run
(5h) in HEFF, P2IM, and HAL-Fuzz.

Firmware HEFF P2IM HAL-Fuzz
Median Median Improv. Median Improv.
CNC 329,818 301,151 +8.69% - N/A
PLC 370,830 363,210 +2.05% 876,431 -136.34%
Robot 411,730 400,287 +2.27% 1,758,402 -327.07%
Drone 287,528 259,951 +9.59% 530,091 -84.36%

64-bit Ubuntu 18.04 system. In the experiment, we performed
real-world firmware fuzzing 10 times [8] for S5h each.

B. RQ.1: EFFICIENCY OF HEFF

To answer RQI1, we compared the fuzzing execution speed
with P2IM and HAL-Fuzz to confirm that the function
handlers perform fuzzing efficiently. In fuzz testing, faster
fuzzers can run more through more mutated inputs. It means
that faster fuzzers have more chances to discover vulnerabili-
ties. Table 4 represents P>IM is emulation at the register-level
which makes fuzzing slow, so the number of executions is the
lowest compared to the other two fuzzers. On the other hand,
emulation in HAL-Fuzz is performed at the function-level,
so faster fuzzing is possible, and as a result, the firmware is
executed the most. At this time, CNC is not executed because
there is no handler corresponding to the specific function
(§VID). Finally, HEFF, a combination of P2IM and HAL-
Fuzz, shows approximately 0.9 times less execution result of
P?IM and approximately 2 to 4 times more execution than
HAL-Fuzz. Moreover, Figure 3 shows that HEFF executed at
least 2.7% and at most 9.6% over P2IM.

This may be seen as a small speed increase, but each
handler is at least 2 times and up to approximately
400 times faster than P?IM when processing the same
function (Table 5). In particular, handling HAL _Init at the
function level can significantly reduce the time required.
Nevertheless, because each handled HAL function is not

141795

IEEE Access

E. Hwang et al.: Toward Fast and Scalable Firmware Fuzzing With Dual-Level Peripheral Modeling

1000
800
L
o
o
< 600 HEFF
k4 HAL-Fuzz
0
S 400
##
200
oL . ‘ :
0 1 2 3 4 5
Time(5h)
(a) CNC
1000
«» 800
4
o
o
o)
O 600 HEFF
b HAL-Fuzz
o)
k)
4 900
200
0
0 1 2 3 ! 5
Time(5h)
(c) Robot

FIGURE 4. Basic block coverage of HEFF and HAL-Fuzz.

TABLE 5. Average time for function handling in HEFF and P2IM (us).

Function HEFF PZIM
HAL_Init 5 2270
HAL_IncTick 5 1322
HAL_Uart_Init 11 4909
HAL_RCC_OscConfig 367 947
HAL_UART_Transmit 17 526
timers_init 12 1013
usart_init 290 504
serial_write 14 99

called more often than other functions when the firmware is
executed, the fuzzing speedup is not significantly affected.
However, this result means that using more handlers in HEFF,
achieves acceleration (§ VII). Furthermore, comparing other-
wise, Table 7 shows that HEFF’s firmware rewriting process
reduces the model instantiation time up to 21 seconds at reg-
ister level except for one (§ VII). Therefore, HEFF is efficient
because it can improve the speed even with a small number
of handlers, and can also reduce the model instantiation
time.

141796

700
600
ﬁ 500
(%]
S
S 400 HEFF
B HAL-Fuzz
f 300
o
++
200
100
0 T T T
0 1 2 3 4 5
Time(5h)
(b) PLC
12001
1000+
)
X 800
S
< HEFF
@ 600 HAL-Fuzz
Qo
kS
H 4004
2004
0
0 1 2 3 4 5
Time(5h)
(d) Drone

TABLE 6. The number of basic blocks (5h) executed when fuzzing
firmware 10 times.

Firmware HEFF P2IM HAL-Fuzz
Median Median Improv. Median Improv.
CNC 1052 1067 -1.42% 254 +75.85%
PLC 707 519 +26.59% 252 +64.35%
Robot 1129 1166 -3.27% 315 +72.09%
Drone 1205 1278 -6.05% 199 +83.48%

C. RQ.2: SCALABILITY OF HEFF

To answer RQ2, we compared the basic block coverage with
HAL-Fuzz and P?IM. Table 6 shows the number of basic
blocks of each fuzzer. Compared to HEFF, P2IM shows a
small difference from a minimum of 0.94 times to a maximum
of 1.36 times, while HAL-Fuzz shows a big difference from
a minimum of 3.58 times up to 6.05 times; during emulation,
PZIM shows the highest basic block coverage, and HAL-Fuzz
shows the lowest basic block coverage. In addition, HEFF
covers a large number of basic blocks compared to that in the
case of HAL-Fuzz, despite handling approximately 10% of
HAL functions for each firmware. Figure 4, which compares

VOLUME 9, 2021

E. Hwang et al.: Toward Fast and Scalable Firmware Fuzzing With Dual-Level Peripheral Modeling

IEEE Access

50

HEFF
P2IM
40 HAL-Fuzz

w
S

of crashes
N
o

10

2 3 4 5
Time(5h)

FIGURE 5. Number of crashes detected in 10 fuzzing runs (5h) of
HEFF,P2IM and HAL-Fuzz.

TABLE 7. Model instantiation time (median) required when performing
fuzzing firmware 10 times.

Firmware CNC PLC Robot Drone
Dual-level modeling (s) 66 3 192 322
Register-level modeling (s) 65 6 201 343
Improve +1.51% -100% -4.68% -6.52%

HEFF’s basic blocks with HAL-Fuzz, shows significant dif-
ferences, thus, it means that HEFF is more scalable that HAL-
Fuzz. In particular, in CNC, given that the “USART_putc”
function, which is the transmit-related function, does not exist
in the function list. Therefore, the subsequent operation is
stuck and cannot be executed, and further fuzzer execution
is impossible in HAL-Fuzz. By contrast, in HEFF, even if
there is no function called in the function list for handler pro-
cessing, because processing is possible at the register-level,
it could operate firmware and perform fuzzing. Therefore,
it was confirmed that a more scalable fuzzing was possible
through HEFF.

D. RQ.3: EFFECTIVENESS OF HEFF

To validate the effectiveness of HEFF in finding bugs, we per-
formed 10 fuzzings of each fuzzer on 4 real firmwares and
compared them against P2IM and HAL-Fuzz. As a result,
HEFF, P2IM, and HAL-Fuzz all detected bugs in PLC only
among the 4 firmwares (CNC, PLC, Robot, Drone). Figure 5
shows the number of unique crashes resulting from 5(h)
fuzzing on the PLC. These crashes are caused by memory
corruption. The number of crashes was counted based on
the last basic block of the test case that crashed during
fuzzing, HAL-Fuzz found only one crash, while HEFF found
a total of 49 crashes, which is six more than P2IM. In addi-
tion, HEFF found the same number of crashes faster. There-
fore, HEFF is effective because it can quickly detect more
crashes.

VOLUME 9, 2021

VIIi. DISCUSSION

Remark that 19 out of 31 HAL function handlers (61%)
are return-zero handlers [24]. This means that approximately
60% of the HAL functions do not affect the fuzzing per-
formance. Accordingly, unlike HAL-Fuzz, HEFF does not
implement function handlers that require complex logic but
implements a return-zero handler for acceleration by connect-
ing functions that do not affect firmware operation (Table 5).
In addition, we implemented a receive handler for fuzzing.
The HAL function handled by each experimental firmware
is only approximately 10% of the total HAL functions
called, and the frequency of the HAL functions called by
each firmware is only approximately 0.24% 3% of the total
function calls. However, despite the low frequency of calls,
the fuzzing speed of the HEFF is improved (Table 4). That is,
even a small effort of HEFF can affect the overall fuzzing
speed. However, using many handlers, as implemented in
HAL-Fuzz, faster speed improvement is expected. Moreover,
Table 5 shows that Init functions require more time to pro-
cess than other functions. Therefore, as more handlers are
processed for Init-related functions, a greater speed improve-
ment can be expected. Also, this improvement increases the
possibility of finding more bugs.

Table 7 shows the model instantiation times of HEFF and
PZIM which does not use modified firmware. By running the
modified firmware, HEFF can reduce the model instantiation
time in contrast to P2IM by not creating models for func-
tions that are unnecessary for fuzzing. Therefore, the model
instantiation times of the PLC, Robot, and Drone are faster
than HEFF by 6.5% to 60% with respect to PZIM. However,
for CNC, HEFF is approximately 2% slower than PIM.
This slight slowdown occurs because the HEFF’s function
address check logic makes it slower than the speed increased
through the modified firmware. In other words, given that the
function address check logic in HEFF monitors the changed
PC value in real time, a tiny block overhead occurs. However,
although the model instantiation time of HEFF is slower than
P2IM in CNC, its difference is the smallest in terms of model
instantiation time difference with respect to other firmware.
Moreover, despite this slowdown, the overall fuzzing speed
increased (§VI-B).

VIil. CONCLUSION

To achieve fast and scalable firmware fuzzing, we proposed
the new approach of dual-level peripheral modeling and
implemented our prototype system called HEFF on top of
P2IM. We demonstrated its efficiency, scalability, and effec-
tiveness by performing the experiments with P2IM and HAL-
Fuzz. In our prototype implementation, we adopted LibMatch
and function handlers of HAL-Fuzz to deal with the abstract
function level. Finally, we observed that HEFF was faster
than P2IM, more scalable than HAL-Fuzz, and found more
bugs than P’IM and HAL-Fuzz. Although HEFF was more
efficient than P’IM and more scalable than HAL-Fuzz in
our experiments, there remain limitations. We expect the
following future study for further improvement.

141797

IEEE Access

E. Hwang et al.: Toward Fast and Scalable Firmware Fuzzing With Dual-Level Peripheral Modeling

As we adopted LibMatch, we were able to handle only
HAL functions at the abstract function level. The basic idea
of HAL-Fuzz is splendid but limits scalability. We plan to
develop a more general function matching mechanism to
deal with more functions at the abstract function level and
to relax the prerequisite of the exact environmental match,
entailing even faster fuzzing than now. We also expect that
this approach could address the mis-categorization problem at
the register level; and in addition, it could handle the ““write”
functions, unnecessary for fuzzing, with a return-zero handler
regardless of which register they access, for further improve-
ment of fuzzing speed.

ACKNOWLEDGMENT
The authors thank Yeongpil Cho for fruitful discussion and
feedback.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

K. L. Lueth. (Nov. 2020). State of the IoT 2020: 12 Billion IoT Connections,
Surpassing non-10T for the First Time. Accessed: Jun. 1, 2021. [Online].
Available: https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-
connections-surpassing-non-iot-for-the-first-time/

National Vulnerability Database. Accessed: Jun. 1, 2021. [Online]. Avail-
able: https://nvd.nist.gov/vuln/

D. Papp, Z. Ma, and L. Buttyan, “Embedded systems security: Threats,
vulnerabilities, and attack taxonomy,” in Proc. 13th Annu. Conf. Privacy,
Secur. Trust (PST), Jul. 2015, pp. 145-152.

M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing embedded
devices,” in Proc. Netw. Distrib. Syst. Secur. Symp., Jan. 2018, pp. 1-15.
W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic firmware emulation
through invalidity-guided knowledge inference,” in Proc. USENIX Secur.
Symp., Aug. 2021.

A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator: Firmware
re-hosting through abstraction layer emulation,” in Proc. USENIX Secur.
Symp., 2020, pp. 1201-1218.

B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling,” in Proc.
USENIX Secur. Symp., 2020, pp. 1237-1254.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2018,
pp. 2123-2138.

M. Zalewski. American Funzz Lop. Accessed: Jun. 1, 2021. [Online].
Available: https://lcamtuf.coredump.cx/afl/

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “FIRM-AFL:
High-throughput greybox fuzzing of iot firmware via augmented process
emulation,” in Proc. 28th USENIX Secur. Symp. Santa Clara, CA, USA:
USENIX Association, Aug. 2019, pp. 1099-1114.

D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for Linux-based embedded firmware,” in Proc. Netw.
Distrib. Syst. Secur. Symp. (NDSS), vol. 1, San Diego, CA, USA, Feb. 2016,
p. 1.

A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces,” in
Proc. 11th ACM Asia Conf. Comput. Commun. Secur., May 2016,
pp. 437-448.

P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer, “Firm-
Fuzz: Automated IoT firmware introspection and analysis,” in Proc. 2nd
Int. ACM Workshop Secur. Privacy Internet Things (IoT S&P), Nov. 2019,
pp. 15-21.

F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
USENIX Annu. Tech. Conf, FREENIX Track, Berkeley, CA, USA,
Apr. 2005, p. 46.

A. Beckus. (2012). gEMU With an STM32, Microcontroller Imple-
mentation. Accessed: Jun. 5, 2021. [Online]. Available: https:/github.
com/beckus/qemu_stm32

141798

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Repeat-
able reverse engineering with PANDA,” in Proc. 5th Program Pro-
tection Reverse Eng. Workshop, Los Angeles, CA, USA, Dec. 2015,
pp. 1-11.

C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A. Clements,
“Challenges in firmware re-hosting, emulation, and analysis,” ACM Com-
put. Surv., vol. 54, no. 1, pp. 1-36, Apr. 2021.

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR:
A framework to support dynamic security analysis of embedded sys-
tems’ firmwares,” in Proc. Netw. Distrib. Syst. Secur. Symp., Feb. 2014,
pp. 1-16.

M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect:
Peripheral proxying supported embedded code testing,” in Proc.
9th ACM Symp. Inf, Comput. Commun. Secur., Jun. 2014,
pp. 329-340.

K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling near-
real-time dynamic analyses of embedded systems,” in Proc. USENIX
Workshop Olffensive Technol., Washington, DC, USA, Aug. 2015,
pp. 1-10.

M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “AVATAR2: A multi-
target orchestration platform,” in Proc. Workshop Binary Anal. Res., 2018,
pp. 1-11.

E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,
Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel, and
G. Vigna, “Toward the analysis of embedded firmware through automated
re-hosting,” in Proc. Int. Symp. Res. Attacks, Intrusions Defenses (RAID),
Beijing, China, Sep. 2019, pp. 135-150.

D. Maier, B. Radtke, and B. Harren, “Unicorefuzz: On the viability of
emulation for kernelspace fuzzing,” in Proc. USENIX Workshop Offensive
Technol., Santa Clara, CA, USA, Aug. 2019, pp. 1-11.
HAL_Fuzz. Accessed: Jun. 1, 2021. [Online].
https://github.com/ucsb-seclab/hal-fuzz

A. Mera, B. Feng, L. Lu, and E. Kirda, “DICE: Automatic emulation of
DMA input channels for dynamic firmware analysis,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2021, pp. 302-318.

C. Spensky, A. Machiry, N. Redini, C. Unger, G. Foster, E. Blasband,
H. Okhravi, C. Kruegel, and G. Vigna, “Conware: Automated modeling of
hardware peripherals,” in Proc. ACM Asia Conf. Comput. Commun. Secur.,
Jun. 2021, pp. 95-109.

(2019). Embedded Markets Study. Accessed: Jun. 1, 2021. [Online].
Available: https://www.embedded.com/wp-content/uploads/2019/
11/EETimes_Embedded_20%19_Embedded_Markets_Study.pdf
STM324691 EVAL Examples. Accessed: Jun. 4, 2021. [Online].
Available: https://github.com/STMicroelectronics/STM32CubeF4/tree/
master/Projects/%STM324691_EVAL/Examples

UART _HyperTerminal _IT Source Code. Accessed: Jun. 1,2021. [Online].
Available: https://github.com/STMicroelectronics/STM32CubeF4/tree/
master/Projects/%STM324691_EVAL/Examples/UART/UART_
HyperTerminal_IT

UART _Printf Source Code. Accessed: Jun. 1, 2021. [Online].
Available: https://github.com/STMicroelectronics/STM32CubeF4/tree/
master/Projects/%STM324691_EVAL/Examples/UART/UART_Printf
SPI_FullDuplex_AdvComPolling Source Code. Accessed: Jun. 1, 2021.
[Online]. Available: https://github.com/STMicroelectronics/
STM32CubeF4/tree/master/Projects/%STM324691-
Discovery/Examples/SPI/SPI_FullDuplex_AdvComPolling
SPI_FullDuplex_AdvComIT Source Code. Accessed: Jun. 1, 2021.
[Online]. Available: https://github.com/STMicroelectronics/
STM32CubeF4/tree/master/Projects/%STM324691-
Discovery/Examples/SPI/SPI_FullDuplex_AdvComIT

I12C_EEPROM Source Code. Accessed: Jun. 1, 2021. [Online]. Avail-
able: https://github.com/STMicroelectronics/STM32CubeF4/tree/master/
Projects/%STM324691_EVAL/Examples/I2C/I2C_EEPROM
GPIO_IOToggle Source Code. Accessed: Jun. 1, 2021. [Online]. Avail-
able: https://github.com/STMicroelectronics/STM32CubeF4/tree/master/
Projects/%STM324691_EVAL/Examples/GPIO/GPIO_IOToggle

Radare 2. Accessed: Jun. 6, 2021. [Online]. Available:
https://github.com/radareorg/radare2

P2IM Real-World Firmware Samples. Accessed: Jun. 1, 2021. [Online].
Available: https://github.com/RiS3-Lab/p2im-real_firmware/tree/
d4c7456574ce2c2ed03%8e6f14fea8e3142b3c1f7

Available:

VOLUME 9, 2021

E. Hwang et al.: Toward Fast and Scalable Firmware Fuzzing With Dual-Level Peripheral Modeling IEEEACC@SS

VOLUME 9, 2021

EUNBI HWANG received the B.S. degree in
statistics from Sungshin Women’s University,
Seoul, South Korea, in 2019. She is currently
pursuing the Ph.D. degree with the Information
Security Laboratory, Yonsei University, Seoul. Her
research interests include software security, sys-
tem security, and the IoT security.

HYUNSEOK LEE received the B.S. degree in com-
puter engineering from Yonsei University, Wonju,
South Korea, in 2020. He is currently pursuing
the M.S. degree with the Information Security
Laboratory, Yonsei University, Seoul. His research
interests include mobile, the IoT security, digital
forensic, and app developing.

SEYEON JEONG received the B.S. degree in
information security from Daegu Catholic Uni-
versity, Gyeongsangbukdo, South Korea, in 2018.
He is currently pursuing the M.S. degree with the
Information Security Laboratory, Yonsei Univer-
sity, Seoul. His current research interests include
software security, system security, and the IoT
security.

MINGI CHO received the B.S. degree in com-
puter engineering from Pusan National Univer-
sity, Busan, South Korea, in 2017. He is currently
pursuing the Ph.D. degree with the Information
Security Laboratory, Yonsei University, Seoul. His
research interests include software and system
security, fuzzing, and memory safety.

TAEKYOUNG KWON (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer sci-
ence from Yonsei University, Seoul, South Korea,
in 1992, 1995, and 1999, respectively.

From 1999 to 2000, he was a Postdoctoral
Research Fellow with the University of California,
Berkeley, CA, USA. From 2001 to 2013, he was
a Professor of computer engineering with Sejong
University, Seoul. He is currently a Professor
of information security with Yonsei University,
where he is also the Director of the Information Security Laboratory. His
research interests include authentication, cryptographic protocols, network
security, software and system security, usable security, and adversarial
machine learning.

Dr. Kwon is a member of ACM and USENIX. He serves on the Director
Board Member for Korea Institute of Information Security and Cryptology.
He serves on the Editorial Committee Member for the Korean Institute of
Information Scientists and Engineers.

141799

